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2.5. Model predictive control 33

The output and control variables are subject to constraints:

yk 2 [� 5; 5]; uk 2 [� 2; 2]:

The weighting matrices are chosen as follows:Q =
�
1 0
0 1

�
; R = 1: The linear

unconstrained control and terminal matrixP computed from the Riccati equation
are as follows:

uk =
�
0:4221 1:2439

�
xk ; P =

�
2:9471 2:3692
2:3692 4:6131

�
:

Accordingly, the terminal constraintsXf are chosen to be the maximal output

(a) State space parition (b) Piecewise af�ne controller

Figure 2.5: An illustrative example for explicit solution.

admissible set, seeGilbert and Tan[1991]. The cost function is de�ned over the
prediction horizon10:

J (u; xk) =
9X

i =0

(xT
k+ i jkQxk+ i jk + uT

k+ i jkRuk+ i jk) + xT
k+10 jkPxk+10 jk : (2.22)

Resulted from this MPC problem, the state space partition is presented in Figure
2.5awhere the yellow region represents the terminal constraintsXf : Also, the
optimal control as the �rst element in the sequence of optimization argument is
shown in Figure2.5b.





























3.3. Explicit robustness margin for PWA control laws 47

where� �
v is de�ned by:

� �
v =

(

(�; M ) 2 SL � Rq� p
+ j 1T M � 1T ;

LX

j =1

� j (A j W + B j U) = V M

)

:

Proof: For any[A(k) B(k)] 2 	 rob

(A(k) + B(k)H i )x + B(k)Gi 2 X ; 8x 2 X i ; 8i 2 I N :

There exists a� 2 [0; 1] such that

(A(k) + B(k)H i )x + B(k)Gi 2 � X ; 8x 2 X i ; 8i 2 I N :

Due to Assumption3.2.7, � X � X : Following the same line as in the proof of
Theorem3.3.3, there also exists a matrixM � 2 Rq� p

+ such that:

LX

j =1

� j (A j W + B j U) = �V M � ; 1T M � = 1T :

ReplacingM = �M � leads to the de�nition of� �
v: This completes the proof.�

Note also that Corollary3.3.7may be of help for further developments of ro-
bustness margin while guaranteeing asymptotic stability of the origin. Accord-
ingly, a contractivity condition ofX may be required when appropriate con-
straints are imposed, whereby1T M � 1T is replaced with1T M � � 1T for some
� 2 [0; 1) :

Also, the robustness margins obtained from Theorem3.3.3and Corollary3.3.7
should be identical in spite of different formulations.

Moreover, the continuity of a PWA control law can be relaxed. Accordingly, if
Assumption3.2.6is dropped, then the robustness margin for a discontinuous PWA
controller does not lose any fundamental property. Recall that we are interested
in discontinuous PWA functions de�ned as in (3.2).

Corollary 3.3.8 Under the hypotheses of Corrollary3.3.7, if Assumption3.2.6is
dropped, then the robustness margin can be obtained as follows:

	 �
rob = Proj RL � ��

v ;

where� ��
h is de�ned as:

� ��
v =

�
(�; M 1; : : : ; MN ) 2 SL � Rq� q1

+ � : : : Rq� qN
+ j

1T M i � 1T ;
LX

j =1

� j (A j Vi + B j (H i Vi + 1T
qi


 Gi )) = V Mi ; 8i 2 I N

�
:























































































































































































































Chapter 6. Conclusions 154

This allows the PWA controllers to be implemented into low-cost plat-
forms.

Linear model predictive control
— Based on the result of inverse parametric linear/quadratic programming

problem via convex liftings, a theoretical result in the case of linear model
predictive control has been proved. Accordingly, it has been shown that
any continuous PWA controller can be equivalently obtained via a linear
MPC problem with the control horizon at most equal to 2 prediction steps.

Design of robust controllers
Two methods to design robust control laws have been put forward for linear sys-
tem affected by bounded additive disturbances and polytopic model uncertainties.

— Robust control design based on convex liftings has been shown to be sim-
ple and able to design both implicit and explicit controllers. Such a convex
lifting has been shown to be a control Lyapunov function de�ned over the
maximal� � contractive set for a0 � � < 1: Also, this methods has been
shown to ensure the recursive feasibility and robust stability in the sense
of Lyapunov.

— Robust control design based on a cascade of convex liftings has been char-
acterized. This method extends the feasible region to theN � steps control-
lable set known not to be contractive. Accordingly, an auxiliary variable
has been presented to emulate a Lyapunov function. Namely, this auxiliary
is non-negative, strictly decreasing forN �rst sampling instants and stays
at0 afterwards.

6.2 Future works

For future work, some directions can be outlined as follows:

Robust control based on convex liftings
Convex liftings have been shown to be control Lyapunov function de�ned over a
contractive set. Also, a cascade of convex liftings, but not convex, has been of use
to design robust control over theN � steps controllable set. Some open ideas can
similarly be exploited:

— Construct a convex lifting de�ned over theN � steps controllable set as a
control Lyapunov function. Many studies have focused on this problem by
separating theN � steps controllable set into a convexly liftable partition
and searching for a stabilizing PWA controller de�ned over this partition
with respect to a chosen control Lyapunov function. However, these meth-
ods cannot guarantee the feasibility since they did not exploit the property
of theN � steps controllable set. Similar to a convex lifting de�ned over
a contractive set, this Lyapunov candidate should ensure the feasibility of
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