Explicit robust constrained control for linear systems : analysis, implementation and design based on optimization

Résumé : Les lois de commande affines par morceaux ont attiré une grande attention de la communauté d'automatique de contrôle grâce à leur pertinence pour des systèmes contraints, systèmes hybrides; également pour l'approximation de commandes nonlinéaires. Pourtant, leur mise en oeuvre est soumise à quelques difficultés. Motivé par l'intérêt à cette classe de commandes, cette thèse porte sur leur analyse, mise en oeuvre et synthèse.La première partie de cette thèse a pour but le calcul de la marge de robustesse et de la marge de fragilité pour une loi de commande affine par morceaux donnée et un système linéaire discret. Plus précisément, la marge de robustesse est définie comme l'ensemble des systèmes linéaires à paramètres variants que la loi de commande donnée garde les trajectoires dans de la région faisable. D'ailleurs, la marge de fragilité comprend toutes les variations des coefficients de la commande donnée telle que l'invariance de la région faisable soit encore garantie. Il est montré que si la région faisable donnée est un polytope, ces marges sont aussi des polytopes.La deuxième partie de ce manuscrit est consacrée au problème de l'optimalité inverse pour la classe des fonctions affines par morceaux. C'est-à-dire, l'objective est de définir un problème d'optimisation pour lequel la solution optimale est équivalente à la fonction affine par morceaux donnée. La méthodologie est fondée sur le convex lifting, i.e., un variable auxiliaire, scalaire, qui permet de définir un ensemble convex à partir de la partition d'état de la fonction affine par morceaux donnée. Il est montré que si la fonction affine par morceaux donnée est continue, la solution optimale de ce problème redéfini sera unique. Par contre, si la continuité n'est pas satisfaite, cette fonction affine par morceaux sera une solution optimale parmi les autres du problème redéfini.En ce qui concerne l’application dans la commande prédictive, il sera montré que n'importe quelle loi de commande affine par morceaux continue peut être obtenue par un autre problème de commande prédictive avec l'horizon de prédiction au plus égal à 2. A côté de cet aspect théorique, ce résultat sera utile pour faciliter la mise en oeuvre des lois de commandes affines par morceaux en évitant l'enregistrement de la partition de l'espace d'état. Dans la dernière partie de ce rapport, une famille de convex liftings servira comme des fonctions de Lyapunov. En conséquence, ce "convex lifting" sera déployé pour synthétiser des lois de commande robustes pour des systèmes linéaires incertains, également en présence de perturbations additives bornées. Des lois implicites et explicites seront obtenues en même temps. Cette méthode permet de garantir la faisabilité récursive et la stabilité robuste. Cependant, cette fonction de Lyapunov est limitée à l'ensemble λ −contractive maximal avec une constante scalaire 0 ≤ λ < 1 qui est plus petit que l'ensemble contrôlable maximal. Pour cette raison, une extension de cette méthode pour l'ensemble contrôlable de N − pas, sera présentée. Cette méthode est fondée sur des convex liftings en cascade où une variable auxiliaire sera utilisée pour servir comme une fonction de Lyapunov. Plus précisément, cette variable est non-négative, strictement décroissante pour les N premiers pas et égale toujours à 0 − après. Par conséquent, la stabilité robuste est garantie.
Type de document :
Thèse
Automatic. Université Paris-Saclay, 2015. English. 〈NNT : 2015SACLC012〉
Liste complète des métadonnées

Littérature citée [106 références]  Voir  Masquer  Télécharger

https://hal-centralesupelec.archives-ouvertes.fr/tel-01261034
Contributeur : Abes Star <>
Soumis le : lundi 14 mars 2016 - 17:12:07
Dernière modification le : jeudi 11 janvier 2018 - 06:19:10
Document(s) archivé(s) le : mercredi 15 juin 2016 - 14:50:10

Fichier

72566_NGUYEN_2015_archivage.pd...
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01261034, version 2

Citation

Ngoc Anh Nguyen. Explicit robust constrained control for linear systems : analysis, implementation and design based on optimization. Automatic. Université Paris-Saclay, 2015. English. 〈NNT : 2015SACLC012〉. 〈tel-01261034v2〉

Partager

Métriques

Consultations de la notice

342

Téléchargements de fichiers

207