
�>���G �A�/�, �i�2�H�@�y�R�e�9�9�R�d�k

�?�i�i�T�b�,�f�f�?���H�@�+�2�M�i�`���H�2�b�m�T�2�H�2�+�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�R�e�9�9�R�d�k�p�k

�a�m�#�K�B�i�i�2�/ �Q�M �k�j �L�Q�p �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�i�`�Q�M�;�H�v �S�`�B�p���i�2 �*�Q�K�K�m�M�B�+���i�B�Q�M�b �B�M �� �>�Q�K�Q�;�2�M�2�Q�m�b
�L�2�i�r�Q�`�F

���M�i�Q�B�M�2 �:�m�2�H�H�B�2�`

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���M�i�Q�B�M�2 �:�m�2�H�H�B�2�`�X �a�i�`�Q�M�;�H�v �S�`�B�p���i�2 �*�Q�K�K�m�M�B�+���i�B�Q�M�b �B�M �� �>�Q�K�Q�;�2�M�2�Q�m�b �L�2�i�r�Q�`�F�X ���m�i�`�2�X �*�2�M�i�`���H�2�@
�a�m�T�û�H�2�+�- �k�y�R�d�X �6�`���M�Ï���B�b�X ���L�L�h �, �k�y�R�d�*�a�l�S�y�y�y�R���X ���i�2�H�@�y�R�e�9�9�R�d�k�p�k��

���������	

�����������	�
��
������

��
�������
����
������
��������������	���
��
����
��������������
��

����������������

���
����������
����
������
����
�������������
���

������������������ �!�"��#$%��&'(�)*�
$�$��%%(+&���&�+)*
,+-��%��&'(�*�
&.+��*�
/)�0%�)*��������+&'(��1"�
,

�2�3�

�������������

�+��&+��4(���&��
����������������� �
!���"�"#$�%&'�(���)"*�&+

�"���(���������,-��,-�����"�.��/��('������#0��1/���$�����(���

���������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������

���+.�/���&5����
��%%(+&���&�+)�&+���
��%�.�+��()�
���6��7

#0)��)�(��+(��8���++�)
������%�&����	

��2�������3��0�,�/��������	

�������4�,���9"������
��4�������)��.����,���%��(2���(��������������+�5 �����������

"��/�&+����(��+�
���.�������������(2���(����%����,�/�#�����(�+�5� ����������

"���9��&5&���:,��,;,��
*(��,����������,-��,-��%6$$#�)��#+�5� ����
	����	������

��&)�&+�����
�
�����*�,��������%"�"#$5"�#$+�5� ����
������

�#�&)��<#��=,���
���.�������%)�������#�����,+�5� 	
��������	���� ��

�&����)���,4��

&7�������,-�('���%6#�"+�5� ��!	
��������	���� ��

Abstract

With the development of online communications in the past decades, new privacy con-
cerns have emerged. A lot of research e�ort have been focusing on concealingrela-
tionships in Internet communications. However, most works do not prevent particular
network actors from learning the original senderor the intended receiver of a communi-
cation. While this level of privacy is satisfactory for the common citizen, it is insu�cient
in contexts where individuals can be convicted for the mere sending of documents to
a third party. This is the case for so-calledwhistle-blowers, who take personal risks to
alert the public of anti-democratic or illegal actions performed by large organisations.

In this thesis, we consider a stronger notion of anonymity for peer-to-peer commu-
nications on the Internet, and aim at concealing the very fact that users take part in
communications. To this end, we deviate from the traditional client-server architec-
ture endorsed by most existing anonymous networks, in favorof a homogeneous, fully
distributed architecture in which every user also acts as a relay server, allowing it to
conceal its own tra�c in the tra�c it relays for others. In thi s setting, we design an
Internet overlay inspired from previous works, that also proposes new privacy-enhancing
mechanisms, such as the use of relationship pseudonyms for managing identities. We
formally prove with state-of-the-art cryptographic proof frameworks that this protocol
achieves our privacy goals. Furthermore, a practical studyof the protocol shows that it
introduces high latency in the delivery of messages, but ensures a high anonymity level
even for networks of small size.

Keywords: Privacy, Anonymity, Network, Internet, Communications, P eer-to-Peer, Ho-
mogeneous, Cryptography, Provable Security, HomomorphicEncryption

iii

Résumé

L'avènement de l'ère digitale a changé la façon dont les individus communiquent à travers
le monde, et a amené de nouvelles problématiques en terme de vie privée. La notion
d'anonymat la plus répandue pour les communications sur Internet consiste à empêcher
tout acteur du réseau de connaîtreà la fois l'expéditeur d'un message et son destinataire.
Bien que ce niveau de protection soit adéquat pour l'utilisateur d'Internet moyen, il est
insu�sant lorsqu'un individu peut être condamné pour le sim ple envoi de documents à
une tierce partie. C'est le cas en particulier deslanceurs d'alerte, prenant des risques
personnels pour informer le public de pratiques illégales ou antidémocratiques menées
par de grandes organisations.

Dans cette thèse, nous envisageons un niveau d'anonymat plus fort, où l'objectif est de
dissimuler le fait même qu'un utilisateur envoie ou reçoivedes données. Pour cela, nous
délaissons l'architecture client-serveur couramment utilisée dans les réseaux anonymes,
en faveur d'une architecture entièrement distribuée ethomogène, où chaque utilisateur
remplit également le rôle de serveur relais, lui permettantde dissimuler son propre
tra�c dans celui qu'il relaie pour les autres. Dans cette optique, nous proposons un
nouveau protocole pour les communications de pair à pair surInternet. À l'aide de
récents outils de preuves cryptographiques, nous prouvonsque ce protocole réalise les
propriétés d'anonymat désirées. De plus, nous montrons parune étude pratique que,
bien que le protocole induise une grande latence dans les communications, il assure un
fort anonymat, même pour des réseaux de petite taille.

Mots-clés: Vie privée, anonymat, réseaux, internet, communications,pair à pair, ho-
mogène, cryptographie, sécurité prouvable, chi�rement homomorphe

v

Remerciements

Je remercie tout d'abord les membres du jury, à commencer parMaryline Laurent et Carlos
Aguilar-Melchor, qui ont accepté de rapporter cette thèse (sans savoir, à ce moment là, qu'elle
faisait 200 pages). Merci également à Marc-Olivier Killijian et Cristina Onete d'avoir accepté de
faire partie du jury en tant qu'examinateurs.

Je remercie mes encadrants Christophe Bidan, Nicolas Prigent et Cristina Onete, notamment
pour la liberté qu'ils m'ont laissé dans le pilotage de mon sujet de thèse, ainsi que leur soutien et
compréhension dans les moments les plus di�ciles. Merci aussi d'avoir cru en moi jusqu'au bout,
et (presque) réussi a me convaincre que j'avais fait du bon travail ! Je souhaite souligner ma
reconnaissance envers Cristina Onete, qui a notamment a étépour moi une ressource indispens-
able dans ma formation en cryptographie et en sécurité prouvable, et qui n'a malheureusement
pas pu �gurer en tant qu'encadrante o�cielle.

On élargit ensuite le cercle. Je remercie toute l'équipe CIDRE, ses membres actuels et passés
que j'ai pu rencontrer au cours de ma thèse. J'imagine di�cilement trouver équipe plus adéquate
pour moi, en terme d'ambiance et d'esprit. Parmi mes aînés, je tiens en particulier à remercier
Paul, Julien et Simon pour les discussions (aussi bien celles techniques que les informelles), et le
soutien qu'ils m'ont apporté. En particulier, Simon ayant un sujet de thèse très proche du mien,
a joué un rôle important dans l'aboutissement de ma thèse.

Ensuite, je remercie chaleureusement le Professeur Lynn Batten, de Deakin University à Mel-
bourne, qui m'a reçu neuf mois durant au sein du laboratoireSecuring Cyberspacedont elle est la
directrice. Cette mobilité m'aura permis de découvrir de nouvelles façon de faire de la recherche,
et de remarquer la raréfaction des budgets alloués à la recherche scienti�que n'est pas une spé-
cialité française. Cette mobilité a surtout été l'occasiond'étendre mon réseau. Ainsi, je remercie
Veelasha Moonsamy pour m'avoir aidé à m'intégrer sur le campus, Helaine Leggat pour m'avoir
invité dans divers évènement réunissant scienti�ques et industriels travaillant dans le domaine
de la vie privée, Lejla Batina pour m'avoir ensuite proposé une visite à l'Université Radboud de
Nimègue. Je remercie également Iynkaran Natgunanathan, Anna Krasnova, and Gergely Alpár
avec qui j'ai eu l'occasion de collaborer pendant et à la suite de ces mobilités.

J'arrive maintenant aux remerciements plus personnels. D'abord, je voudrais remercier Héloïse
et Arthur de m'avoir permis d'avoir un pied-à-terre dans leur domaine aux abords de Rennes, me
permettant de terminer ma thèse sans avoir à gérer plusieursappartements. Merci également à
Bob, pour son inébranlable joie communicative à chaque retour du travail. Dans la foulée, merci
à Pixel, qui m'a accompagné dans mes derniers mois de rédaction qui auraient été bien solitaires
autrement.

Je garde le plus important pour la �n : un immense merci à mes parents et à ma partenaire
de vie, Sophie, qui ont été un soutien inconditionnel et sansqui ce magni�que feuillet (ou ce
document pdf) de 200 pages n'aurait pas abouti. En particulier, merci à Sophie, qui a su jusqu'au
bout supporter les hauts, les bas, et les plus bas encore, lesincertitudes, etc., qui m'a toujours
conforté dans mes choix, et m'a indubitablement fait évoluer et progresser.

vii

Synopsis en Français

Ce synopsis est fourni en conformité avec la loi relative à l'emploi de la langue française
de 19941. Il reprend la structure de la thèse, et résume les chapitresun à un.

Introduction

L'avènement de l'ère digitale et d'Internet a profondément changé la façon dont les in-
dividus communiquent à travers le monde, et amené de nouvelles problématiques de vie
privée. Les sociétés se sont adaptées, et le parlement européen, dans ses directives de
1995 et 2002, a notamment reconnu la nécessité de la con�dentialité et de l'anonymat
des communications. Les organisation et acteurs agissant en faveur du respect de la vie
privée mettent en avant la nécessité de cet anonymat pour la liberté d'expression, et, plus
généralement, pour le bon fonctionnement d'une démocratie. Cependant, si l'anonymat
est important pour le citoyen, c'est une nécessité pour certains individus. Dans cette
thèse, nous considérons un scénario où un informateur prenddes risques personnels pour
communiquer à un journaliste des information révélant des actions illégales ou discrimi-
natoires menées par des instances gouvernementales ou de grandes organisations. Dans
ce cas, la protection de l'anonymat de l'informateur est cruciale. Le but de cette thèse
est de proposer un protocole permettant de protéger l'anonymat des communications
par Internet.

1 Contexte et Modèles

Contrairement à l'architecture client-serveur couramment utilisée dans le domaine des
réseaux anonymes sur Internet, nous nous proposons de construire un protocole sur un
réseauhomogène. Alors que, dans l'architecture client-serveur, les individus utilisateurs
du réseau dépendent de serveurs relais fournissant l'anonymat en tant que service, dans
l'architecture homogène, les n÷uds ne sont pas hiérarchisés. En e�et, tous les n÷uds du
réseau participent en tant qu'utilisateur (envoyant et reçevant des messages),et en tant
que relais. D'autre part, nous supposons que les connexionsentre n÷uds forment un
graphe de topologieconnexe mais incomplet. C'est à dire que chaque n÷ud est connecté
à un petit nombre de voisins avec qui il peut échanger des messages directement. Pour
permettre à un n÷ud d'envoyer un message à un n÷ud non voisin,le protocole doit donc
organiser le relai du message dans ce graphe incomplet.

En terme de vie privée, le protocole vise à préserver la vie privée de ses utilisateurs,
même en présence de collusions de n÷uds corrompus et d'un observateur global du réseau

1Translation: this synopsis is provided in a accordance to th e French law on written academic produc-
tions of 1994.

ix

(capable de voir tous les messages transitant entre les n÷uds du réseau). Cependant
l'adversaire est considéré passif. C'est à dire que les n÷uds corrompus nedévient pas
du protocole, mais essaient uniquement d'en apprendre le plus possible sur le réseau et
les autres n÷uds en participant au relai des messages.

Le protocole vise à réaliser l'anonymat de l'envoyeur, l'anonymat du receveur, et à
résister aux attaques basées sur l'analyse de tra�c. En vue de l'adversaire considéré, nous
dé�nissons l'anonymat de l'envoyeur comme l'impossibilité même de détecter le fait qu'un
n÷ud envoie un message dans le cadre d'une communication. Demême, l'anonymat
du receveur est dé�ni comme l'impossibilité de détecter le fait qu'un n÷ud reçoive un
message. Ces propriétés sont donc plus fortes que la plupartdes travaux existants, qui
ne visent qu'à cacher qui communique avec qui, mais considèrent acceptable de laisser
certains acteurs du réseau apprendre l'identité de l'envoyeur ou du receveur d'un message
(tant que les deux ne sont pas connues simultanément).

2 Outils cryptographiques

Ce chapitre est l'occasion de présenter les outils cryptographiques utilisés dans la thèse.
Premièrement, nous faisons usage du chi�rement, dans ses deux principales variantes :
le chi�rement à clé publique, et le chi�rement à clé secrète. Un chi�rement d'un message
m avec la clé publiquepk est noté, Chi� (pk; m), alors que le chi�rement avec une clé
secrètek est noté f mgk . Nous faisons aussi usage de fonctions de hachage (le récent
standard de NIST nommé SHA-3, en l'occurrence), et du protocole d'échange de clé de
Di�e-Hellman.

Cependant, la particularité du protocole réside dans l'utilisation du chi�rement homo-
morphe et du re-chi�rement . Plus exactement, nous utilisons le schéma de chi�rement
homomorphe de Elgamal, qui permet notamment, à partir de deux chi�rés c1 = Chi� (pk;
m1) et c2 = Chi� (pk; m2), de calculer le chi�ré c = Chi� (pk; m1 � m2) du produit m1 � m2.
Cette propriété permet en e�et d'e�ectuer des calculs sur des données chi�rées. D'autre
part, le schéma de Elgamal supporte l'opération dere-chi�rement , qui permet de modi-
�er l'apparence d'un chi�ré . Plus exactement cette opération prend en entrée un chi�ré
c = Chi� (pk; m) et produit un chi�ré c0 = Chi� (pk; m) méconnaissable dec, tout en
assurant la con�dentialité du messagem durant le processus. Cela permet en particulier
de modi�er l'apparence d'un chi�ré au cours de son relai à travers le réseau, de manière
à ce qu'il soit impossible de suivre sa progression (du moins, pas trivialement).

3 État de l'art

Avant de présenter notre protocole, nous passons en revue les travaux existants dans le
domaine des communications anonymes sur Internet. Dans la littérature, les protocoles
anonymes sont souvent répartis selon la latence qu'ils introduisent dans les communi-
cations (comparé à un simple paquet IP directement communiqué par l'envoyeur au
receveur). Nous rajoutons une troisième catégorie, identi�ée aux protocoles homogènes,
i.e. ceux supposant une architecture homogène.

x

Les protocoles àfaible latence sont les plus e�caces et les plus populaires. Le pro-
tocole Tor, utilisé aujourd'hui par plus de deux millions d' individus, appartient à cette
catégorie. Cependant, ce sont aussi les protocoles les moins robustes aux attaques contre
l'anonymat. En e�et, l'approche des protocoles à faibles latence consiste à intégrer tout
mécanisme protégeant l'anonymat des communicantstant que ceux-ci ne dégradent que
peu les performances du réseau. En conséquence, un protocole à faible latence ne se pro-
tège pas (ou très peu) contre les attaques basées sur l'analyse de tra�c. Au minimum, un
protocole à faible latence se contente de modi�er l'apparence des messages entre chaque
n÷ud relais pour empêcher leur traçage (en utilisant le re-chi�rement, ou, plus souvent,
le chi�rement en structure d'oignon). Mais, dans Tor en particulier, si le premier et le
dernier serveur relais sont corrompus, il est possible de complètement casser l'anonymat
(i.e. il est possible de savoir qui communique avec qui).

En comparaison, les protocoles àforte latence intègrent nativement une protection
contre l'analyse de tra�c, mais sont moins e�caces. En e�et, ces protocoles sont fait
pour des applications non interactives, comme l'échange d'emails, mais ne supportent
pas la consultation de sites web ou le transport d'une session ssh par exemple. Une des
principales approches pour résister à l'analyse de tra�c est de fonctionner en intervalles
de temps discrets (appeléestours) : chaque n÷ud relais accumule les messages qu'il
reçoit pendant un tour, et les envoie tous d'un seul tenant etdans un ordre aléatoire
à la �n du tour vers le prochain n÷ud relais. Ce mécanisme est nommé mixage des
messages. Combiné avec la modi�cation de l'apparence des messages à chaque n÷ud
relais, ce mécanisme rend le traçage des messages beaucoup plus di�cile. Cependant, si
implémentés dans une architecture client-serveur, ces protocoles révèlent tout de même
l'identité des envoyeurs et des receveurs. C'est à dire que,comme dans les protocoles
à faible latence, seules lesrelations de communications sont dissimulées. D'autre part,
il existe une attaque spéci�que aux protocoles employant lemixage de messages, per-
mettant dans certains contextes de retrouver exactement quel envoyeur communique
avec quel receveur. Il su�t pour cela d'observer, sur plusieurs tours, quels envoyeurs et
receveurs participent à chaque tour de mixage.

En vue de ces résultats et des objectifs en terme d'anonymat que nous avons posés,
nous nous tournons donc vers l'architecturehomogène, dans laquelle l'observation des
envoyeurs et receveurs peut être empêchée, et où l'attaque mentionnée précédemment
ne peut être menée. La littérature sur les réseaux anonymes ne comporte que peu
d'exemples de protocoles homogènes. Le plus emblématique est le protocole Tarzan,
reposant sur un modèle de réseau similaire au nôtre : une architecture homogène et
un graphe de topologie incomplet. Les auteurs du protocole remarquent que, contre
un observateur global du réseau, une architecture homogènene su�t pas en elle même
à empêcher la détection des envoyeurs et receveurs. Ils proposent, en complément, un
mécanisme basé sur l'utilisation de faux messages et la limitation du tra�c des n÷uds.
Ainsi, Tarzan fait un pas vers la réalisation de l'anonymat des envoyeurs tel que nous le
dé�nissons. Cependant, c'est un protocole à faible latence, donc susceptible à l'analyse
de tra�c, et qui ne protège pas les receveurs.

xi

4 Le protocole anonyme

Dans ce chapitre présentant la principale contribution de cette thèse, nous construisons
un protocole dans la continuation de l'état de l'art. Inspir é de Tarzan, il intègre égale-
ment des mécanismes adaptés des protocoles à forte latence a�n d'empêcher l'analyse de
tra�c. Plus précisément, nous menons une analyse poussée permettant d'implémenter
les mécanismes de faux messages et de limitation de tra�c de Tarzan de manière plus
robuste. Puis, nous les intégrons avec l'idée demixage des messages. Pour modi�er
l'apparence des messages, nous mettons en avant une utilisation du re-chi�rement avec
le schéma de Elgamal. Le résultat est un protocole à forte latence et homogène, dans
lequel l'anonymat ne provient pas d'une entité centrale ou de serveursde relais, mais de
la volonté des n÷uds à s'entraider. En e�et, par construction, plus un n÷ud fournit de
tra�c à ses voisins pour camou�er leurs propres communications, plus ceux-ci peuvent
l'aider en retour.

En�n, notre protocole s'adresse à des usagers nécessitant de fortes garanties d'anonymat,
et prêts à payer le prix de cet anonymat. Aussi, il ne permet pas d'accéder à des sites
web, mais supporte uniquement des communications entre pairs prenant activement part
au réseau. Cette application contraste avec les protocolesanonymes déployés et utilisés
activement aujourd'hui, qui visent à fournir un anonymat mi nimal pour tout usager
d'Internet, et qui sont principalement utilisés pour consulter des sites web externes au
réseau anonyme.

En plus de ces éléments, le protocole propose également un nouveau moyen de gérer
les identités des n÷uds dans le réseau, en utilisant despseudonymes de relation. C'est à
dire que chaque n÷ud a autant d'identités qu'il y a d'autres n÷uds dans le réseau : un
n÷ud donné est désigné sous un pseudonyme di�érent par chaque autre n÷ud dans le
réseau. Le pseudonyme utilisé par le n÷udX pour désigner le n÷ud Y est notéPSX ! Y .
L'utilisation de ce type de pseudonymes a plusieurs avantages : ceux-ci permettent à un
receveur de rester anonyme même vis-à-vis de l'envoyeur (réalisant ainsi un équivalent
des services cachésde Tor), et réduisent l'impact d'une potentielle dé-anonymisation.
En e�et, si un certain n÷ud corrompu X parvient à trouver l'identité de l'utilisateur
du réseau qui se cache derrière un pseudonymePSX ! Y , il ne peut pas di�user cette
information à d'autres parties. Plus exactement, l'information � PSX ! Y désigne en
fait Y � n'est d'aucune utilité pour les autres n÷uds du réseau : lespseudonymes sont
construits pour être cryptographiquement sûrs, de sorte que les pseudonymesPSX ! Y

et PSX 0! Y utilisés par deux n÷uds X et X 0 distincts pour désigner Y ne sont pas
chaînablesentre eux.

L'utilisation de ces pseudonymes a un impact sur la construction du protocole. Pre-
mièrement, cela nécessite de recourir à une phase dedécouverte du réseau. C'est à
dire que, avant de communiquer, les n÷uds doivent échanger des informations, a�n
d'apprendre la topologie du réseau et les pseudonymes des n÷uds qui le constituent.
Cette approche contraste avec la plupart des protocoles existants (dont Tor) : alors
que ceux-ci construisent des routes éphémères en partant del'envoyeur, nous constru-
isons des routes durables en partant des receveurs. Cette approche permet d'obtenir des
routes partagées parplusieurs envoyeurs(chose impossible avec des routes éphémères).

xii

En outre, elle a l'avantage de ne pas nécessiter de serveur central qui, traditionnellement,
donne aux n÷uds les informations à propos du réseau. Cette phase de découverte du
réseau est construite à partir depropositions de route, unité d'échange qui permet à un
n÷ud d'annoncer à ses n÷uds voisins qu'il est capable de relayer les messages de ces
derniers vers un receveur. Ledit receveur est désigné par des pseudonymes pour rester
anonyme, et, plus généralement, les propositions de route sont construites de sorte à
donner le minimum d'information sur les routes (puisque cesinformations permettraient
par la suite de monter des attaques contre l'anonymat). Celaest réalisé par l'utilisation
du chi�rement homomorphe, permettant de manipuler les informations sur les routes à
l'intérieur de chi�rés.

Une seconde conséquence découlant de l'utilisation de pseudonymes est la nécessité
d'introduire un mécanisme d'initialisation de communication . C'est à dire que, pour
permettre à un informateur de trouver un journaliste spéci�que dans le réseau, il faut lui
permettre de traduire l'identité d'un individu en un pseudonyme valide dans le réseau,
a�n ensuite de trouver une route vers ledit individu. La di�c ulté est cependant de
réaliser cette fonctionnalité sans briser ni les propriétés des pseudonymes, ni les propriétés
d'anonymat. La solution proposée consiste à utiliser un n÷ud intermédiaire, qui aidera
l'informateur à trouver le journaliste souhaité dans le réseau. Dans cette opération,
le n÷ud intermédiaire n'apprend pas l'identité du journali ste, tandis que l'informateur
n'apprend pas le pseudonyme du journaliste (et ainsi, ne brise pas l'anonymat fournit
par les pseudonymes).

5 Preuves de sécurité et de vie privée

Après avoir présenté notre protocole, nous l'étudions sousl'angle de lasécurité prouvable,
et prouvons formellement ses propriétés de vie privée et de sécurité. Dans un premier
temps, nous étudions les propriétés cryptographique des pseudonymes, montrant ainsi
qu'ils remplissent leur rôles et dissimulent l'identité des n÷uds qu'ils désignent. Ensuite,
nous étudions le protocole dans son entièreté. Pour cela, nous utilisons deuxframeworks
complémentaires : le framework de composition universelle(UC) et le framework AnoA.
Le premier permet de faire apparaître les propriétés de basedu protocole et le transforme
en un objet plus facilement manipulable dans les preuves cryptographiques. Dans une
seconde phase, il est ainsi plus aisé de prouvere.g. l'anonymat des envoyeurs en util-
isant AnoA. Cette approche de preuve en deux étapes est courante dans les preuves de
protocoles anonymes. Ces derniers étant des objets complexes (en comparaison depetits
protocoles cryptographique), ce découpage permet de simpli�er les preuves formelles.

Cependant, dans notre protocole, tout n'est pas prouvable par les outils que fournit
la cryptographie aujourd'hui. En premier lieu, aucune méthode connue ne permet de
prouver formellement la résistance à l'analyse de tra�c. Ainsi, les mécanismes empêchant
l'analyse de tra�c, tels que l'utilisation de faux messageset le mixagede messages, ne peu-
vent être inclus dans les preuves. Pour contourner cette di�culté, qui empêcherait toute
tentative de preuve, nous supposons qu'un observateur du réseau ne peut pas e�ectuer
d'analyse de tra�c, mais que, si des n÷uds corrompus sont présents dans le réseau, ceux-
ci en sont capables. A partir de cette hypothèse, l'approchepour les preuves d'anonymat

xiii

de l'envoyeur et du receveur est d'abord de quanti�er la probabilité que, sur une route,
il y ait au moins un n÷ud corrompu. Dans l'éventualité où aucun n÷ud corrompu ne
se trouve sur la route, l'anonymat peut être prouvé parfait. Dans le cas échéant, une
analyse est nécessaire pour quanti�er la probabilité que ces n÷uds corrompus retrouvent
l'envoyeur et/ou le receveur. Cependant, la complexité du protocole rend di�cile une
analyse en profondeur avec les outils de preuve disponiblesaujourd'hui. Nous choisis-
sons donc l'approche conservatrice, standard dans le domaine de la sécurité prouvable,
et supposons que la présence d'un ou plusieurs n÷uds corrompus sur la route implique
un anonymat nul (i.e. que les n÷uds corrompus trouvent systématiquement l'envoyeur
et le receveur avec probabilité 1).

Le résultat de ce chapitre est donc une sous approximation del'anonymat réellement
fourni par le protocole. En e�et, les preuves ne montrent pasque si un n÷ud corrompu
se trouve sur une route, l'anonymat des communicants utilisant cette route est immédi-
atement cassé. Au contraire, plusieurs éléments semblent indiquer que ce n'est pas le
cas, du moins en général (voir notamment le prochain chapitre). Cependant, prouver
ce fait semble demander des hypothèses fortes sur le réseau,et nécessite de modéliser la
forme du tra�c (tâche pour laquelle aucune fondation théorique n'existe actuellement).
Les preuves proposées représentent cependant un premier pas vers une analyse formelle
complète du protocole.

6 Implémentation : performances et vie privée en pratique

Le chapitre précédent étudie le protocole sur le plan théorique. Celui-ci l'étudie sur
le plan pratique. Nous présentons une implémentation préliminaire du protocole, en
utilisant un simulateur à évènement discret. A savoir, l'implémentation est réalisée
en Python avec la librairie SimPy. L'idée est d'obtenir un code permettant de mener
des simulations du protocole, a�n de mesurer ses performances, l'impact de ses divers
paramètres, et le niveau d'anonymat fourni en pratique.

Les résultats en terme de performances montrent des délais dans les communications
semblables à d'autres protocoles à forte latence proposés par le passé. La communication
d'un message d'un envoyeur (informateur) à un receveur (journaliste) prend en moyenne
15 minutes2. La découverte du réseau, elle, prend jusqu'à 24 heures. Cependant, cette
étape préliminaire n'est e�ectuée qu'une unique fois en début de vie du réseau. Des
mesures complémentaires montrent que ces latences dans lescommunications et la dé-
couverte du réseau s'expliquent principalement par les mécanismes mis en place pour se
prémunir contre l'analyse de tra�c : le mixage et le fonctionnement entours, ainsi que
les faux messages et la limitation du tra�c des n÷uds.

Pour mesurer l'anonymat, nous proposons une méthodologie adaptée de métriques
préexistantes, notamment en comblant leurs lacunes connues. L'idée est de mesurer, en
pratique, la probabilité qu'une collusion de n÷uds corrompus sur une route devine cor-
rectement l'identité de l'envoyeur et/ou du receveur. Les résultats montrent que, même
avec 60% de n÷uds corrompus dans le réseau, la probabilité pour les n÷uds corrompus

2Coût amorti pour un message au sein d'une session de 40 messages.

xiv

de deviner correctement l'identité de l'envoyeurou celle du receveur est inférieure à 0:2.
Ces résultats sont valables pour un réseau depetite tail le (100 n÷uds), et l'anonymat aug-
mente avec le nombre de n÷uds présents dans le réseau (à ratiode corruption constant).
En comparaison, une récente étude du protocole Tor montre que cette probabilité de
dé-anonymisation est atteinte pour seulement 0:33% de n÷uds corrompus. Ces résultats
empiriques sont beaucoup plus optimistes que les résultatsthéoriques issus du précédent
chapitre, qui ne donnent qu'une sous approximation de l'anonymat e�ectif, et laissent
espérer qu'une future analyse formelle approfondie donnera des résultats satisfaisant.

Conclusion

Au cours de cette thèse, nous avons proposé un nouveau protocole préservant l'anonymat
des communications sur Internet, et avons validé ce travailà travers une approche
formelle ainsi qu'une étude pratique de ses propriétés. Ce protocole fournit un anony-
mat plus fort que la plupart des travaux passés, et montre desperformances acceptables.
Dans de futurs travaux, plusieurs axes d'amélioration sontenvisageables. En particulier,
il est nécessaire de considérer la sécurité contre des n÷udsnon plus passifs maisactifs
(i.e. des n÷uds pleinement malveillants), et il est possible d'augmenter encore le niveau
de vie privée, en tentant de cacher le fait même qu'un n÷ud prenne part au réseau
anonyme.

Ce travail s'inscrit dans les débats actuels, ayant cours notamment depuis les révéla-
tions d'Edward Snowden en 2013. En vue du risque encouru par les lanceurs d'alerte
apparus dans les médias ces dernières années, notre protocole est une solution perme-
ttant de garantir que la communication de documents et d'informations sensibles par
ceux-ci ne seront même pas détectés. De plus, notre protocole est tout à fait adapté
à ce genre de scénario, et à une organisation basée sur une communauté d'activistes
défendant la vie privée. En e�et, il suppose des utilisateurs prêts à dédier des ressources
non négligeables pour assister desinformateurs, et fournit de l'anonymat même pour de
petits réseaux. Aussi, notre protocole est principalementfait pour des communications
entre pairs prenant activement part au réseau anonyme, contrairement aux protocoles
utilisés activement aujourd'hui, qui visent plutôt à fourn ir un anonymat minimal pour
tout usager d'Internet.

xv

Contents

Introduction 1

1. Context 7
1.1. Terminology . 7
1.2. System and Communication Model . 9
1.3. Adversary Model . 11
1.4. Privacy Properties and Goals . 12

1.4.1. Privacy Properties . 12
1.4.2. What the Protocol Does and Does Not Achieve 14

1.5. Summary . 15

2. Cryptographic Tools 17
2.1. Preliminaries . 17

2.1.1. Notations . 17
2.1.2. Cryptography and Hard Problems 18

2.2. Public Key and Secret Key Encryption . 19
2.3. Cryptographic Hash Functions . 20
2.4. Key Agreement . 21
2.5. Homomorphic Encryption (HE) . 21
2.6. Universal Re-encryption (URE) . 23

2.6.1. Re-Encryption . 23
2.6.2. Universal Re-Encryption . 24

2.7. Summary of Cryptographic Tools . 25

3. Background and Related Works 27
3.1. Low Latency Networks . 28

3.1.1. Building Blocks and Properties of Low Latency Networks 29
3.1.2. Description of Tor . 29
3.1.3. Concluding on Low Latency Networks 32

3.2. High Latency Networks and Mixnets . 32
3.2.1. The Di�erent Types of Mixnets and Their Properties 33
3.2.2. Description of cMix . 35
3.2.3. Concluding on High Latency Networks 37

3.3. Homogeneous Networks . 37
3.3.1. Properties of Homogeneous Networks 37
3.3.2. Description of Tarzan . 38
3.3.3. Concluding on Homogeneous Networks 40

xvii

Contents

3.4. Review of Known Attacks . 41
3.4.1. Attacks based on Appearance of Messages 41
3.4.2. Network Discovery and Relay Selection Attacks 43
3.4.3. Limits of the Mixnet Model . 44
3.4.4. Detecting End-Sending and End-Receiving Activities 45
3.4.5. Timing Analysis . 46
3.4.6. Tra�c Fingerprinting and Application Layer Informa tion Leak . . 47
3.4.7. Concluding Remarks on Attacks 48

3.5. Summary: Where this Thesis Stands 49

4. The Anonymous Protocol 51
4.1. Overview . 52
4.2. Routes and Routing Tables . 57

4.2.1. Neighborhood Management . 57
4.2.2. Routing Tables . 58

4.3. Sending, Relaying, and Receiving Messages 60
4.3.1. Link Message Format . 60
4.3.2. Creating and Processing a Message 60

4.4. Messages Re-Ordering, Dummy Messages, and ControlledTra�c Rates . 62
4.4.1. Dummy Messages and Controlled Tra�c Rates for SA and RA . . 63
4.4.2. Integration With Pool-Based Batching 68

4.5. Constructing the Routes . 70
4.5.1. Ideas and Aim of Topology Dissemination 71
4.5.2. Pseudonyms: Form and Computation 73
4.5.3. Route Proposals in Details . 74
4.5.4. The Route Proposal Policy: Accepting or Refusing theRoutes . . 79

4.6. Oriented Communications: Alice Contacts Bob 82
4.6.1. Intuition . 82
4.6.2. Detailed Description . 83
4.6.3. Analysis . 86

4.7. Summary and Discussion . 87

5. Security and Privacy Proofs 91
5.1. General Methodology . 92

5.1.1. Cryptographic Proof Frameworks 92
5.1.2. Approach and Assumptions . 96

5.2. Summary of Results . 99
5.3. Formal Security De�nition of Cryptographic Assumptio ns 101
5.4. Security of Pseudonyms .. 104
5.5. Security of the Route Proposal Mechanism 106

5.5.1. Modeling � rtprop into an Ideal Functionality F rtprop 106
5.5.2. � rtprop UC-realisesF rtprop . 112
5.5.3. Analysis ofF rtprop . 115

xviii

Contents

5.6. Security of the Protocol as a Whole . 120
5.6.1. Modeling � into an Ideal Functionality F 120
5.6.2. � UC-Realizes F . 126
5.6.3. Analysis ofF . 127

5.7. Summary . 134

6. Implementation: Practical Performances and Privacy 137
6.1. Implementation Choices . 137
6.2. E�ciency . 140
6.3. Tra�c Analysis Resistance . 142
6.4. Privacy . 143

6.4.1. Proposed Methodology .144
6.4.2. Results .146

6.5. Concluding Remarks .147

Conclusion and Perspectives 149

A. Instantiation of G and Group Encoding 155
A.1. Instantiating the Group . 155
A.2. Encoding of Elgamal Plaintexts . 155

B. Detailed Cryptographic Proofs 157
B.1. Proof of Theorem 1 (Pseudonyms Security) 157
B.2. Adversary Model and Notations in the UC Framework 159

B.2.1. A as a Proxy vs.A as an Algorithm 159
B.2.2. The Passive Static Adversary Model in the UC Framework 160

B.3. Proof of Theorem 2 (� rtprop UC-realisesF rtprop) 161
B.4. Analysis of F rtprop . 170

B.4.1. Explicit Adversarial Views . 171
B.4.2. Proof of Theorem3 (Route Proposal Security) 173

B.5. Proof of Theorem 4 (� UC-Realizes F) 176
B.6. Analysis of F . 183

B.6.1. Proof of Theorem5 (SA, RA, SU) 183
B.6.2. Proof of Theorem6 (MU-tracing) 186

B.7. Towards UC-realising F link . 189
B.7.1. Modeling � link . 189
B.7.2. Modeling a Variant of F link . 190
B.7.3. Towards showing that � link UC-realisesF link 192
B.7.4. Perspectives .196

Publications 199

Bibliography 201

Index 213

xix

Contents

Acronyms 217

xx

List of Figures

3.1. Circuit Construction in Tor (inspired from [DMS04, Fig. 1]) 30

4.1. Propagation of Route Proposals Relating to End-Receiver R 56
4.2. Example Network . 58
4.3. Routing Table of NodeX towards R . 58
4.4. Sequence of Link Messages fromX to R 62
4.5. Two-party Computation of PSX ! R . 75
4.6. Messages Involved in a Self-ProposalRP(X $ R! R) 76
4.7. Messages Involved in a Relayed ProposalRP(X 0$ X ! R) 77
4.8. Messages Involved in an Oriented Communication Initialisation 85

5.1. IND-CPA, IK-CPA, and USS Security Games 102
5.2. Pseudonym Indistinguishability Security Game 105
5.3. The Link Message Functionality F link . 107
5.4. The Register Functionality F reg . 107
5.5. Description of � rtprop for Node X . 108
5.6. The Ideal Functionality F rtprop . 110
5.7. Setup for Real (left) and Ideal (right) Executions 112
5.8. The Ideal Functionality Fo�ine . 121
5.9. Description of � for node X . 122
5.10. The Ideal Functionality F . 125
5.11. Setup for Real (left) and Simulated (right) Executions 126
5.12. AnoA Adjacency Functions for SA, RA, and SU 129

6.1. Routesunpredictability . 140
6.2. Number of routes .140
6.3. Probability Distribution of Pool Delays 144
6.4. Probability of Breaking SA or RA: Theoretical vs. Empir ical 146

B.1. Route for the First Scenario, with a Honest R 162
B.2. Route for the Second Scenario, with a CorruptedR 165
B.3. Description of � link for node X . 191
B.4. The Modi�ed Link Message Functionality F 0

link 192

xxi

List of Tables

2.1. Mathematical and Cryptographic Notations 18

3.1. Vulnerabilities of Presented Protocols . 49

4.1. Which Mechanism Ensures Which Privacy Property? 88

5.1. Cryptographic Notations for Formal Proofs 92

6.1. Network Performances forj
 j = 100 nodes 141

xxiii

Introduction

General Context

The advent of the digital age and of the Internet in the late twentieth-century has brought
new technologies that have deeply moved the way individualscommunicate across the
world. These technical improvements have had great societal, political, and economical
consequences. In particular, in the last decades, privacy in online communications has
been rising as a major concern. Individuals now store and communicate over the Internet
massive amounts of personal information every day, that is processed by both public
and private actors. Societies have to adapt to these evolutions, and in particular ensure
the protection of personal data from theft, misuse, or disclosure. In this regards, the
European Union legal framework (Directives 1995/45/EC [Eur95], 2002/58/EC [Eur02],
soon to be replaced by 2016/679 [Eur16]) recognises that the protection of personal data
is a fundamental right, and declares that:

�Member States shall ensure the con�dentiality of communications and the
related tra�c data [...]. In particular, they shall prohibi t listening, tapping,
storage or other kinds of interception or surveillance of communications and
the related tra�c data by persons other than users, without t he consent of
the users concerned.� (Directive 2002/58/EC, Article 5(1))

Not only the contents of communications (the data itself), but also the so-calledmeta-
data of these communications, are considered as personal data. Indeed, the identity of
communicants (i.e. individuals who take part in a communication) is an informat ion
that can be as sensitive as the data they exchange. For instance, the fact that a web
user connects to the AA.com website is a sensitive information, that this user may not
want to see disclosed.

However, in recent years, many countries have been promulgating laws that go against
these principles. To take the case of France, new laws were voted in 2015 to extend the
surveillance capabilities of the police and intelligence agencies [Fre15]. More recently,
the United Kingdom passed the Investigatory Powers Bill, granting intelligence agen-
cies unprecedented capacities for mass surveillance, in particular on mobile communi-
cations [Uni16]. The situation in the United States is similar, as revealed in 2013 by
Edward Snowden. This former NSA contractor disclosed, withthe help of the journal-
ists Glenn Greenwald and Laura Poitras, the mass surveillance programs carried out
by the NSA in the United States of America and around the world [Gre14]. In the
wake of this latter event (in particular), public debates have divided privacy advocates
and governments o�cials. While the former reject the mass surveillance of individuals
(preferring legitimate targeted surveillance), state bodies put forward the need for a

1

Introduction

trade-o� between state security and individual privacy, especially in light of the context
of a looming terrorist threat. Yet, we advocate that privacy in communications is a
necessity, even for the citizen with �nothing to hide� [Sol07]. Indeed, mass surveillance
has the pervasive e�ect of modifying individuals' behavior, or at the very least to hover
in their mind as they take actions in the virtual world. Ultim ately, it can be argued
that mass surveillance endangers freedom of speech, critical thinking, and the formation
of di�erent opinions, which are all fundamental concepts for democracy [Sol07; Gre14;
Rog15].

Motivating Use-Case

If privacy is indeed necessary for common citizens, it is utterly critical for individuals or
organisations residing in authoritarian regimes, or non-authoritarian ones that e.g. carry
out operations putting democracy at risk. In this thesis, weconsider a scenario in which
an individual, hereby called an informant , deliberately breaks the law of the country
she inhabits, in order to divulge illegal or immoral practices (or, at least, immoral in
her opinion) carried out by her government or state o�cials. For that, we consider that
this informant is willing to communicate a set of resources to a journalist (or a human
rights organisation, or any party that can safely reach a greater public). This scenario
is of course inspired from the case of Edward Snowden, but also re�ects the story of
other whistle-blowerssuch as Antoine Deltour in the so-calledLuxLeaks case [Glo16],
or Chelsea Manning, who revealed torture practices of the USarmy in Iraq [Sle13].
Although, in all these examples, the general public deemed the actions of the whistle-
blowers as legitimate and contributing to the public good, they were prosecuted, and
convicted more often than not. In this thesis, we thus aim at protecting individuals in
constraining contexts.

Previous Works

In this context, we believe that technology can empower individuals and provide the
necessary privacy protections. Anonymity and privacy in Internet communications is
the subject of a large body of literature [Fre17]. Depending on the exact de�nition of
anonymity that is considered, the privacy guarantees di�er from protocol to protocol.
Furthermore, there are several ways to achieve the same functionality. However, a com-
mon point to most works in anonymous networking is the base idea originally formulated
by Chaum in 1981 [Cha81]: to introduce indirections between the two communicating
users. That is, instead of Alice directly sending its messages to Bob, an anonymous
network relays Alice's messages over several hops before delivering them to Bob.

This base idea, implemented in its most simple form, only conceals the identity of the
initiator of the communication (Alice, in the example) to th e receiver at the other end
(Bob). However, many other stronger notions of anonymity were proposed over the years.
In particular, the now well-known Tor network [DMS04], currently serving over two mil-
lion users, conceals communicationrelationships (i.e. who communicates with whom),
even to network observers and relay nodes in the anonymous network. Tor belongs to

2

the category of low latency protocols, which aim at minimizing the overhead introduced
by the indirections , so as to yield a network supportinginteractive and latency-sensitive
applications such as web browsing. However, low latency protocols are, by construction,
susceptible to de-anonymisation of communicants through tra�c analysis. In contrast,
high latency protocols, such as mixnets [DP04], are less e�cient, but more robust to
de-anonymisation. Basically, to thwart tra�c analysis att acks, mixnets tamper with the
�ow of messages, by delaying them and/or changing the order in which they are deliv-
ered. However, both the Tor and mixnet approaches fail to ensure a level of anonymity
su�cient for the use-case considered in this thesis. Indeed, they are both based on a
client-server architecture, where the network users are merely clients using the anony-
mous network (composed of relay servers)as a service. As a consequence, the �rst relay
server automatically learns the identity of the initiator o f any given communication, and
the last one learns the identity of the corresponding receiver. Said otherwise, these types
of networks only ensure that no single entity can know the initiator and receiver at the
same time, but do not prevent them from learning one of the two.

Although the level of anonymity provided by a client-server architecture may be suf-
�cient in many cases, the fact that the communicants' identi ties can be uncovered is an
issue in our informant-journalist scenario. Actually, in t his scenario, the very fact that
the informant is communicating should be concealed. To achieve this stronger version of
anonymity, a few works propose to depart from the client-server architecture, preferring
to endorse what we hereby denote as ahomogeneous architecture, in which each node
is a client and a server at the same time [FM02]. That is, every node is a user of the
network, but also relays messages for other nodes. With additional mechanisms (or by
introducing some assumptions), in a homogeneous architecture, it is possible to prevent
the very detection of message sending (and receiving as well). Indeed, since every node
relays messages for other nodes, even the �rst relay after the initiator of a communication
can not deduce with certainty whether the latter is the actual sender of the messages,
or a simple relay.

However, in practice, existing protocols endorsing a homogeneous architecture present
other weaknesses, and do not provide the level of anonymity we aim for. In particular,
most of them are low latency ones, and thus fail to provide anonymity against tra�c
analysis attacks.

Approach and Contributions

The work presented in this thesis is in continuation of previous works on homogeneous
networks. Our goal is to design a fully distributed Internet overlay, that ultimately
ensures anonymity of communicants and prevents the detection of the very fact that a
node communicates. Furthermore, these properties should hold even in the presence of
a global network observer, in the presence of (collusions of) corrupted nodes, and resist
to tra�c analysis attacks. This level of anonymity is strong er than in past works aiming
at ensuring anonymity over the Internet.

To achieve these goals, we start from Tarzan, a homogeneous protocol proposed by
Freedman and Morris [FM02]. As the authors note, to prevent the detection of commu-

3

Introduction

nicating nodes against a global network observer, such an architecture is not su�cient.
Tarzan thus additionally proposes mechanisms based on the limitation of tra�c rates,
and the sending ofdummy messages (i.e. fake messages that do not actually contain any
data). We propose a stronger version of these mechanisms to achieve our desired level
of anonymity. The result is an anonymous network in which privacy does not stem from
central entities (or relay servers), but from the willingness of nodes to help each other
in staying anonymous. By design, the more a node helps its neighbors with cover tra�c,
the more those can help it in return.

The protocol we propose introduces several other new mechanisms and defenses. First,
we adapt some techniques proper to mixnets into a homogeneous architecture, so as to
prevent the possibility of tra�c analysis. Secondly, we propose and study the use ofre-
lationship pseudonyms[PK01] in anonymous networking. That is, any given node in the
network is known by each other node under a di�erent pseudonym. These pseudonyms
are designed to be cryptographically secure, implying thatthey conceal the identity of the
node they designate. One advantage of theserelationship pseudonyms is that they ensure
a clear separation of knowledge between nodes. This can be seen as a measure ofdam-
age control: if a malicious network actor de-anonymises a given node, the pseudonym's
properties prevent her from sharing her knowledge with other malicious actors. Using re-
lationship pseudonyms for anonymous networking represents a drastic change in identity
management compared to previous work, and raises new challenges. One consequence is
that, contrarily to the more traditional construction of ne twork routes on-the-�y (when
a new communication is initiated), the proposed protocol requires a phase of network
discovery, and builds long-lived routes. A third notable characteristic of the protocol
is its heavy use of homomorphic encryption, a cryptographicprimitive that allows to
make computations on encrypted data. With this tool, we implement the computation
of information about the routes (and the computation of the pseudonyms) in a way that
limits the leaking of information about the nodes composingthese routes.

Finally, we conduct a thorough formal study of the designed protocol, under the
angle ofprovable security. That is, based on the cryptographic properties of the various
primitives that we use, we prove that our protocol achieves the desired privacy properties.
Note that producing these cryptographic proofs is a contribution in itself, since the
formal study of fully-�edged anonymous protocols remains quite challenging with the
currently available tools. Finally, we implement a proof-of-concept version of the protocol,
and study its performances and practical anonymity. Results show that the protocol
introduces high latency, comparably to mixnets, but ensures strong anonymity even
for small networks (i.e. with a few hundred nodes). All these elements show that the
proposed protocol �ts into our informant-journalist scenario.

Organisation of the Thesis

This thesis is made of six chapters. In Chapter1, we present the context of the thesis. In
particular, we de�ne terms pertaining to anonymous communications networks. Then,
we present the system and adversary models considered in this thesis, before detailing
and discussing the privacy properties we aim to ensure. Chapter 2 is an informal introduc-

4

tion to existing cryptographic primitives that are used as building blocksin anonymous
networking, and in our protocol in particular. To review the existing works in private
communications, Chapter3 expands on the elements presented in this introduction, and
distinguishes protocols according to the latency (high or low) they introduce, and to the
architecture (client-server or homogeneous) they assume.This chapter also proposes a
review of known attacks against privacy in anonymous networks, along with existing
counter-measures. Chapter4 represent the core of this thesis, where we detail our new
protocol for strongly private communications over the Internet, and explain the role of
each component of the protocol. The two subsequent chaptersstudy and analyse this
protocol. In Chapter 5, we prove that the protocol achieves the properties laid outin
Chapter 1. Finally, Chapter 6 presents a proof-of-concept implementation of the proto-
col, along with the results of network simulations aimed at studying its e�ciency and
practical privacy. In the conclusion, we present a summary of our contributions in the
�eld of anonymous communications, and propose leads for further improvements. We
also summarise the new perspectives for anonymous communications that our work puts
in light, and the lessons learned.

5

1. Context

1.1. Terminology . 7

1.2. System and Communication Model . 9

1.3. Adversary Model . 11

1.4. Privacy Properties and Goals . 12

1.4.1. Privacy Properties . 12

1.4.2. What the Protocol Does and Does Not Achieve 14

1.5. Summary . 15

This chapter presents the general context of the thesis. First, the relevant techni-
cal terms and concepts are de�ned. With this terminology, the system and adversary
models are laid out. Finally, the privacy properties to be ensured in the anonymous
communication protocol are presented along with other sidegoals.

1.1. Terminology

A communication protocol involves an heterogeneous collection of nodesthat are willing
to communicate to each other. Some nodes may beclients, others may be servers,
some may be both at the same time. Ananonymous communication protocol enables
communication between client nodes while ensuring some form of anonymity or privacy
to its users. The nodes taking part in anonymous communication protocol collectively
form an anonymous network.

De�nition 1 (Anonymous Network). An anonymous networkis a collection of nodes
running speci�c software in order to participate in an anonymous communication proto-
col.

De�nition 2 (User). A user of an anonymous network is an entity (e.g. an individual,
group of individuals, or organisation) seeking to obtain anonymity or privacy from the
network.

De�nition 3 (Client). A client in an anonymous network is a node run by auser.

De�nition 4 (Server). A server in an anonymous network is a node enabling or aiding
clients in obtaining anonymity or privacy.

Any anonymous network assumes atopology graph, where nodes are vertices and edges
represent a direct communication link between two nodes. Inthis thesis, direct communi-
cation links are assumed bidirectional (i.e. the graph is undirected). This topology graph

7

1. Context

may be complete or partial , but is always connected. The direct communication links
between nodes are usually realised through an underlying, non-anonymous, pre-existing
network enabled by standard protocols such as TCP/IP or Ethernet. This latter network
is denoted theunderlay.

De�nition 5 (Underlay, Overlay). The underlay is the network on which the anony-
mous network is based, functioning with a standard communication protocol of its own.
Conversely, the anonymous network is sometimes denoted as anetwork overlay (e.g. an
Internet overlay).

The nodes directly accessible from a given node in the anonymous network's topology
graph are its neighbors.

De�nition 6 (Neighbors). The neighborsof a given node are the nodes with which it
has a direct communication link. That is, the nodes with which it shares an edge in the
topology graph.

Generally speaking, the goal of an anonymous network is to allow users to commu-
nicate anonymously, i.e. to conceal whichsendersends messages to whichreceiver. To
do so, a typical technique, �rst presented in the seminal work of Chaum [Cha81], is to
introduce indirections on the path taken by a message. Thus, a message may be relayed
over several hops in the anonymous network, and can be seen either as a sequence of
link messages, or as oneend-to-end message.

De�nition 7 (Link & End-to-End Message). Messagesgenerally designate any
data or bytes exchanged between nodes. Alink messageis a message from a node to one
of its neighbors in the topology graph. Anend-to-end messageis a message relayed over
several hops in the anonymous network, from its sender to itsreceiver. A link message
is said to carry a particular end-to-end message.

To avoid confusion between the action of sending an end-to-end message as the original
sender of a communication, and the action of sending a link message so as to relay the
end-to-end message it carries, the terms ofend-sender and link-sender are introduced
(and similarly for receivers).

De�nition 8 (End-sender, End-receiver, Relay). The original sender of an end-
to-end messageis called anend-sender, performing the action of end-sending, while the
term link-sender designates the sender of alink message. Analogously, the distinction
is made betweenend-receiver and link-receiver. For a given communication, a relay is
a node participating in transporting messages from an end-sender to an end-receiver: it
link-receives and link-sends messages w.r.t. this communication.

The goal of an anonymous network is usually to protectend-sendersand end-receivers,
the end users of acommunication session.

De�nition 9 (Communication Session). A communication sessionbetween anend-
senderS and an end-receiverR consists in the end-sending of a set ofend-to-end mes-
sagesby S to R.

8

1.2. System and Communication Model

Note that a given node may be end-sender with regards to some communication session,
and end-receiver or relay with regards to another. When clear from the context, the term
sender is used indi�erently to designate a link-sender or end-sender.

Depending on the semantics of its content, an end-to-end message is apayload or a
routing message. The former contains application-layer data, while the latter contains
routing information communicated among nodes in order to make the protocol work.

De�nition 10 (Payload & Routing Message). A payload messageis an end-to-end
messagecontaining application data. A routing messageis an end-to-end messagecon-
taining information necessary to make the anonymous communication protocol function.

Note that the goal of an anonymous network is to ultimately protect the exchange
of payload messagesin communication sessions, therouting messagesbeing a means to
this end. However, if observing routing messages can lead later to a breach in privacy,
routing messages must also be protected.

A given node has di�erent identities depending on the observed network layer. For
instance, if the underlay network is the Internet, the node's underlay identity is its IP
address. The user running the node determines itsreal-world identity . It may be an
individual, an organisation, or a company. Finally, a node may additionally have an
identity in the anonymous network, its anonymous network identity. The term address
is sometimes used as an alias foridentity . Ultimately, what needs to be protected by
the anonymous communication protocol is the real-wold identity of the node, or more
accurately, the link between it and the node's actions.

De�nition 11 (Real-world, Underlay, and Anonymous network Identities).
The real-world identity of a client node is the identity of the user running the node. A
node also has anunderlay identity, relevant to the protocol run in the underlay (e.g. its
IP or MAC address). Additionally, a node may have an anonymous network identity,
an identity only meaningful in the anonymous communicationprotocol.

1.2. System and Communication Model

In this work, the anonymous network is considered to run on top of the Internet, i.e. the
considered underlay network is the Internet. Anonymous communications thus take
place in the application layer of the standard OSI protocol stack [MR10]. Since an
anonymous network typically introduces indirections , it integrates a form of routing.
The overall network stack consequently comprises (at least) two levels of routing: one
with IP, and one in the anonymous network. As a result, for onelogical hop in the
anonymous network layer, i.e. a link between two neighboring nodes in the anonymous
network's topology graph, there may be several hops in the topological graph of the IP
layer. In the rest of the thesis, ahop designates a logical hop in the anonymous network.
Furthermore, for simplicity, the routing in the underlay ne twork is considered completely
reliable (no packet loss, no interference).

9

1. Context

The nodes' underlay identities can be considered as their IPaddresses. Because an
IP address can often be linked to the identity of the user owning it, it is assumed that
�nding one means �nding the other.

Assumption 1 (Public linking of real-world and underlay ide ntities). Real-
world and underlay identities are publicly linkable, and uncovering one means uncovering
the other.

With Internet as underlay, each node in the anonymous network can theoretically
communicate with any other node in one logical hop (ignoringmiddleboxesand NAT
traversal issues). However, in this work, it is assumed thatthe underlying topology
graph is connected, butsparse(i.e. highly incomplete). This base assumption allows
to port the results to any underlay providing a connected but incomplete graph, such
as wireless mesh networks [Zha+06], or any restricted route environment [EG11]. Also,
this is in accordance with some previous works in anonymous networks over Internet,
that reduce the direct neighborhood of each node to a small set of other nodes in order
to preserve its privacy [FM02; Cla+10].

Assumption 2 (Connected but incomplete topology graph). The underlying
topology graph is connected but incomplete.

How nodes choose their neighbors among the overall collection of nodes in the anony-
mous network is a research question in itself, and out of the scope of this work. This
design point is crucial, however, since a bias in a node's view of the network may lead
the adversary place itself in advantageous situation. In this work, it will be assumed
that the neighbor selection mechanism ensures that each client node has at least one
non-adversary controlled node in its neighborhood.

Assumption 3 (Honest neighbor). Every client node has at least one honest neighbor,
i.e. a neighbor not controlled by the adversary.

This work considers an open, fully distributed system, thatany client node may join or
leave at any time. There is no hierarchy among the nodes, and in particular, every node
relays messages for its neighbors, meaning that each node uses the network to obtain
privacy in its own communications, and helps other doing so as well. This is de�ned as
the homogeneousarchitecture, as opposed to the more traditionalclient-server one that
can be found in the literature.

De�nition 12 (Client-Server & Homogeneous Architectures) . In a client-server
architecture, client nodes only assume the role of end-senders and end-receivers, and
servers are the relay nodes providing an anonymity service to the clients. In a homoge-
neous architecture, all nodes are simultaneously client and server, and assumethe role
of end-sender, end-receiver and relay.

Note that in a homogeneous architecture, end-receivers arealways part of the anony-
mous network, so the communications are limited to nodes inside the anonymous network

10

1.3. Adversary Model

(contrarily to most client-server architectures that allo w communication towards e.g. a
plain web server that does not run speci�c software).

Lastly, to construct the protocol, this work assumes that there is no central server
of any kind, and no trusted third party such as key servers of certi�cate authorities.
Likewise, noa priori secure or private communication channels are assumed amongthe
nodes.

1.3. Adversary Model

In the anonymous communications literature, there are several possible adversary models.
These models can be described according to a combination of three criteria.

Internal/External An internal adversary takes part in the anonymous network, runs
a node, and potentially acts as sender, relay or receiver. Anexternal adversary
is outside the anonymous network and can only eavesdrop communications.

Active/Passive A passive adversarycan be generally described as trying not to be
detected. If it is internal, it follows the protocol, if it is external, it merely observes
communication links. An active adversary may deviate from the protocol, or try
to replay or inject messages or tamper with messages it intercepts (even if it is
external). Also, the active category of adversary includesbehaviors, where a node
acts in an arbitrary manner, without any particular attack strategy or goal. Also,
an active adversary is sometimes denotedmalicious, while a passive one may be
called semi-honest.

Local/Global/Collusive A local adversary is restricted to a portion of the anony-
mous network. That is, it can only directly observe or a�ect a small region of the
topology graph. A local internal adversary is a node controlled by the adversary
(i.e. a corrupted node), while an external one observes a limited portion of the
anonymous network (e.g. a couple of links). A global adversary is not limited in
this sense. In particular, a global external adversary is able to observe all links
and messages in the network. In between liescollusive adversaries, which can be
described as a collection of two or more local adversaries sharing information and
mounting coordinated attacks.

Assumption 4 (Adversary model). The adversary is considered as a combination of
global external passiveand collusive internal passiveadversaries working collaboratively.

In the rest of this thesis, the adversary is considered as a powerful entity, in�ltrating
the anonymous network by running its own nodes or corruptingothers, and recording all
activities and all messages �owing through the entire network. However, corrupted nodes
follow the protocol speci�cation. This is a common model in the literature on anonymous
communications, where the goal is to defend against the verynetwork operators and
governmental institutions.

The global external adversary can also be modeled by statingthat all link messages
going through the network are sent to it, or posted on a public bulletin board. This

11

1. Context

adversary model has occasionally been deemed unrealistic in the past [Syv09]. Yet, the
wide-spread eavesdropping capabilities of large entitieshave been demonstrated with the
�Great Firewall of China� [Wal01], the FBI's carnivore system [Ste+00] and the PRISM
program [Gre14].

The collusion of internal adversaries is not explicitly bounded in this work: it can grow
to almost being a global adversary, as long as Assumption3 is respected. The semi-honest
model for internal adversary is quite weak, since in practice corrupted nodes are likely
to cheat in order to achieve their goals. This choice of modelis motivated by the fact
that there is no existing methodology to systematically prove resistance against denial-
of-service, byzantine or arbitrary attacks in complex communication protocols. Indeed,
the ever new attacks on the Tor protocol, even after more thanten years of deployment,
attests it: there may be an in�nite number of ways to tamper wi th the protocol, and no
way to check against them all. Considering passive adversaries provides a better basis
for the security and privacy analysis in a �rst stage. In the future works section of our
conclusion chapter, we put forward some modi�cations to the protocol that allow to
resist several active attacks.

Finally, from a cryptographic perspective, the traditiona l probabilistic polynomial
time (PPT) adversary model is employed [Gol01]. That is, the adversary has large
but limited computational power. She can run algorithms which complexity is at most
polynomial in the size of their inputs.

Assumption 5 (Limited computing power adversary). The cryptographic adver-
sary A is considered as aPPT Turing machine.

1.4. Privacy Properties and Goals

This section presents the privacy properties a strongly private anonymous communica-
tion protocol should ensure. These formulations are intuitive and informal. Their formal
statements are presented, in Chapter5. Additionally, this section more generally de�nes
the goals relative to the e�ciency and functionality of the p rotocol, and clari�es what it
does not aim to achieve.

1.4.1. Privacy Properties

At the highest level of abstraction, the goal is to conceal who communicates with whom,
as well as the very fact that a node does communicate. That is,even though it is
not possible to conceal the fact that there are communications, the protocol aims at
concealing who are the end nodes of communication sessions.

To formalise these goals, the notions ofanonymity and unlinkability as de�ned by
P�tzman and Köhntopp [PK01] are used.

De�nition 13 (Anonymity [PK01]). Anonymity of a subject means that the subject
is not identi�able within a set of subjects, the anonymity set.

12

1.4. Privacy Properties and Goals

De�nition 14 (Unlinkability [PK01]). Unlinkability of two or more items of interest
[...] from an attacker's perspective means that within the system [...], the attacker cannot
su�ciently distinguish whether these items of interest are related or not.

The authors de�nition of anonymity recalls that, ultimatel y, an end-sender or end-
receiver can only beat best anonymous among all the users of the anonymous network.
Unlinkability is another notion extensively used in the lit erature on privacy. It is more
versatile, allowing to de�ne more privacy notions (actually, anonymity can be de�ned
in terms of unlinkability [PK01]). Here, the items of interest are mainly the nodes'
real-world identities and the end-to-end payload messages. With this terminology, �ve
properties are de�ned.

Property 1 (Sender Anonymity (SA)). The adversary can not identify the end-
senders of payload messages in the network within a subset orthe set of all nodes.

Property 2 (Receiver Anonymity (RA)). The adversary can not identify the end-
receivers of payload messages in the network within a subsetor the set of all nodes.

Property 3 (Session Unlinkability (SU)). The adversary can not correlate link
messages from di�erent communication sessions, in particular between the same end-
sender and end-receiver.

Property 4 (Message Unlinkability (MU)). The adversary can not correlate link
messages based on theirbit pattern or from the cryptographic information they contain
(or that is associated to them). In particular, she can not link messages from the same
session (MU-session) nor link messages carrying the same payload message as its relayed
through the network (MU-tracing).

Property 5 (Tra�c Analysis Resistance (TAR)). The adversary can not perform
tra�c analysis of any form, including timing-based analysi s.

SA and RA are the main privacy goals, in the sense that they arethe properties a
user of the anonymous network would expect. They are standard properties, but in this
work, we aim at a strong variant of them. Indeed, most work only aim at traditional no-
tion of relationship anonymity, de�ned as the impossibility of de-anonymising both the
end-sender and the end-receiverat the same time. Comparatively, SA alone or RA alone
implies relationship anonymity. Secondly, it is important to note that, in the considered
adversary model with a global network observer, SA means that it is not even possible
to observe the action of end-sendinga message (and likewise for RA and end-receiving).
In the terms of Freedman and Morris, sending activity is not observable [FM02]. Actu-
ally, in the present adversary model, sender anonymity is arguably equivalent to sender
unobservability (a term also de�ned by P�tzman and Köhntopp [PK01]), and likewise
for receiver anonymity. This de�nition of anonymity as unob servability can also be
found, in particular, in the Tarzan protocol [FM02], and more recently in the Pung
protocol [AS16].

The SU property is somewhat related to SA and RA, but not implied by them. It
requires that di�erent sessions between the same end-sender and end-receiver are not

13

1. Context

linkable, and in particular that messages exchanged between a speci�c pair of nodes
do not carry any distinctive mark. This would otherwise provide the adversary with
material to infer information on the communicating nodes, basede.g. on the frequency
of their exchanges. The MU and TAR properties both aim at modeling the impossibility
for the adversary to gain an advantage for breaking the otherproperties by tracing
or recognising messages. They are not equivalent, but complementary: the �rst is a
cryptographic property, the second is a abstract, network level property. The separation
is made because formally proving tra�c analysis resistanceis uneasy (as discussed in
Chapters 3 and 5). Here, at least the MU property can be formally studied so that
cryptographically speaking, tra�c analysis can be shown impossible. Lastly, note that
the distinction is made between MU-session and MU-tracing:the former requires that
messages from the same communication session to be unlinkable by a given relay node,
and the latter that a payload message can not be traced by two di�erent relays on the
message's path. All the above properties can be found in pastliterature. In particular,
SU and MU are seemingly equivalent to theno session linkageand no packet correlation
properties of the HORNET protocol [Che+15].

In Chapter 5, these privacy properties are reformulated using the cryptographic notion
of indistinguishability . For instance, SA is formulated as the (near) impossibility of
distinguishing between a run of the system where messagem is sent to receiverR by
senderS0 from a run where m is sent to R by senderS1.

According to the informant-journalist scenario discussedin the introduction, these
properties provide strong anonymity to the informant, even against the journalist. The
goal is to allow bi-directional communications between thetwo parties, without the jour-
nalist nor any internal or external network actor learning t he identity of the informant.
In this regards, SA and RA conceal the very fact that the informant communicates.
More accurately, SA (resp. RA) ensures that no message can beattributed as having
been end-sent (resp. end-received) by the informant, even by the journalist itself. Then,
SU prevents the linking between communication sessions of the same informant and
journalist. Meaning that if one session is de-anonymised, the anonymity of the others
remains. TAR, MU-tracing, and MU-session prevent the tracing of the message and
reconstruction of the communication pattern between the informant and the journalist,
which could then lead to a breach of SA or RA (as exposed in Section 3.4, which reviews
the existing threats to privacy in anonymous networks). Lastly, because the network
is homogeneous and no asymmetry is introduced between nodes, the journalist actually
enjoys the same privacy guarantees as the informant, with the exception that an infor-
mant initiating a communication with a journalist, of cours e, knows the identity of the
said journalist.

1.4.2. What the Protocol Does and Does Not Achieve

Aside from the privacy goals, the protocol aims at being completely decentralised and
distributed. It is above all made for non-latency sensitivecommunication among nodes.

However, the protocol makes no e�ort to prevent against denial-of-service attacks (e.g.

14

1.5. Summary

refusing to relay), or to hide participation in the anonymous network. Also, making
the protocol e�cient is a secondary goal compared to ensuring the privacy properties.
Some essential design points of a routing protocol, such as congestion and bandwidth
management are merely discussed and accounted for, but not included in the design.

1.5. Summary

This chapter laid out the foundations of this thesis, from the terminology it uses to the
privacy properties it aims for. The chapter also details thecontext and the assumptions
on the system and possible attacks under which the protocol should run. The goals
in terms of privacy can be quali�ed as strong, since, as shown in Chapter3, they are
stronger than the usual properties ensured in the anonymouscommunication protocols
literature.

15

2. Cryptographic Tools

2.1. Preliminaries . 17
2.1.1. Notations . 17

2.1.2. Cryptography and Hard Problems . 18

2.2. Public Key and Secret Key Encryption 19

2.3. Cryptographic Hash Functions . 20
2.4. Key Agreement . 21

2.5. Homomorphic Encryption (HE) . 21

2.6. Universal Re-encryption (URE) . 23
2.6.1. Re-Encryption . 23

2.6.2. Universal Re-Encryption . 24

2.7. Summary of Cryptographic Tools . 25

The aim of this chapter is to introduce the cryptographic primitives, the building blocks
with which the protocol is built. This chapter is rather info rmal from a cryptographic
point of view. In particular, the formal de�nitions of secur ity notions, such as the
semantic security of encryption schemes, are not given here. Instead, they are deferred
to Chapter 5, just before presenting the security proofs.

Before all, preliminary notions of algebra and provable security in general are very
brie�y recalled. Then, the concepts of public- and symmetric-key encryption are pre-
sented, followed by the description of four primitives: the SHA-3 hash function, the
Di�e-Hellman key-exchange, the Elgamal homomorphic encryption scheme, and univer-
sal re-encryption. Each primitive is abstractly presented, along with its functionalities
and security properties. The notion of universal re-encryption, less present in the litera-
ture, is presented in more details.

2.1. Preliminaries

As a preamble, the mathematical and cryptographic notations employed throughout
the thesis are described succinctly. Then, the principle ofhard problemsand provable
security in cryptography is recalled, along with the main hard problem used in this work,
the Decisional Di�e-Hellman (DDH) problem.

2.1.1. Notations

Table 2.1 lists various mathematical and cryptographic symbols usedthroughout this
thesis.

17

2. Cryptographic Tools

Symbol Description Example

 Assignment of a result to variable c c Enc(pk; m)

:= De�nition of a function or term f (x; y) := x2

 $ Uniform choice of an element in a set x $ N

k Concatenation operator m1km2

� Product of two numbers or group elements
(omitted when clear from context)

x = y � z

jSj Number of elements in a set, or bit-size of a number jNj, jxj

Table 2.1. � Mathematical and Cryptographic Notations

This work makes extensive use ofgroups and subgroups, and in particular multiplica-
tive, abelian, and cyclic groups [Sho09]. Denoted G, a group is hereby characterised
by a generator g and an order jGj. The product symbol � �� is used for multiplication
between group elements, and although all operations take place within a modulo n for
somen 2 N, the term �mod n� is often omitted and implicit from context. The mul-
tiplication of e1 2 G by e� 1

2 , the inverse of e2 2 G, is sometimes noted with a division
symbol e1=e2.

2.1.2. Cryptography and Hard Problems

Cryptographic constructions rely directly or indirectly o n the assumption that some
problem is hard to solve. For instance, the Rabin encryption scheme relies on the as-
sumption that factoring large numbers is hard [MOV96, Section 8.3]. A problem is
consideredhard if there exists no known e�cient algorithm that solves it, i.e. when
it can take several years even for extremely powerful machines to solve it. Formally,
a problem is assumedhard if it can not be solved by any known polynomial time algo-
rithm, i.e. when there exists noPPT adversary that solves the problem. This is captured
by the security parameter � : a problem is hard when it takes at leastO

�
2�

�
time to

solve, i.e. time exponential in � . The current recommendation is a security parameter
of � = 128 bits [Gir15].

In this work, the problem we are mainly interested in is the Decisional Di�e-Hellman
problem. It consists in the following: for a given group G = hgi and elementsga; gb;
gc 2 G, with a; b $ Zq, to distinguish whether c = ab or c $ Zq. Intuitively, saying
that the DDH problem is hard means that even if ga and gb are known, the term gab

can not be computed, and actually looks random. In the rest of this thesis, �the DDH
assumption� refers to the assumption on the hardness of the DDH problem.

The DDH problem is assumed hard in various groups [Bon98]. The most suitable way
to instantiate G for this thesis, is to take a subgroup of prime orderq of the multiplicative
group Z �

p where p = 2q + 1. For � = 128, it is advised to set jpj � 2048 andjqj � 2001.

1These are the values recommended by the ANSSI (the French National Cybersecurity Agency). Other

18

2.2. Public Key and Secret Key Encryption

With a suitable generator g (such that 9e 2 Z �
p, g = e2 mod p 6= 1), the group can

be described asG = hgi =
�

gi mod p j i 2 Zq
	
. In the rest of the thesis, the term G

denotes this speci�c group (unless stated otherwise). Moredetails on how the groupG
can be instantiated and how elements are drawn from it can be found in Appendix A.

2.2. Public Key and Secret Key Encryption

Encryption [Gol04, Chapter 5] is the most common cryptographic primitive for ensuring
con�dentiality of data (or meta-data). Encryption schemes can be divided in two generic
categories: public key encryption (PKE) , and secret key encryption (SKE). These cate-
gories are also referred to asasymmetric and symmetric encryption.

The main di�erence between PKE and SKE is conceptual. The former usespairs of
keys (pk; sk) with a public and a secret (or private) part. Anyone can encrypt data using
the public part of the key, producing ciphertexts that only the owner of the private key
can decrypt. In SKE, there is only one keyk, kept secret to typically two entities, used
both to encrypt and decrypt. While PKE schemes are mainly based on number-theoretic
(or, more largely, mathematical) problems, most well knownSKE schemes are based on
block or stream ciphers. It is known that SKE schemes are much more e�cient (for the
same security level�), but less �exible than PKE schemes. In particular, SKE requires
the communicating parties to share a common symmetric key before any communication
can take place (by agreeing, or exchanging one), while the public key in a PKE scheme
allows one to straight away encrypt and send data to other parties. As a result, it is
common to perform encryption in a hybrid way: to take advantage of the e�ciency of
SKE, the data is encrypted with a symmetric key k, and the latter is sent encrypted
under the public key of the recipient.

This work uses PKE extensively, and SKE in speci�c occasions. Below is a generic
description of a PKE scheme, under itsprobabilistic form.

De�nition 15 (PKE scheme). Given a plaintext space P, a ciphertext spaceC, a
key spaceK = (Kpk � K sk), and a random coins spaceR, a probabilistic PKE scheme
consists of (at least) the following three operations:

Key Generation: KeyGen(1�) : f 0; 1g� ! (Kpk � K sk)
A probabilistic polynomial time algorithm outputting a key pair (pk; sk) achieving
the level of security speci�ed by the security parameter� , where pk denotes the
public key whilst sk denotes theprivate key.

Encryption: Enc(pk; m; r) : Kpk � P � R ! C
A deterministic polynomial time algorithm that, given a public key pk and a plain-
text m, outputs a ciphertext c encrypting m with the randomnessr .
Alternatively: Enc(pk; m) : Kpk � P ! C can be described as a probabilistic algo-
rithm, where r is internally and randomly sampled.

organisations may recommend slightly di�erent values [Gir15].

19

2. Cryptographic Tools

Decryption: Dec(sk; c) : Ksk � C ! P
A deterministic polynomial time algorithm that, given a pri vate key sk and a
ciphertext c, outputs m if c Enc(pk; m) and sk is the private key corresponding
to pk.

A SKE scheme also roughly follows the same description, except that it only handles
onesecret keyk. For short, symmetric encryption of plaintext m with k is denotedf mgk .
Additionally, the randomness r used by a SKE scheme is calledinitialisation vector (IV)
and, contrarily to a PKE scheme, can safely be made public andsent along with the
ciphertext it relates to.

A PKE (or SKE) scheme achievessemantic security, a notion also known asindis-
tinguishability under chosen plaintext attacks (IND-CPA) , if, given a ciphertext, the
adversary can not learn anything about the underlying plaintext. More formally, this is
captured by the impossibility for the adversary to distinguish whether a ciphertext c is an
encryption of m0 or m1 when m0 and m1 are known and chosen by the adversary herself.
IND-CPA is the notion of security used in this work. However, there exists stronger no-
tions, such asindistinguishability under chosen ciphertext attacks (IN D-CCA) security,
where the adversary is given additional capacities. Namely, it is given the opportunity
to decrypt any ciphertexts she wants except of course the challenge ciphertext c, as this
would immediately tell her if it is an encryption of m0 or of m1.

2.3. Cryptographic Hash Functions

A hash function h(x) : f 0; 1g� ! f 0; 1gn is a deterministic function e�ciently map-
ping an input x of arbitrary length to an output of �xed n-bit length. A cryptographic
hash function exhibits additional properties, such as the well knownpreimage resistance,
2nd-preimage resistance, and collision resistance properties [MOV96; RS04], that (infor-
mally) prevent from inverting the function, or �nding two in puts that hash to the same
value (the latter is called a collision).

Hash function are commonly used to ensuredata integrity of messages sent over un-
trusted communication channels. But they can also be used todesign key derivation
functions (KDF) (to derive keys from a shared secret), orpseudo-random functions
(PRF) (to produce unpredictable sequences of bits) [MOV96].

In this thesis, the SHA-3 hash function [NIS14] is used as a KDF to derive many keys
from a single secret, and as a PRF to transform algebraicallyrelated inputs into (seem-
ingly) unrelated data. SHA-3 is based on theKeccak function [Ber+11], which realises
preimage resistance, 2nd-preimage resistance and collision resistance. More accurately,
the security of Keccak is stated in comparison to a truly random function, which implies
that it realises all three properties, and makes it suitable to be used as KDF and/or
PRF.

20

2.4. Key Agreement

2.4. Key Agreement

The most used method for generating common secrets, in particular over the Internet,
is the Di�e-Hellman key agreement (DHKA) , or Di�e-Hellman Handshake [DH76]. It
typically involves two parties X and Y , that exchange elements from a group in which
the DDH assumption holds. With the group G de�ned in Section 2.1.2, the protocol is
executed as follows.X sendsA = ga 2 G for a $ Zq, then Y answers with B = gb 2 G
for b $ Zq, and they �nally compute secret = B a = Ab 2 G. Since the DDH assumption
holds in G, it is ensured that only X and Y know the secret, and that it constitutes a
suitable random seed that can be fede.g. to a KDF or PRF.

In this thesis, the DHKA and a KDF are used to generate many secrets shared by two
neighboring nodes. It is known that this basic, unauthenticated version of theDHKA is
subject to a man-in-the-middle attack. However, this attack is not part of the passive
adversary model considered in this work. Furthermore, the use of an authenticated
version of the DHKA requires e.g. to assume that parties possess public keys certi�ed
by a trusted authority [Gol04]. However, in this thesis, we aim at avoiding the reliance
on such a central entity, and prefer a fully distributed architecture.

2.5. Homomorphic Encryption (HE)

Traditional encryption transforms a plaintext into a rando m-looking bit-string which can
not be of any use to anyone without the corresponding decryption key. A homomorphic
encryption (HE) scheme di�ers in that it allows one to apply transformations to a cipher-
text, which map to known and predictable transformations on the underlying plaintext,
without leaking information on the latter. That is, in a HE sc heme, there exists ahomo-
morphism from the ciphertext space C to the plaintext space P. For instance, in some
HE scheme such as Paillier's, themultiplication of two ciphertexts Enc(m1) � Enc(m2)
results in a ciphertext Enc(m1 + m2) encrypting the addition of their plaintexts [Pai99].
The applications of HE include electronic voting, private information retrieval, secure
multi-party computation, and more generally, the protecti on of privacy in cryptographic
protocols [Rap06]. The most direct application, however, is the secure delegation of com-
putation, without the need to reveal the data on which the computation is performed.
For instance, it is possible for a device with low computation power to delegate heavy
computations to the cloud. For that, the device encrypts its data with a HE scheme,
sends it to the cloud, which performs the computations and send the result back. The
cloud never learns details about the data it processed, onlyits nature (e.g. it knows how
it is encoded, and has the knowledge of how to handle it).

Initially described by Rivest et al. [RAD78], HE subsequently attracted a lot of a
attention. A major milestone was passed with the �rst fully homomorphic encryption
scheme proposed by Gentry in 2009 [Gen09], which is capable of evaluatingany function
(that would be normally computable on clear data) on encrypted data. However, even
though great advances have been made in the recent years, fully HE remains impractical
as of today. In this thesis, we resort to simple, less powerful schemes that only allow a

21

2. Cryptographic Tools

restricted set of operations.
The �exibility given by HE comes at the cost of reduced security. Indeed, HE schemes

are at best IND-CPA secure, and by de�nition can not achieveIND-CCA security. This
is mainly due to the malleability of the ciphertexts, and to the fact that learning the de-
cryption of one ciphertext Enc(m) means getting information about all other ciphertexts
that are known to encrypt a function of the plaintext m. In practice, if this downgrade
in security poses a serious threat, one can use authentication of plaintexts or ciphertexts
via integrity-checking tools, such asmessage authentication codes, or another layer of
traditional encryption on top of the HE scheme.

The Elgamal HE scheme

In this work, HE is used in particular to privately compute an onymous network identities.
Because its homomorphic properties are adapted to our needs, we use the Elgamal PKE
scheme [Elg85]. This scheme works over any group in which the DDH assumption holds,
but it is presented here for the speci�c groupG considered in this work. The presentation
below features theKeyGen, Enc, Dec operations proper to PKE schemes.

� KeyGen(1�): Given G described by g and q, pick a random x 2 Zq and compute
h = gx 2 G. Output (pk; sk) = (h; x).

� Enc(pk; m; r): For m 2 G and a random r 2 Zq, output c = (gr ; m � hr) 2 G2.

� Dec(sk; c): Let c = (c0; c1). Compute and output

c1

cx
0

= m
hr

(gr)x = m
gxr

gxr = m mod p

The Elgamal scheme is semantically secure under the assumption that the DDH is in-
tractable in the group G. Under the same assumption, the Elgamal additionally satis�es
the key-privacy property, ensuring that it is impossible for the adversary to distinguish
which key among two or more candidate keys was used to encryptsome ciphertext.
This notion is also called indistinguishability of keys under chosen plaintext attacks
(IK-CPA) [Bel+01].

The scheme allows the following homomorphic operations2, for m; m0 2 G, ciphertexts
c = (c0; c1) = Enc(pk; m; r) and c0 = (c0

0; c0
1) = Enc(pk; m0; r 0), and � 2 [0; jGj � 1]:

(1) Multiplication: multiplication of the plaintexts unde rlying two ciphertexts
CtxtMult (c; c0) := (c0 � c0

0; c1 � c0
1)

= (gr + r 0
; m � m0 � hr + r 0

)

= Enc(pk; m � m0; r + r 0)

2Other operations are possible, but here are listed only the relevant ones for this thesis.

22

2.6. Universal Re-encryption (URE)

(2) Plaintext multiplication: multiplying an underlying p laintext by an other plaintext
PlainMult(c; m0) := (c0; c1 � m0)

= (gr ; m � m0� hr)

= Enc(pk; m � m0; r)

(3) Scalar exponentiation: exponentiating an underlying plaintext
ScExp(c; �) := (c�

0 ; c�
1)

= (gr� ; m� � hr�)

= Enc(pk; m� ; r�)

(4) Key Homomorphism: for (pk0; sk0) = (h0; x0)
KeyMult(sk0; c) := (c0; c1 � cx0

0)

= (gr ; m � (h � h0)r)

= Enc(pk � pk0; m; r)
The inverse operation is simplyKeyDiv(sk0; c) := (c0; Dec(sk0; c)). For short, the
operation Dec is used to denoteKeyDiv throughout the thesis, since the latter can
actually be seen as apartial decryption.

Notice how the last operation, KeyMult, actually shows that the Elgamal scheme
supports encryption under multiple keys. That is, a plaintext m can be encrypted as
c Enc(pk1 �pk2 � � � � � pkn ; m). It can either be decrypted in one sitting, with Dec(

P
i ski ;

c), or in multiple steps using Dec(ski ; c). Since G is abelian, the order of keys do not
need to be respected when decrypting in multiple steps (e.g. Dec(sk5; Dec(sk3; c)) is the
same asDec(sk3; Dec(sk5; c))).

2.6. Universal Re-encryption (URE)

This work makes heavy use of re-encryption and universal re-encryption as a means to
modify the appearance of ciphertexts, and ultimately prevent the tracing of messages in
the network. This section �rst presents standard re-encryption, and then the notion of
universal re-encryption.

2.6.1. Re-Encryption

Re-encryption, in a probabilistic PKE scheme, consists in changing the random coinsr
embedded in a ciphertext c = Enc(pk; m; r), while leaving the plaintext m untouched.
Indeed, recall that in a probabilistic PKE scheme, for the same public key, a single
plaintext m has many possible di�erent encryptions depending on the value of r . The
motivation behind re-encryption is changing the appearance of a ciphertext in such a
way that it is unrecognisable, even given information on theoriginal ciphertext.

The Elgamal scheme, as most HE scheme, supports re-encryption. The re-encryption
of ciphertext c = Enc(pk; m; r) = (c0; c1) = (gr ; m �hr) into c0 is performed, givenpk = h,

23

2. Cryptographic Tools

by sampling r 0 $ Zq and computing:

c0 = (c0 � gr 0
; c1 � hr 0

)

= (gr + r 0
; m � hr + r 0

)

= Enc(pk; m; r + r 0)

Intuitively c0 is unrecognisable becauser 0 is uniformly random, thus gr 0
and hr 0

are
uniformly random as well and act as amask for c0 and c1 respectively. Note that the
plaintext m does not need to be known to the entity carrying out the re-encryption.

In anonymous networking, the main application of re-encryption is to modify the
appearance of messages as they travel through an anonymous network, to prevent their
tracing3. It is actually one of the alternatives to the more common technique of onion
routing (see Chapter 3). However, to re-encrypt messages transiting in the network,
the knowledge ofpk = h is necessary, in order to multiply the second component ofc
with hr 0

. This can be an issue, because a public key can act as a global identi�er in the
anonymous network, which we want to avoid in this work (see Chapter 4 for details). The
use of public keys in re-encryption can be avoided by resorting to universal re-encryption
(URE) .

2.6.2. Universal Re-Encryption

The notion of URE was proposed in 2004 by Golleet al. [Gol+04], along with an example
of URE-enabled scheme. A URE-enabled scheme exhibits aUReEncoperation in addition
to KeyGen, Enc, and Dec. This operation does not necessitate nor leak information on
the public key of re-encrypted ciphertexts. The authors also propose a new notion
of security, suitable for schemes supporting URE, nameduniversal semantic security
under re-encryption (USS). It is based on the traditional notion of semantic security of
PKE schemes, and additionally requires that re-encrypted ciphertexts are unrecognisable
from their original ciphertext. More precisely, USS states that an adversary knowing
pk0; pk1; m0; m1; r0, and r1 should not be able to distinguish UReEnc(Enc(pk0; m0; r0))
from UReEnc(Enc(pk1; m1; r1)).

In the same work, Golle et al. present an extension of the Elgamal scheme support-
ing the UReEncoperation, hereby calledURE-Elgamal. In this scheme, a plaintext is
encrypted as a pair of Elgamal ciphertexts: the �rst one encrypts the plaintext, and the
second is an encryption of theidentity element of the group G (i.e. an encryption of one).
An encryption of one cone in the (standard) Elgamal scheme has the following properties:
(i) anyone can generate new re-encryptions of the ciphertext cone without knowledge of
the public key that encrypted it; and (ii) given solely an encryption of one, anyone can
re-encrypt any ciphertext using the homomorphic properties of the scheme. These two
properties thus allow the re-encryption of any ciphertext, without public keys.

3Jakobsson however uses it to build a veri�able mixnet , i.e. a network that detects malicious behavior
from relay servers [Jak99].

24

2.7. Summary of Cryptographic Tools

More precisely, the UReEncoperation of Golle et al. is de�ned as follows, on input
C = (Enc(pk; m; r); Enc(pk;1; r one)) = ((c0; c1); (cone0; cone1)):

UReEnc(C) :=
�

(c0 � cone
s
0; c1 � cone

s
1); (cone

s0

0 ; cone
s0

1)
�

with (s; s0) $ Z2
q

=
�
Enc(pk; m; r + r one � s); Enc(pk;1; r one � s0)

�

The authors prove the USS property of the URE-Elgamal scheme, based on the IND-
CPA and IK-CPA property of the plain Elgamal scheme. The drawback of the con-
struction, however, is its ine�ciency. Indeed, a plaintext of n bits becomes 4n bits of
ciphertext (against only 2n bits for plain Elgamal), and re-encryption requires 4 modular
exponentiations and two multiplications.

Several works make use of the URE-Elgamal scheme, to change the appearance of
messages and prevent their tracing [Gol+04; GKK04; Lu+05 ; HLF12]. The advantage
of URE over standard re-encryption in this regards, is that it does not require a (public)
key distribution at the initialisation of the network. The � rst anonymous network using
URE is from Golle et al. (in the same work), who propose a straightforward application
of the scheme to construct a protocol in thebulletin board model (a public structure
where any party can read or write), yielding a rather theoretical protocol. The same year,
Gomuªkiewiczet al. [GKK04] (surprisingly) used URE to build an onion routing protocol .
Note that the privacy guarantees of the works of Gomuªkiewicz et al. [GKK04] and Lu et
al. [Lu+05] have actually been broken by Danezis [Dan06], but the attacks exhibited do
not pertain to URE itself but rather to a misuse of the technology. More recently, URE
has been used in an anonymous network construction by Huanget al. [HLF12]. The
authors actually make use of standard and universal re-encryption alternatively. The
former for ciphertexts encrypted under the public keys of relay servers of the network, and
the latter for ciphertexts encrypted under the receiver's public key pkR , thus preventing
the relays from learning pkR , and ultimately deducing the identity of the receiver.

In this thesis, it is the latter approach that is chosen: all messages are encrypted under
the receiver's public key, URE is used to change their appearance, and relay nodes do not
learn the receiver's public key nor identity. In practice, the UReEncoperation is broken
down into several functions, which are used individually ona need-basis. Indeed, by the
way the protocol is designed, full URE-Elgamal ciphertexts are not always necessary:
in many occasions, messages do not need to embed an encryption of one, as nodes will
already have a suitable one available. As a result, bandwidth is saved, and the workload
for re-encryption is reduced. The atomic functions are described in detail in Chapter 4.
In their use, care is taken to reproduce theUReEncoperation so that the USS security
de�ned by of Golle et al. [Gol+04] still holds.

2.7. Summary of Cryptographic Tools

In this chapter, the four main cryptographic primitives tha t will be used to design
the protocol have been presented, recalling necessary mathematical and cryptographic
notions beforehand.

25

2. Cryptographic Tools

The main assumption on which the security of the primitives rely is the hardness of
the DDH problem, since the DHKA, the Elgamal scheme, and the URE constructions
all rely on it. Also, all three primitives work in the same group G. As a matter of fact,
most of the operations and elements constitutive of the protocol will lie in G.

26

3. Background and Related Works

3.1. Low Latency Networks . 28

3.1.1. Building Blocks and Properties of Low Latency Networks 29

3.1.2. Description of Tor . 29

3.1.3. Concluding on Low Latency Networks . 32

3.2. High Latency Networks and Mixnets 32

3.2.1. The Di�erent Types of Mixnets and Their Properties 33

3.2.2. Description of cMix . 35

3.2.3. Concluding on High Latency Networks . 37

3.3. Homogeneous Networks . 37

3.3.1. Properties of Homogeneous Networks 37

3.3.2. Description of Tarzan . 38

3.3.3. Concluding on Homogeneous Networks 40

3.4. Review of Known Attacks . 41

3.4.1. Attacks based on Appearance of Messages 41

3.4.2. Network Discovery and Relay Selection Attacks 43

3.4.3. Limits of the Mixnet Model . 44

3.4.4. Detecting End-Sending and End-Receiving Activities 45

3.4.5. Timing Analysis . 46

3.4.6. Tra�c Fingerprinting and Application Layer Informa tion Leak 47

3.4.7. Concluding Remarks on Attacks . 48

3.5. Summary: Where this Thesis Stands 49

This chapter presents the state of the art in privacy-preserving communication proto-
cols, using the terminology introduced in Chapter1. The aim is, ultimately, to show how
the work in this thesis builds on pre-existing ones, and to review the potential threats
against the SA, RA, SU, MU and TA privacy properties in anonymous networking.

Several sub-domains in privacy-preserving communicationprotocols co-exist: direct
messaging[Cha+16], �le sharing [Cla+01], those focused onelectronic mail [Mol+03],
the electronic voting protocols [MN10], and the multi-purposes protocols [DMS04]. The
focus in this thesis is ondirect messagingprotocols, that allow any two entities to directly
communicate any kind of data over the Internet. Consequently, and to narrow the scope
of this survey, only the protocols having this explicit goal are presented.

Then, the literature on privacy-preserving direct messaging protocols distinguishes
two general categories, based on the latency they introducein the delivery of messages:

27

3. Background and Related Works

high and low latency protocols. These categories are sometimes respectively identi�ed
to mixnet and onion routing [Cha+16]. However, there are many exceptions to this
categorisation. For instance, some onion routing protocols introduce high latency [GT96;
DDM03; Mol+03 ; SSH08], which can be confusing. Hereby, a categorisation in three
classes is proposed. The �rst consists in low latency systems (not necessarily associated
with onion routing), which includes the well known Tor proto col [DMS04]. The second
is focused on high latency systems, and in particular on the mixnets. The last category
relates to (high or low latency) homogeneousnetworks (as de�ned in Chapter 1), which is
of particular relevance since the protocol proposed in thiswork considers a homogeneous
architecture.

These three categories however share a common base idea for providing anonymity. It
is better explained by coming back to the most basic and simple way to obtain anonymity
on the Internet: using a proxy. A proxy is an intermediary server that makes the
request on behalf of a client, thus concealing its identity.However, using only one proxy
means completely relying on its honesty. The proxy knows thesender and receiver
(e.g. the client and the web server requested), and may keep records of past requests
or divulge them. Thus, it is common to use several such intermediaries. This is the
most common approach to anonymous networking, and the base idea of all anonymous
networks presented in this chapter.

The chapter begins with three sections, one for each identi�ed protocol category. Af-
ter a description of the category, a representative protocol is described, along with its
claimed anonymity properties. Then, Section3.4 reviews existing attacks on anonymous
networks, that directly or indirectly participate in breac hing privacy (mainly by �nding
senders or receivers). As attacks are described, their impact on each protocol category
is studied. This survey of attacks aims at highlighting the necessary safeguards and
mechanisms to ensure SA, RA, SU, MU and TAR. The last section concludes and places
the present work in the continuation of existing ones.

3.1. Low Latency Networks

The most e�cient and practical privacy-preserving protoco ls on the Internet are low
latency ones [BG03; DMS04; Che+15; AS16; I2P]. Most low latency networks seek to
realise relationship anonymity, stating that it is impossible uncover the communication
relations, i.e. de-anonymise end-senders and the end-receiversat the same time. The
speci�city of low latency network, is above all to aim at intr oducing these indirections
with minimal overhead compared to a direct sender-receivercommunication. That is,
the trade-o� between e�ciency and privacy is tilted in favor of e�ciency here. As a
result, low latency protocols support time-sensitive applications such as live chats and
web browsing. This explains the popularity of such protocols over high latency ones
among the general public. For instance, the Tor [DMS04] and I2P [I2P] protocols are
deployed over the Internet and fully operational.

28

3.1. Low Latency Networks

3.1.1. Building Blocks and Properties of Low Latency Networ ks

Low latency networks are usually based on the client-serverarchitecture. As such, net-
work edges areobservable: SA and RA do not hold. Indeed, the �rst relay server (or an
external observer of the link between it and the sender) detects the sending activity of
S, and breaks SA as de�ned in Section1.4.1. The same applies to the last relay server
and RA. On the other hand, the client-server architecture puts little burden on users,
and allows them to contact receivers outside of the anonymous network (e.g. a regular
web server).

Note that even though none of SA nor RA holds, relationship anonymity may still hold.
It is only necessary to have (at least) one honest relay, and to prevent non-neighboring re-
lays from recognising messages as they travel down the relayservers. More generally, the
tracing of messages must be prevented. However, the speci�city of low latency protocols
is to prevent tra�c analysis only up to a point, as long as it does not impact e�ciency too
much. In view of the MU/TAR separation made in Section 1.4.1, this class of protocols
only aims at a form of MU. In particular, most protocols encrypt messages, and change
their appearance at each hop. This last point is usually performed either by decrypting
and re-encrypting at each relay server [Cha81], using onion encryption [DDM03], using
(universal) re-encryption [Gol+04], or simply using random bit-strings as masks [DG09].
In addition, some works ensure that all link messages are of the same size, to prevent
tracing based on size.

However, network-level tra�c analysis (corresponding to TAR), based on timing or
tra�c shape for instance, is usually not prevented at all. Th e rationale being that the
cost of integrating such protection is either prohibitive for the user experience, or simply
too costly compared to the security guarantees it brings. Asa result, in most low latency
protocols, corrupting the �rst and last relays of a communication is enough to completely
break anonymity, and uncover which end-sender and end-receiver communicate together.
This may even be possible without corrupting end relays, butmerely by observing the
�rst link (between sender and �rst relay) and the last link (b etween last relay and
receiver) of the communication.

Finally, note that low latency networks do usually (implici tly) ensure a form of SU
(or variants of it), in order to realise relationship anonymity. The usual adversary model
of low latency networks is weaker than the one considered in the present work, mostly
in that the external adversary is assumed local or collusivebut not global. Also, they
achieve their anonymity goals only under the assumption that no tra�c analysis is
possible, or equivalently, assuming that the �rst and last relays (and links) are not
corrupted.

3.1.2. Description of Tor

As a study case, we present the Tor protocol [DMS04] and its claimed anonymity. It is
the most successful anonymous protocol to date, serving today more than two millions
users. Tor runs over the Internet without restrictions on th e topology graph (any Tor
node can directly contact any other), and based on a client-server architecture. Server

29

3. Background and Related Works

nodes are calledonion routers (OR). Anyone may freely run an OR, or join the network
as a user. Users rely on existing ORs to create a circuit and tunnel their connections to
a receiver out of the anonymous network, such as a web server.In practice, a circuit is
always made of three ORs chosen by the user. They are called the entry, the middle, and
the exit nodes. It is assumed that the sender knows the ORs and their certi�ed public
key. For that, Tor provides directory servers, a small set of trusted servers responsible
for publishing information on the network to all nodes. The circuit construction by
the sender consists in distributing thecircuit identi�ers to the chosen ORs. The circuit
construction is telescopic, and depicted in Fig. 3.1. For compactness, a case with only two
ORs is shown. Circuit construction with a third OR is easily deduced. Communications
between pairs of nodes are assumed to work over a secure TLS connection to counter
external adversaries. In Fig3.1, Enc designates RSA encryption,f mgk designates AES
encryption of messagem with key k, and h the SHA-1 hash function.

Alice (sender) OR1 OR2 Bob (website)

create(cid1); Enc(pkOR1 ; ga)

created(cid1); gb; h(k = gab)

relay(cid1);
n

extend; OR2; Enc(pkOR2 ; ga0
)
o

k

create(cid2); Enc(pkOR2 ; ga0
)

created(cid2); gb0
; h(k0 = ga0b0

)
relay(cid1);

n
extended; gb0

; h(k0)
o

k

relay(cid1);ff data; Bob;"HT T P request" gk0gk

relay(cid2);f data; Bob;"HT T P request" gk0

HT T P request

HT T P response

relay(cid2);f data; "HT T P response" gk0

relay(cid1);ff data; "HT T P response" gk0gk

Figure 3.1. � Circuit Construction in Tor (inspired from [DMS04, Fig. 1])

For a circuit over two ORs, the construction takes two steps. First, the sender andOR1

exchangecreateand createdrouting messages e�ectively realising a DHKA to obtain an
AES key k. This key agreement is authenticated from the point of view of the sender
(i.e. it can check that the key is shared with the OR it expects), since the �rst half is
encrypted with OR1's certi�ed public key, and the value of the key is con�rmed by h(k).
In this �rst phase, the sender also communicates the circuit identi�er cid1 it chose to
OR1.

In the second phase, another DHKA is carried out between the sender and OR2 to
agree on a keyk0, with OR1 acting as relay. For that, the sender gives arelaymessage with
cid1 to OR1, and a nestedextendmessage encrypted withk (which OR1 can decrypt).
The extend message instructsOR1 to send a create message toOR2, with a circuit
identi�er cid2 of its choice, identifying the circuit link between OR1 and OR2. cid2 is

30

3.1. Low Latency Networks

completely independent of the value ofcid1. OR2 answers toOR1 as if the latter was
the original sender, andOR1 forwards its answer back to Alice in anextendedmessage
nested within a relay message. Note thatOR1 can not disturb the DHKA or perform a
man-in-the-middle attack on the DHKA, without Alice (the se nder) noticing it.

Once the circuit is built, the sender can start sending data to e.g. a web server in
this example. For that, the sender creates arelay message forcid1, accompanied with a
doubly encrypted data packet: the outer layer of encryption is with k, and the innermost
with k0. OR1 handles the message as follows: bycid1, OR1 knows that it must use k to
decrypt the nested message, replace,cid1 by cid2, and forward to OR2. Each OR on the
route acts in the same way, and the last,OR2 in this example, gets thedata command,
instructing to send a HTTP request to the server named Bob. More generally, any IP
packet can be tunneled through Tor, not only HTTP ones. When OR2 gets the HTTP
response, it sends it back encrypted underk0 to OR1 with cid2. OR1 re-encrypts it with
k, and forwards it to the sender, which can decrypt the two layers of encryption and get
the HTTP response.

There is a possibility in Tor to communicate with receivers inside or outside the
network, without even knowing its IP address. This mechanism is called hidden services,
and allows a receiver to be contactedvia an anonymous address, not publicly linked to its
real-world identity. For that, a receiver builds a reverse circuit using ORs it choses, and
keeps it alive. In that circuit, the OR farthest to the receiv er is its rendez-vous point.
Its IP address is published in directory servers, along withthe receiver's anonymous
address. When a sender wants to contact that receiver, it queries the directory servers,
gets the rendez-vouspoint, and creates a circuit towards it. The sender then starts
sending message containing a speci�c command and the receiver's anonymous address,
essentially instructing the rendez-vouspoint to forward those message into the circuit
built by the receiver. Hidden services are thus implementedby joining two circuits, one
from the sender, and one from the receiver.

Finally, the protocol uses �xed length messages, provides ways to manage, open, or
destroy circuits, and to manage message �ows.

The nestedencryptions structure in the above description is generally called an onion,
and protocols based on onions are calledonion routing protocols. Onion routing is a way,
as URE, to modify the appearance of messages at each hop in a cryptographically robust
manner. Generally, the onion is created by the sender, and a layer is peeled o� by each
of the nodes on the route. The Tor onion structure has the particularity of not growing
in size with the number of hops the message makes. Indeed, data is encrypted in place,
and since with AES, a plaintext of n bits produces a ciphertext of n bits, encrypting a
plaintext multiple times always results in n bits1. However, many onion routing protocols
exhibit onions structures that grow in size, such as in Mixminion [DDM03], because at
each layer, they embed routing information for each relay server on the route.

Tor solely aims at relationship anonymity. It exhibits the i nherent vulnerabilities of

1 IVs are not sent along the ciphertexts: Tor actually uses AES in counter-mode, always initialising the
IV to zero.

31

3. Background and Related Works

low latency networks. As the authors note since the early design stages of the proto-
col [DMS04, Section 7], corrupting entry and exit relays, or observingthe edges of the
network allows to re-link senders and receivers.

Additionally, various elements of design in the protocol degrade privacy to increase
performances. In particular, the OR selection made by usersis biased towards nodes
with most bandwidth. This allows a powerful attacker with la rge resources to place itself
at strategic points in circuits. In the same idea, directory servers constitute targets of
choice for an adversary willing to advertise false information on ORs. Alternatively,
simply observing which user queries which directory servercan help track users based
on their assumed view of the network [DDM03, Section 7].

3.1.3. Concluding on Low Latency Networks

Low latency protocols are well suited for a use by a broad public, and to provide
anonymity for the masses[Lin16b]. Indeed, although it provides somewhatweakanonymity,
it is su�cient for regular web users simply concerned for their privacy in their everyday
use of Internet. The protections put in place are not extremely robust, but are enough
to dissuade the adversary in investing resources to mount anattack against such targets.

In view of the privacy features we target in this work, however, this level of anonymity
is not su�cient. First, because network edges are observable, and secondly because
tra�c analysis (in particular, possible even for external a dversaries) allows to re-link
end-sender and end-receiver activities, and completely breach privacy.

3.2. High Latency Networks and Mixnets

Historically proposed prior to low-latency systems, mix networks, or mixnets [GT96;
DDM03; Mol+03 ; SSH08; DG09; Hoo+15; Kwo+15 ; Cha+16] were introduced by
Chaum in 1981 [Cha81]. This seminal work has inspired a long line of contributions
in all types of anonymous networking. Mixnets also rely on the client-server architec-
ture, but their main di�erence with low latency protocols is that mixnets aim, by design,
at preventing the TAR version of tra�c analysis. For that, ea ch relay server, called
a mix, in addition to changing the appearance of messages, carefully re-orders them
and/or adds random delays during the forwarding. Some mixnets also make use of
dummy messages, fake messages with random payloads that are indistinguishable from
actual messages. The idea with dummy messages is to introduce noise and perturb the
adversary's tra�c analysis.

Usually, mixnets aim for relationship anonymity, against a global eavesdropper or a
collusion of nodes. SA and RA are usually not achieved by mixnets, due to the client-
server architecture that allows observation of network edges, i.e. the �rst relay or an
observer of the �rst link breaks SA (and likewise for RA). Mix nets however do ensure
MU and TAR both, and usually realise a form of SU as well.

Re-ordering and delaying messages to ensure TAR comes with agreat cost in la-
tency. Mixnet thus do not support applications such as web browsing, SSH connections

32

3.2. High Latency Networks and Mixnets

or more generally any applicative protocol sensitive to gaps in message �ows. Con-
sequently, the main application for mixnets are email communications (the so-called
remailer [DDM03]). Such mixnets have been deployed and are still active today. For
instance, the Mixmaster and Mixminion protocols run between 20 and 30 mix nodes,
and are still used on a daily basis [Moc06].

Before delving into the detailed description of mixnets andtheir characteristics, note
that those do not represent the only type of high latency network. In particular, a
approach common to some recent works [CBM15; AS16] consists in having senders drop
their messages on a central (not necessarily trusted) server. Receivers must then retrieve
the messages that are meant to them. To conceal which sender communicates with which
receiver, this latter task can be done by having the server broadcast all messages to all
receivers, who can then select the ones that are meant to them. Another solution is to use
private information retrieval , a generic cryptographic primitive that (in this applicati on)
allows receivers to retrieve messages from the server, without the latter actually learning
which ones. These approaches get around the issue of tra�c analysis, since there is no
actual �ow of messages. However, the remainder of this section solely focuses on mixnet.
Firstly, because the described approaches only works with aclient-server architecture,
which we do not use, and also because this thesis adopts several techniques proper to
mixnets.

3.2.1. The Di�erent Types of Mixnets and Their Properties

There are several to many ways to implement a mixnet. To characterise a mixnet, there
are two main criteria: the way each single mix in the network functions, and the way
the mixes are arranged together.

Di�erent Types of Mixes Globally, the internal functioning of a single mix depends on:
(i) the way it re-orders messages, (ii) whether it producesdummy messagesor not and
how, and (iii) on the way it changes the appearance of messages. The �rst criterion is the
most crucial. We distinguish betweenbatched and continuous mixes. The former type
of mix retains the messages it receives until its�ring condition is ful�lled (e.g. until it
has at least a certain number of messages, or until some time-based condition is ful�lled),
and then sends them all or a portion of them in a random order. The interval between
two �ring of the batched mix is called a round. In periods of low tra�c, this means
that a message may be retained at a mix for a few hours, and up totwenty four hours
or more [MD05]. To avoid these situations, continuous mixes simply retain messages
for a random delay independent for each message. There are several variants of batched
mixes [SDS02] and continuous mixes [Dan04]. Batched mixes mainly di�er by their
�ring condition . Among them are pool mixes, with complex �ring conditions, and which
do not always forward all the messages received in a previoustime frame. Continuous
mixes mainly di�er by the random distribution used to sample the messages' delays.
Note that, in a given mixnet, all mix nodes are of the same type, and follow the same
behavior. A mixnet can not be a heterogeneous collection of several types. By extension,
the mixnet itself is thus said batched or continuous. The second criterion distinguishes

33

3. Background and Related Works

mix nodes based on dummy messages. Dummy messages can eitherbe sent as a link
message between two neighboring mixes, or as an end-to-end message (e.g. from the
�rst to the last mix on the route). The �rst ones can be used to c onceal the number of
actual link messages exchanged between two mixes from an external observer, while the
latter one can be used to thwart end-to-end tra�c analysis of sessions �ows. Each policy
of dummy messages puts a burden on the network, and consumes bandwidth. Finally,
in all mixnet implementation, mixes pad messages to a constant size, and change their
appearance, roughly in the same manner as in low latency networks (usually, using some
cryptographic primitive). Combining all these three crite ria, many variants of mixes
were proposed along the years, most of which are referenced in a taxonomy by Dias and
Preneel written in 2004 [DP04], only slightly outdated.

Di�erent Network Organisations Given a speci�c implementation of a mix, there are
then several ways to combine mixes together, and thus several topological organisations
for mixnets [DSS04]. The most common and widely studied is thecascade, where all
mixes form a single line, and users have no choice but choosing the �rst mix of the line
as their �rst relay. In this setting, it is known that, as long as one of the mix server in
the cascade is honest, senders and receivers can not be linked together. A second type
of network, called strati�ed , consists in several cascades. This o�ers more �exibility to
the users, since they can choose between di�erent cascades,based for instance on their
trust in the mixes composing each of them. Finally, the highest �exibility is o�ered by
free-route mixnets, where user may, as in Tor, choose freely the sequence of mix servers
for their messages. Free-route mixnets are also the least studied, because more complex
to formalise than simple cascades.

Secondly, a mixnet can function in a synchronousor asynchronousmanner. In the
former case, which mainly applies to networks with batched mixes, all the mixes in the
network are synchronised and are at any time in the sameround (i.e. they �re and send
messages all at the same time). In the latter case, each mix functions independently,
may process its messages as soon as received and�re independently from the other
mixes. Note that a cascade mixnet is, by de�nition, synchronous. Synchronicity mainly
has an impact on the security (or privacy) of free-route mixnets: although it is agreed
that asynchronous free-route networks are not secure,synchronous ones are deemed
acceptable [DSS04]. The rationale being that in asynchronous free-route networks, each
mix node processes a heterogeneous collection of messages that are di�erent distances
away from their receiver and sender. And this may give away information on the length
of the route, and on senders and receivers.

Overall, a thorough comparison of all solutions and a clear statement of the con-
sequences of each design choice is still needed, and would require a substantial e�ort
from the whole community. In particular, there is no existing formal or cryptographic
framework able to produce proofs concerning the tra�c analysis resistance of mixnets.

34

3.2. High Latency Networks and Mixnets

3.2.2. Description of cMix

One of the most recent mixnet to date is the cMix protocol [Cha+16]. It is a cascade
synchronous batched mixnet. Although it is not said explicitly, the �ring condition of the
mix seems to be based on a threshold on the number of incoming messages (a so called
threshold mix). The protocol requires a setup phase, in which mix nodes must interact
altogether. Indeed, the protocol makes use of the Elgamal scheme as amulti-party
homomorphic scheme, using what Section 2.5 of this thesis calls the key homomorphic
property of the scheme. Each mix nodeM j independently generates a key pair (pkj ;

skj). Then, they all collaborate to produce asystem public keympk = g
P

j
skj =

Q
j pkj .

Later in the system, there will be ciphertexts encrypted under mpk, which necessitate
all the keys skj (and thus the collaboration of all mix nodes) to be decrypted.

The system model of cMix also includes anetwork handler, that receives the users'
messages and manages them. Prior to any communication, eachuser X i must perform
a DHKA with each mix node M j in the cascade, and derive multiple secret keyski;j .
Consequently, whenX i wants to send a messagemi , it submits mi �

Q
j k� 1

i;j to the network
handler, i.e. X i blinds its message with the product of all the keys it shares with the
mix nodes. When the network handler has enough messages to �ll a batch, it starts a
round and noti�es the mix nodes.

A round is divided in a pre-computation phaseand a real-time phase. The former can
be performedasynchronouslyin prevision of future rounds, and involves expensive public
key operations. The latter realises the actual forwarding of batches of messages, and
simply consists in (component-wise) multiplications of vectors. Indeed, cMix represents
batch of messages as a vector in which each slot corresponds to one message sent by one
particular user. The shu�ing of messages is performed as a permutation on the elements
of this vector: abstractly, messages of users are input in a vector M = (m1; : : : ; mn),
and the output of the network is � (M), the vector M on which the permutation � was
applied. Permutation � is the result of the composition of the individual permutati on
� j of each mix nodeM j .

The pre-computation phase for one message batch unfolds as follows, assuming the
batch has n slots. First, each mix nodeM j samples two random numbersr i;j and si;j

for each slot. EachM j then communicates to the network handler

Enc(R� 1
j) := (Enc(mpk; r � 1

1;j); : : : ; Enc(mpk; r � 1
n;j))

We abuse theEncnotation: for short, Enc(R� 1
j) denotes the component-wise encryption

of vector R� 1
j = (r1;j ; : : : ; rn;j). Then, for � the component wise product of vectors, the

network handler computes

Enc(R� 1) := Enc(R� 1
1) � � � � � Enc(R� 1

m) = (Enc(mpk; r � 1
1;1 � r � 1

1;2 � � � � � r � 1
1;m); : : :)

This value is sent back to the �rst mix node M 1. In a second step (still in the pre-
computation phase), each mix node in order permutes the vector Enc(R� 1) with a
randomly sampled secret permutation � j , and multiplies the result by Enc(S� 1

j) =
(Enc(mpk; s� 1

1;j); : : : ; Enc(mpk; s� 1
n;j)). The result is the vector Enc((� (R) � S)� 1) with

35

3. Background and Related Works

each component independently encrypted undermpk. This result is sent to the network
handler. Lastly, each mix nodecommits (using a commitment scheme) to its decryption
shares of vectorEnc((� (R) � S)� 1). This last step is used to preventactive attacks, and
check that the permutations in the pre-computation and real-time phase match.

Now, the real-time phase starts from a (full) vector of blinded user messages,

M 0 := M � K � 1 = (m1; : : : ; mn) � (
Y

j

k� 1
1;j ; : : : ;

Y

j

k� 1
n;j)

First, each mix node sendsr i;j � ki;j to the network handler (the keys are masked by
the randomness of ther i;j values). With these values, the latter transforms M 0 into
M 00:= M � R, i.e. the messages that were blinded by keyski;j in M 0 are now blinded
by r i;j values in M 00. Then, the actual shu�ing of messages takes place on the vector
M 00: all mix nodes, beginning by M 1, permute M 00with � j (the same as in the pre-
computation phase), and multiply in the vector Sj = (s1;j ; : : : ; sn;j). The last mix node
sends the result,� (M � R) � S to the network handler. At this point, each mix node
sends to the network handler its decryption share of vectorEnc((� (R) � S)� 1) obtained
in the pre-computation phase. The crucial point is that, now, the network handler can
compute

� (M) =
�
� (M � R) � S

�
�

�
� (R) � S

� � 1

The network handler can then publish the shu�ed vector of messagese.g. if a broadcast
channel application is envisioned. Alternatively, messages can include a receiver address,
and the network handler delivers each message to its respective receiver. Finally, cMix
allows answers from receivers, realising what Chaum initially called anonymous return
channels [Cha81]. The processing of answer messagesm0

i work similarly to the forward
path, where each mix node uses� � 1

j the inverse of the permutation used on the forward
path.The cMix protocol also supports application where the same permutation is used
twice or more. This enables more complex communication patterns.

The authors claim to achieve relationship anonymity2 against anactive adversary that
observes the whole network, and that corrupts all butone mix node and two users. This
is a strong security level, that authors prove with formal security arguments. However,
the analysis only takes one round into account. It would be interesting to study the
consequences of re-using the same permutation over severalrounds (and their return
phase), since repeated use of the same random permutation may leak information about
it. Concerning usability, note that a lot of constraints are put on the users: they must
wait for the input batch to �ll before their message is processed, and for the batch of
answer messages to �ll up for the return of receivers' answers as well. And there is no
upper bound on the time it can take for a batch to �ll up. Also, i f it is not always the
same user that uses the same slot in the batch, a mechanism must be put in place for
mix nodes to know which keyki;j to use in the real-time phase.

2The authors actually claim sender anonymity, but it does not correspond to the same notion as in
this work.

36

3.3. Homogeneous Networks

3.2.3. Concluding on High Latency Networks

Mixnets provide more robust anonymity than low latency prot ocols, but are less easy to
use. These protocols can be considered as suited for those ready to give up some usability
and e�ciency to gain in privacy. In practice, Mixnets were us ed before the advent of
Tor, mainly by so-called cypherpunk and early privacy-aware individuals. Today, it is
still used for email exchanges, in minor proportions compared to Tor.

In relation with the informant-journalist scenario, mixne ts are still not enough, though.
SA and RA can be broken by internal or external adversaries. In particular, observable
network edges allow the global observer to detect any sending and receiving activities.
Furthermore, mixnets (especially synchronousones) have an inherent �aw, that leads to
high probability of complete anonymity breach (i.e. to re-linking senders and receivers).
The idea is based on observing which senders and receivers participate in given rounds.
By intersecting the sender sets and receiver sets over many rounds, communication
relationships may be found. The attack is described in more details in Section 3.4.3.
Note that the authors of cMix attest that their protocol may b e vulnerable to this
attack, but it is left out of the formal security analysis.

3.3. Homogeneous Networks

A solution to circumvent the fundamental limits on anonymit y provided by mixnets is
to deviate from the client-server architecture in favor of a homogeneous network organi-
sation. That is, a network where all nodes are client and server at the same time. This
allows them to conceal their tra�c and their actions as senders/receivers in the tra�c
they relay for other nodes, and prevent the edges of the network from being observ-
able. In the initial presentation of mixnets by Chaum [Cha81], each user was actually
assumed to run its own mix node. This idea was questioned, forthe burden it puts on
low power users, and because at the time, the anonymity provided with the client-server
architecture was assumed roughly the same as in the homogeneous architecture.

3.3.1. Properties of Homogeneous Networks

In this survey, homogeneous networks are de�ned only by the fact that they use a
homogeneous architecture. A protocol in this category can otherwise be a low or high
latency one.

The base idea, and advantage of homogeneous networks is wellformulated by Benett
and Grotho� [BG03], using an analogy with a simple web proxy. In this setting, it is
the users of the proxy who supposedly obtain anonymity, but it can be seen in another
manner. In the words of the authors, �the only entity which can then proceed with
reasonable anonymity by using the proxy service is the actual operator of the proxy
service (if they use the service from within)� [BG03].

Another argument in favor of homogeneous network is its natural capacity of scaling.
Having each node act as sender and relay at the same time charges users with more
work, but then instead of a handful of server handling the load of many peers, many

37

3. Background and Related Works

peers serve many peers. Also, homogeneous networks are naturally peer-to-peer and
fully distributed, which means that they resist better to le gal attacks (since there is no
central authority to blame or take down), make it harder for an adversary to corrupt
large portions of the network, and do not necessitate trust in some directory servers.

There seem to be only a handful of existing homogeneous networks. To the best
of our knowledge, only three are relevant and related to direct messaging. The �rst
protocol to actually use the homogeneous architecture, with the explicit idea of hiding
senders among relays is Crowds [RR98]. Subsequent protocols, Tarzan [FM02] and
MorphMix [DDM03], ensure similar properties, but in a more robust manner. Still,
Crowds, Tarzan and MorphMix are designed to communicate with receivers outside the
anonymous network. The exit edge of the network is thus observable, and the last relay
node breaks RA. Crowds does not prevent tra�c analysis at all and is a low latency
network. Although Tarzan and MorphMix do not completely rej ect message re-ordering
techniques, it is not explicitly included in their designs. In de�nitive, all three protocols
are thus considered in this thesis as low-latency ones. However, designing a homogeneous
high latency protocol is not impossibleper se.

3.3.2. Description of Tarzan

Abstractly, Tarzan [FM02] is close to Tor: it works as an Internet overlay, senders chose
their sequence of relays and build circuits in a telescopic manner (contrarily to Crowds
and MorphMix, who let each relay decide of the next hop), and circuit identi�ers are
used between each pair of nodes on the tunnel. Also, an onion structure carries the
messages and allows it to change of appearance at each hop.

Tarzan explicitly aims at ensuring SA, by realising what the authors call relay homo-
geneity, i.e. have sender act as relay as well, to conceal their own end-sent messages in
the tra�c they relay. The authors note, however, that this pr operty is not su�cient to
conceal sending activity. Indeed, by counting a sender's incoming and outgoing packets
a simple local adversary can see that a node receivedk messages during a given time
frame, and emitted k + 1 messages, meaning that one of thek + 1 messages were end-
sent by that node. This is a breach of the SA property as de�nedin Section 1.4.1: even
though it remains to know which one of thesek + 1 messages is originated by the node,
this reveals that the node is sendingsomething.

To counter this, at the core of Tarzan is the system ofmimics: each node only has a
few other nodes (e.g. 6) with whom it is authorised to directly exchange link messages
with. The mimic relationship is symmetric: if X is Y 's mimic, then Y is X 's mimic as
well. In this sense, a node's mimics can be considered as its neighbors in an incomplete
topology graph. The idea in Tarzan, is that each node keeps a steady message �ow
with all its mimics, thus protecting these links against tra�c analysis (a method also
known as link padding [DDM03]). Namely, dummy link messages are used when a node
does not have any real messages to send (i.e. to end-send or relay) at that time; and
a node refrains from sending (end-sending or relaying) too many real messages over a
short period of time. These two techniques respectively prevent a node from appearing

38

3.3. Homogeneous Networks

as a clear sink and source of tra�c. For this to work, link encr yption ensures that
dummy and real messages are indistinguishable, so that an external observer can not
tell whether a message outgoing from a node is end-sent, relayed, or a dummy. To ensure
that messages always follow a path only made of protected links, a node must choose
the relays of its circuits according to mimic relationships. That is, an end-sender must
chose its �rst relay among its mimics only, its second relay among the �rst relay's own
mimics, and so on. The last relay then sends the message to thedesignated receiver,
such as a web server out of the Tarzan network.

The protection of mimic links is designed carefully in Tarzan, so as to minimise the
observable changes in tra�c pattern between two mimics, whether real messages need
to be exchanged or not, at high or low rates. Performances arealso taken into account.
The most secure solution would be for mimics to exchange messages at constant periodic
interval, in the same manner as aheartbeat. Although this unconditionally hides the
tra�c rate of a node at all times, it poses very severe constraints on the nodes and
the network as a whole. Also, Tarzan aims at reasonable latency, allowing web sur�ng.
Therefore, Tarzan constraints the outgoing tra�c of a node t o be loosely equal to its
incoming tra�c, and to be distributed among its mimics. More formally, for a node X
with k mimic M i , de�ne TI (M i) as the incoming rate of tra�c from M i to X . Similarly,
de�ne TO(M i) as the outgoing rate, from X to M i . Let TI = f TI (M i) j 8M i g be the
multiset of incoming tra�c rates, and f be the 33rd percentile function. Then, the
relations between incoming and outgoing tra�c of node X are determined by the two
following equations:

8 M i ; f (TI) � TO(M i) � max(TI) + � (3.1)

8 M i ; 8 circuit c; f (TI) � TO(M i on circuit c) (3.2)

The �rst equation is a protection against external adversaries (who can not distinguish
real from dummy messages), and the second against internal ones (who are able to
make the distinction). The lower bound in eq. (3.1) states that a node must maintain
a minimal amount of tra�c (real or dummy) towards each of its m imics. The upper
bound is what limits nodes in their sending rate: nodes can not suddenly decide to
augment their tra�c rate arbitrarily. It is allowed to have h igh outgoing tra�c rates
only if one of its mimics provides a high incoming rate. The second equation limits the
sending of real messages (not taking dummy messages into account) in speci�c circuits.
This prevents the corrupted next relay of the circuit from detecting X as sender, while
allowing sending at reasonable rate even when a 3rd of X 's mimics are slow. More
abstractly, these equations mean that mimics provide covertra�c to each other; that
a node canredistribute high incoming tra�c rates from one mimic to any other mimic;
and that a node with k mimics may have a total outgoing rate k times greater than
its incoming rate, by sending out to eachk mimics at rate max(TI). This last point
implies that an adversary corrupting two or more of a node's mimics can detect this
tra�c ampli�cation, and possibly infer when a node is end-sending or not.

Finally, Tarzan provides a way to learn about all the other nodes in the network
though a simple gossip protocol. Mimics are then chosen deterministically (and in a

39

3. Background and Related Works

veri�able manner, to detect malicious nodes) from the set ofall nodes. Note also that
Tarzan, like the work, in this thesis, works over the Internet but e�ectively assumes
an incomplete topology graph. This is motivated by the need to protect links used to
exchange messages, and the cost of such a protection: the number of links to protect in
a n node complete topology graph isn2, while it is only 6n with the mimics mechanism
(if each node has 6 mimics).

The protocol aims at achieving SA in the same version as in thepresent work, and
at thwarting tra�c analysis. The latter goal is hard to asses s, but seems only par-
tially achieved. In particular, Tarzan does not use traditi onal mixnet-based message
re-ordering techniques, and the onion structure varies in size depending on the position
of the relay in the tunnel (letting each relay estimate their position in the tunnel, con-
trarily to Tor). Indeed, material for per-hop integrity che cking is included at each layer
of the onions. The author study the anonymity of senders witha methodology inspired
from Crowds. That is, they estimate the con�dence (or probability) p of the adversary
in �nding the initiator of a circuit, based in particular on t he information that she has
from the size of the onions. To haveprobable innocence, meaning p < 1=2, the authors
conclude there must be less than 40% of corrupted nodes [FM02, Fig. 7]. However, this
analysis is informal (from a cryptographic point of view), and implies strong assumptions
on the adversary (see Sections5.1.2.aand 6.4 for further discussion on this point).

Lastly, note that Tarzan is not subject to the same attack as mixnets, since the entry
edge of the network is not observable. If the protocol may realise SA in a robust manner
because tra�c analysis is still possible, it at least makes astep towards it: instead of the
�rst relay always breaking SA, as in Tor and cMix, Tarzan introduces some uncertainty
in the detection of senders.

3.3.3. Concluding on Homogeneous Networks

Ensuring relay homogeneity is what realises the homogeneous architecture. But its
implementation seems to put a lot of load on users, and to consume bandwidth, because
of the need of dummy messages and controlled tra�c rates. A homogeneoushigh latency
protocol is likely to be even less e�cient than a mixnet, but c an still be easier of use.
In particular if the synchronous cascade approach of cMix isrejected in favor of a more
�exible mixnet design. Although this gain in �exibility tra nslates in a loss of security
and privacy (meaning that tra�c analysis may become easier), we argue that relay
homogeneity can �ll this gap, by making tra�c analysis much h arder, especially for
external adversaries.

Taking a step back, the particularity of homogeneous networks lies in the active par-
ticipation of all users in order to achieve the anonymity that it provides as a whole. On
the other hand, non-homogeneous networks are meant to provide anonymity as a service,
and do not require much from the user (apart from patience with regards to the added
latency). A homogeneous network is thus a sort of solidaritynetwork, and is in this
sense designed for a public ready to spend resources for the community as a whole. It
is suited for our journalist-informant scenario, and this is the network architecture used

40

3.4. Review of Known Attacks

in this thesis.

3.4. Review of Known Attacks

During the description of low, high, and homogeneous networks, several attacks were
mentioned or referenced. This section reviews existing attacks in more details. The aim
is to obtain a clear view of the threats to anonymity, and of possible defenses. Because a
passive adversary model is considered, only passive attacks are listed here. The list here
is obviously not exhaustive, be it only because new attacks are discovered on a daily
basis.

Passive attacks against anonymity properties mostly rely on observations, collection
of information, and analysis of this information. The goal often comes down to linking
a (link or payload) message with a particular end-sender or end-receiver. In this sense,
most attacks are related to tra�c analysis. Analysis can be based on individual messages,
or on full sessions (that is, on the�ow of messages in communication sessions or in
connection-based protocols such as TCP). Roughly, the sources of information to the
adversary are: the appearance of messages, the timing between messages, and their
number. These information sources may not su�ce by themselves. Typically, a more
advanced attack consists in observingmany3 messages and/or nodes, and byintersecting
the information gathered from these observations. This allows to carry out statistical
analyses, and to check assumptions,e.g. on communication relations. The goal being,
eventually, to break SA, RA, or even completely re-link senders and receivers. Although
this generic description is valid for many attacks, there are of course some network-level
or cryptographic attacks that use di�erent methodologies.

This section begins with a description of what can be learnedby simply looking at the
appearance andbit pattern of messages. The rest of the section describes more advanced
attacks, taking place at the system or network level. In particular, we present the
inherent �aw of non-homogeneous mixnets, which allows to re-link senders and receivers.
The last parts focuses on advanced �ow-based timing analysis and tra�c �ngerprinting
attacks. In conclusion of this section, Table3.1 summarises which of the Tor, cMix and
Tarzan protocols are vulnerable to which attacks, and reviews the privacy goals of this
thesis in light of what was learned.

3.4.1. Attacks based on Appearance of Messages

The most basic source of information that the adversary has is the appearanceof mes-
sages, meaning theirbit pattern , the information they contain, and all cryptographic
material that may be associated to them. Either as a network observer or a corrupted
node, a message's appearance can in particular allow its tracing, and ultimately lead to
�nding the end points of communications.

Firstly, the most trivial breach of privacy is when the message contains information in
the clear about the route or communicants. The worst case being when the identity of

3Polynomially many , to be more accurate.

41

3. Background and Related Works

the end-sender or end-receiver appears, as in the Crowds protocol, where the receivers'
identity is visible to all relay nodes on the path. Another, less trivial case, is when mes-
sages carry information on the route length, on the locationof the relays that process
it on the route, or on the number of passed or remaining hops. Access to such infor-
mation can bring quite a lot of information to the adversary. In particular, Berthold
et al. [BPS01] show how this can greatly degrade privacy in asynchronous free-route
networks. Most anonymous protocols are of course designed to carry in clear only the
minimum necessary for the protocol to work. External observers in particular, often do
not get any information.

Then, another trivial issue arises when a message does not change of appearance as it
is relayed. Whether the message is encrypted or not, if its appearance is the same from
one end of the route to the other, its tracing is trivial. In Cr owds again, relay nodes
do indeed all see the exact same data (encryption is only usedbetweenrelays). In most
anonymous protocols, the appearance of messages is thus changed, even from the point
of view of the relays. This is performed using,e.g. onion encryption or URE.

Still, those changes of appearance may be predictable in some way. In particular, in
mixnets based on onion routing, if the exact same message with the same onion structure
is sent on the same path on two occasions (i.e. in two di�erent batches), it will follow the
exact same sequence of transformations, and thus be easily spotted and traced. A typical
solutions is for relay nodes to discard any already seen messages. Another solution is to
use URE: because of its probabilistic nature, the same incoming message (i.e. the same
ciphertext) will yield a di�erent re-encrypted outgoing me ssage each time.

However, another threat arises with URE, that can be described as recognising a
message based on its encrypted contents. In a protocol wheremessages are simply
encrypted under the end-receiver's public key, and re-encrypted at each hop, a corrupted
end-receiver (coupled with a network observer) can perfectly trace all messages meant to
itself. For that, it needs only to decrypt the ciphertexts in the messages, and access its
contents, that stays constant from the end-sender to the end-receiver. A simple counter-
measure is to add link encryption, making the attack only possible to corrupted relays
working with Bob. Alternatively, messages can be encryptedunder a key other than the
end-receiver's, or under a product of public key. For instance, in the already mentioned
protocol by Huang et al. [HLF12], a cascade mixnet that uses the URE-Elgamal scheme,
a messagem for end-receiverR going through mix nodesM j , j 2 [1; k], is encrypted by
the end-sender asc = Enc(pkR �

Q
j pkj ; m). Each mix node on the path then partially

decrypts and re-encrypts the ciphertext, so that its comes out of the network encrypted
solely underpkR).

Independently from the contents and appearance, messages can be distinguished or
traced based on their sizes. More exactly, there are two dimensions: di�erent end-senders
could provide di�erent sized messages, or messages' size could change as they evolve in
the network. The �rst possibility is especially devastatin g in a batched mixnet: in the
worst case, if messages constituting a batch have di�erent sizes, the whole purposes of
shu�ing is defeated, and each message in the batch can be traced trivially. The second
possibility can be illustrated with the onion structure of t he Tarzan protocol, which
diminishes in size at each hop of the circuit. This leaks information to relay nodes on

42

3.4. Review of Known Attacks

the length of the circuit, and/or on its own position in the ci rcuit (thus coming back to
the problem of leaked hop count). Therefore, anonymous protocols often require that
all messages have the same size, or at least split long messages into �xed-size units (e.g.
512 bytes in Tor). Then, to ensure constant size of the messages as they travel, protocols
either use a �xed-size data structure (e.g. Tor encrypts data in-place); or, add padding
to always match the maximum size of the message on the route. For instance, Mixminion
uses a onion structure that grows in size, but adds padding that even relay nodes can
not distinguish from actual (encrypted) data.

Summing up, an anonymous protocol should at least include the basic elements of
design that: conceal most of the information carried by messages, change appearance of
messages at each hop (preferably in a probabilistic way), and ensure uniform size of all
messages. These should hold both for network observers and (corrupted) relay nodes.

3.4.2. Network Discovery and Relay Selection Attacks

In anonymous networks, homogeneous or not, users must be able to learn about other
nodes in the network. In many protocols, they then choose therelays they want to use
based on their view of the network. There are potential pitfalls in this process: users
may choose corrupted relays, and users may have abiasedview of the network and the
nodes therein.

Choosing one or a few corrupted relays does not automatically mean a breach of
privacy, since anonymous networks take into account and include defenses against this
scenario. However, a protocol such as MorphMix, who lets each relay select the next
hop, is subject to route capture: if at some point, a corrupted relay is selected, it is
likely that the message will then be routed only through other corrupted relays from
the same collusion. Against this, MorphMix includes a collusion detection mechanism,
based on the idea that corrupted nodes within a collusion appear more often together
in anonymous tunnel than honest nodes. Another threat arises when the adversary is
able to place itself in a position where its relays are more likely to be selected by users.
For instance, Tor's standard relay selection biases the users' choices towards relays with
high bandwidth. While it is good for e�ciency and for the func tioning of the network as
a whole, it is likely that the adversary has the required resources to run powerful onion
routers, and capture users' circuits. Recent works show improved anonymity guarantees
for more uniform choices of relays [BMS16].

A second type of threat arises when the user has partial or out-dated information on
the network [DS08]. More generally, when di�erent users have di�erent views of the
network, the adversary can exploit these discrepancies to partition and distinguish users.
In a protocol using directory server [DDM03; DMS04], it may be the case that a serverS
is listed only on directory server D but not on others. The adversary can thus attribute
messages forwarded byS only to users that have queriedD , degrading privacy [DDM03,
Section 7]. The same attack applies if users download only a fraction of the directories.
Another example, applied to completely distributed networks with no directory servers,
can be found in an early design of Tarzan, where nodes learnedonly a random fraction
of nodes in the network. Consequently, the circuit built by individual users could be

43

3. Background and Related Works

attributed to them based on the uniqueness of the information they had learned [DC06;
DS08].

To remedy to the above attacks, Tarzan opted for a full network discovery, at the
expense of decreased e�ciency and scalability. For protocols based on directory servers,
all directories should at least have the same information atall times, and ideally, users
should always download the whole directories (to hide whichnodes they are interested
into). This is the design of directory servers in Mixminion [DDM03] as well as in
Tor [nic12]. Additionally, because directory servers are a target of choice for the adver-
sary, they should be well secured, and monitored (e.g using a reputation mechanism).

3.4.3. Limits of the Mixnet Model

Section 3.2 made a reference to a fundamental �aw of mixnets, especiallysynchronous
ones. That is, mixnets are subject to an attack that allows a complete re-linking of
senders and receivers.

The �rst version of this attack, hereby called the long term intersection (LTI) attack,
is due to Kesdoganet al. [Kes+06]. The authors demonstrate the maximal theoreti-
cal anonymity mixnets can provide using information theory. Their main result states
that an adversary observing the senders and receivers at theedges of the network, can
theoretically perfectly re-link all senders and receivers across all communications, even
if the mixnet is considered a perfectly secure black box. This result is mainly appli-
cable to batched synchronous mixnets, where the mixnet functions in separate rounds.
This mixnet variant was believed the most robust, since attacks had previously been
found against the other types of mixnets, asynchronous ones[DSS04] and continuous
ones [Dan04]. Now, the situation is not as clear, since each mixnet variant has its own
weaknesses.

This theoretical result rests on the fact that not every sender and receivers participate
in each round: sender and receiver anonymity sets di�er fromround to round, and by
intersecting them, the actual mapping between senders and their respective receivers
(the receivers it has communicated at least once in the system) can be completely found.
It is possible to prevent this, by having all senders send a message inevery singlebatch
round, and by broadcasting the output of the mix to all receivers, making sender and
receivers sets always maximal. But this solution is totally impractical: for payload
messages of 4KB andn = b = 10; 000 users, each receiver is given 400; 000MB [Kes+06,
Section 2.2].

The result of Kesdoganet al. is only theoretical because it assumes a computation-
ally unbounded adversary having access to all the observations it could ever need. But
several practical attacks were proposed, broadly following the idea of intersecting obser-
vations. A good history and comparison of practical attackscan be found in [PTO14].
In a nutshell, the �rst attack [KAP02] was computationally expensive (requiring to solve
a SAT instance), assumed very simple sender behavior, and simple batching strategies.
Following works made weaker assumption, always increasingthe accuracy of the attack,
and considering more realistic sender behavior, and more robust batching strategies.
Latest developments study the e�ect of pool-basedbatching strategies (where a message

44

3.4. Review of Known Attacks

may stay in the mix for more than one round) [PTO14] and dummy messages [OTP14]
using a least square errors (LSE) approach, which is the most e�cient one to date.
This approach consists in the adversary making assumptionson the sender-receiver re-
lationships, under the form of probability vectors. After observations, is retained the
probability vector that minimizes the di�erence, in the sen se of LSE, between (i) the
observed output messages on one hand, and (ii) the combination of the observed input
messages with the assumption of the adversary on the other hand. The attack does not
need to enumerate all hypotheses, rather to start from one hypothesis, and from there,
progress towards a local optimum.

Generally, results show ([KAP02, Claim 1], [Dan03b, Equation (4)], [Kes+06, Sec-
tion 5.3], [PTO14, Section VI.C]) that the success of attacks for a �xed senderbehavior
and batching strategy, depends on: the numberr of rounds observed, the total number
of usersn, the batch size b, and the number m of receivers each sender communicates
with. As r augments, the attack's results get more accurate (and are completely ac-
curate when r ! 1). Also, the attack gets easier whenn augments, b decreases, or
m decreases. As an example, the practical attack studied by Kesdoganet al. [Kes+06]
needs no more than 600 observations for its attack to succeed, for n = 200; 000 users,
batch size b = 100, and m = 40. Also, the sender behavior plays a role: discrepancies
among senders behaviors helps the attack. Notably, a senderthat communicates much
more than the others is easier to target [OTP14, Fig. 2]. But the LSE approach works
for any behavior that can be probabilistically modeled. The batching strategy is also
a factor. It seems that pool-based mixes resist better, and that the longer a message
may stay in the pool of a mix, the harder it is to link senders and receivers [PTO14,
SectionVI.D] (at the cost of longer latency in delivery of course).

Because all the above attacks assume that it is possible to observe senders and receivers
post or get their messages from the network, they can not be carried out when SA or RA
is ensured. This is the idea used in Tarzan and homogeneous protocols more generally,
and put forward in this thesis.

3.4.4. Detecting End-Sending and End-Receiving Activitie s

In a non-homogeneous network, observing the network edges allows to detect end-sending
and end-receiving activities trivially. However, even homogeneity is not su�cient in itself,
as already noted in the analysis of Tarzan (Section3.3.2). If the adversary can observe
all the links of a given node, she can see the numbersn i and no of incoming and outgoing
messages of a node during a given time frame. And ifn i > n o or n i < n o, the adversary
concludes that the node end-sent or end-received at least one message. This is a breach
of the SA and RA properties as de�ned in this thesis.

Typically, a protocol prevents these breaches of privacy not only by endorsing a homo-
geneous architecture, but also by introducing dummy messages. As in Tarzan, the idea
is to blind the n i and no values and making them an unreliable source of information for
the adversary. Of course, for that, dummy messages must be indistinguishable from real
messages. However, in Tarzan, dummy messages are (meant to be) di�erentiable from
real messages by relay nodes, and thus have limited e�ect on internal adversaries. In

45

3. Background and Related Works

the worst case, when a node is surrounded by corrupted nodes,the types of dummy link
messagesare completely ine�ective [Boh+04]. This last fact is one of the reasons to be
of Assumption 3, that every node has at least one honest neighbor. Alternatively, some
works use dummyend-to-end messages, indistinguishable from real messages even for
relay nodes (only the end-receiver makes the di�erence). The cost of end-to-end dummy
is greater than simple link ones, and their e�ectiveness is questionable, in particular in
view of the advanced timing and tra�c �ngerprinting attacks described next.

3.4.5. Timing Analysis

Timing analysis, in the general sense, may be the most complex and less understood
class of attacks in anonymous networks. Yet, it is recognised as an important threat,
allowing ultimately to re-link senders and receivers [Dan04; MD05]. It is most e�ective
against low latency protocols, but can also be applied to continuous mixnets. It e�ciency
against batched mixnets is limited, although not null [Zhu+04].

Timing analysis is based on the assumption that a message entering a node at time t
will leave it at a predictable time t + � . This principle can also be ported to a sequence
of nodes, or even by looking at messages entering and leavingthe network (if it is not
an homogeneous one). More generally, timing analysis is conducted on communication
sessions and �ows of several messages, by looking atinter-message intervals: in a low
latency network with no message re-ordering of any kind, if two messages leave some
upstream nodeX with � time di�erence, they will with high probability arrive at do wn-
stream nodeY with time di�erence � � � for a small � . To carry out a timing analysis,
the adversary must be able to observe messages. It is easier to do so is she has cor-
rupted nodes in the network, but in some cases a simple network observer is enough, in
particular, when no dummy messages are used or when network edges are observable.

Practical attacks do not directly use the inter-message intervals, but divide the time
into �xed-size windows and counts the number of message observed during each win-
dow [Lev+04; SW06]. Shmatikov and Wang [SW06] study the possibility of correlating
sparse�ows (that is, link a given �ow entering the network, with an e xiting �ow) in low
latency networks. Sparse �ows have the particularity of alternating noticeable bursts of
tra�c and low tra�c rate (e.g. TCP of HTTP connections). Results show that nearly
all �ows can be correctly re-linked by the adversary. In addition, Levine et al. [Lev+04]
make the experience with a steady tra�c rate, and show that, although the tra�c does
not present signi�cant bursts as in the previous attack, it is still possible to successfully
correlate �ows. Of course, these attacks are more accurate as the number observed of
messages in �ows increases. Danezis [Dan04] extends the attack to continuous mixnets,
where each message is independently delayed a random amountof time. In this case,
the observed inter-message interval is not the same at the entry and exit of the network,
since random delays are introduced. However, the attack still works, because� 0 is a
predictable function of � , that can be estimated from the probability distribution of the
random delays added and the number of relays on the paths. Again, it is possible to
correlate a large portion of entry and exiting �ows.

The presented attacks work because �ows conserve theirtiming signature as they

46

3.4. Review of Known Attacks

traverse the network. And the more sparse the �ow is (with silent phases interleaved
with sudden bursts of tra�c), the more unique its signature i s, and the easier timing
analysis gets. Therefore, defenses against timing attacksmainly consists in disturbing
that timing signature of �ows. One way to do so is to use batched mixnets, perturbing
timing signatures in less predictable ways than continuousones. For works aiming
at low latency, other ideas include defensive dropping[Lev+04], where some dummy
messages are relayed on several hops and dropped randomly atsome point, or adaptive
padding [SW06], where messages are inserted opportunistically in between bursts in the
�ow. Note that homogeneous networks are not subject to end-to-end tra�c analysis
since network edges are not observable, but leaves the possibility of timing analysis by
corrupted nodes along the same (portions of) routes.

3.4.6. Tra�c Fingerprinting and Application Layer Informa tion Leak

The last class of tra�c analysis reviewed in this chapter is tra�c �ngerprinting. It is an
advanced attack, akin to timing analysis, but based on multiple criteria to detect the
signature of a �ow. It additionally uses metrics such as the number of messages, their
order, their size, or any other elements that characterisesa �ow, in addition to timing
information. Such a collection of characteristics is hereby called the �ngerprint of a
�ow. In particular, there may be a lot of information that lea ks from the application
layer. Indeed, even if the contents of application message is encrypted and/or sanitized
of sensible information about the end-sender for instance,the �ngerprint of a SSH �ow
often greatly di�ers from a HTTP �ow; and the �ow for a speci�c web page will be
di�erent than that of another page (depending, notably, on t he additional resources
such as images that needs to be downloaded). This type of attack is a real threat, in
particular to low latency networks and continuous mixnets. Several attacks on the Tor
network have been shown e�ective in practice [Jua+15; Gha16]

There are many practical attacks in the literature, summed up by Ghaleb [Gha16,
Section 2.1], each with di�erent strategies. Most often, attacks are based on machine
learning, where a classi�er must be trained on a set of known �ows. Then, it is given a
�ow from some anonymous protocol, and makes a guess. In Tor, this idea is most often
applied to distinguishing which web pages are visited by users, an attack called website
�ngerprinting [Jua+15], that exploits the di�erences in web pages sizes and resources.
The relations between HTTP �ows can also be leveraged by the adversary: she can use
the fact that when some web page, say,www.example.com/index.html , is visited, the
pagewww.example.com/about.html will be visited shortly after.

It is interesting in this thesis to look at how tra�c �ngerpri nting performs against high
latency networks, such as batched mixnets. Zhuet al. [Zhu+04] are among the few works
that study tra�c �ngerprinting of batched mix nets with seve ral batching strategies
(including the pool-based ones). The authors show that, it is possible to distinguish a
FTP �ow from a �ow of dummy messages. With more than 20; 000 messages in the �ow,
the probability of distinguishing approaches 1. However, these experiments considers an
extremely simple scenario, with solely one mix node, and only two �ows going through it.
Also, the parameters of the batching mechanism is extremelylow: batches are of roughly

47

3. Background and Related Works

b = 10 messages, and the �ring condition consists in �ushing the mix node everyt = 0 :01
seconds. This explains why the studied network is able to handle a FTP �ow, normally
incompatible with high latency networks. In comparison, one of Mixminion's practical
implementations uses a time interval of the order of the minute e.g. t = 15min [Mat11].
In de�nitive, this study mainly shows that low batching para meters leads to insecure
mixnets, and inspires care: batched mixnets may still leak asmall amount of information
on �ows.

Several counter-measures were proposed [Gha16, Section 3.3], in the same idea of
defenses against timing analysis: disturb the �ows' �ngerprints. Most works aim at
doing so while introducing the least latency as possible in the delivery of messages.
The BuFLO mechanism [Gha16, Section 3.3] proposes to make all �ows look the same
(at the cost of some latency and bandwidth), while tra�c morphing tries to prevent
website �ngerprinting by altering �ows to imitate another w eb page. Also, Juarezet
al. [Jua+15] re-use the adaptive padding technique from Shmatikov and Wang [SW06].
Serjantov and Murdoch [SM05] propose to tackle the base assumption made by almost
all tra�c analysis attacks (including timing ones) that all messages of a �ow go through
the same path. By splitting messages from a same �ow, they show that anonymity can
be improved. However, we note that splitting �ows is hard to achieve for connection-
based protocols, such as TCP, which are sensible to messagesorder and latency. But it
is possible for direct messaging, where a�ow is simply a large message split into chunks.

3.4.7. Concluding Remarks on Attacks

All the above attacks were presented in a generic manner. However, it is important to
remember that most of them apply to speci�c types of networks, or are based on explicit
assumptions. For instance, the LTI attack works only if network edges are observable.
Also, attacks can generally be made even more e�ective if theadversary has somea
priori knowledge, or already suspects that some entities are communicating.

Table 3.1 intends to summarise which of the presented protocols (Tor,cMix and
Tarzan) are vulnerable to which attacks. A � 4 � means the protocol resists the attack,
� 7� that it does not. The � ?� for the LTI attack w.r.t. Tor denotes an uncertainty.
Indeed, this attack mainly applies to batched mixnets, but may also work on (non-
homogeneous) low latency networks, by consideringtime windows instead of batches.
More generally, this table is informal, and a thorough study of each attack applied to
each of the three protocols would be needed to validate it.

Taking a step back, these attacks show that preventing (advanced) tra�c analysis in an
e�cient manner is still an open problem. To do so while maintaining low latency seems
near-impossible, and even mixnets, which abandon some e�ciency to gain robustness,
may not be immune to tra�c analysis. In particular, the guara ntees brought by dummy
messages and message re-ordering mechanisms are uncertain(in particular, they can
not be formally proved, as of today), while the burden they put on the network may be
high [DP04; DMS04; OTP14]. Shamatikov and Wang rightfully remark that any defense
is ultimately vain if �ows follow di�erent statistical dist ributions, by stating that �even
small statistical di�erences between packet �ows can be detected if the observation time

48

3.5. Summary: Where this Thesis Stands

Tor cMix Tarzan

A
pp

ea
ra

nc
e

Contents 4 4 4
Hop Count 4 4 7
Enc. Contents 4 4 4
Chg. Appearance 4 4 4
Size 4 4 7

O
bs

rv Senders 7 7 4
Receivers 7 7 7

Relay Selection 7 4 4
LTI ? 7 4
Timing Analysis 7 4 7
Tra�c Fingerprinting 7 4 7

Table 3.1. � Vulnerabilities of Presented Protocols

is long enough� [SW06, Section 5.1]. In this light, the possibly only robust defense
would consist in sending messages at a constant rate (and send dummy messages when
no real messages need to be sent), and thus make all �ow have the exact same �ngerprint.
Actually, this design may be the only one that is provable in the cryptographic sense, as
resisting against any PPT adversary. But this trivial solution is much too costly, even for
high latency networks. The idea, as in the whole �eld of computer security, is ultimately
to �nd a middle ground, where the time, resources, and numberof observations needs
to the adversary is high enough compared to the envisioned use of the network.

In view of all these attacks, where do the SA, RA, SU, MU and TARproperties stand?
Clearly, all attacks ultimately aim at breaking SA and RA. An d for that, they tackle SU,
MU and/or TAR. Ensuring SU prevents, in particular, the tra� c �ngerprinting attack
based on the linking of several HTTP �ows (the one for the web page, plus the ones for
its linked resources). More generally, itsegregatesthe knowledge the adversary acquires
about each session or �ow. The review of attacks also makes the di�erences between MU
and TAR appear more clearly. MU essentially relates to the attacks based on thebit
pattern of messages (described in Section3.4.1), while all the others relate to TAR. This
seems to imply that MU is ensured by cryptographic means and can often be formally
studied and proved, while TAR can not.

3.5. Summary: Where this Thesis Stands

This survey of existing privacy-preserving protocols, andof the di�erent attacks on
anonymous network, puts in light some leads to further improve network users' privacy.
It appears �rstly that ensuring SA and RA, in the strong sense given in this thesis, is
not usually among the primary goals of existing constructions. Yet, for our envisioned
informant-journalist application in particular, it is cru cial to prevent the observation of
end-sending and end-receiving activities. From the example of the Tarzan protocol, it

49

3. Background and Related Works

appears that realising SA and RA implies a homogeneous architecture, and the use of
dummy messages and controlled tra�c rates. However, Tarzan's mimics mechanism does
not seem strict enough, since it still allows a node to suddenly augment its end-sending
rate, making it easy to detect end-senders for the adversary. We propose an adaptation
of this mechanism that abstractly aims at making each node appear as if it was only ever
relaying tra�c for other nodes, even in the presence of corrupted neighbors and external
observers.

Secondly, in order to allow the journalist to communicate with the informant without
learning her identity, we have seen Tor'shidden servicessolution, that makes use of
pseudonyms andrendez-vouspoints. In this thesis, the informant's anonymity w.r.t.
the journalist is ensured by mechanisms inspired from both these techniques.

Lastly, from the review of existing threats to privacy, it ap pears that ensuring the
TAR property in a robust, formally veri�able manner is extre mely challenging or even
impossible. Yet, timing analysis and tra�c �ngerprinting a re serious threats, since
they are stepping stones towards breaching SA and RA. Still,there is hope. Overall,
past works indicate that the most tra�c analysis-resistant networks are the pool-based
mixnets, that come with complex �ring conditions [Mol+03], and where batches com-
ing out of a mix node are not solely composed of messages that recently entered the
mix, but of potentially any message received by the mix sincethe start of the network.
Also, the most serious attacks, timing analysis and tra�c �n gerprinting, often make the
assumption that both edges of the network are observable, which is not possible in a
homogeneous network where SA and RA are ensured. However, the challenge here is to
adapt pool-based mixing to the setting of fully distributed, homogeneous networks.

50

4. The Anonymous Protocol

4.1. Overview . 52

4.2. Routes and Routing Tables . 57

4.2.1. Neighborhood Management 57

4.2.2. Routing Tables . 58

4.3. Sending, Relaying, and Receiving Messages 60

4.3.1. Link Message Format . 60

4.3.2. Creating and Processing a Message 60

4.4. Messages Re-Ordering, Dummy Messages, and Controlled Tra�c Rates 62

4.4.1. Dummy Messages and Controlled Tra�c Rates for SA and RA 63

4.4.2. Integration With Pool-Based Batching . 68

4.5. Constructing the Routes . 70

4.5.1. Ideas and Aim of Topology Dissemination 71

4.5.2. Pseudonyms: Form and Computation 73

4.5.3. Route Proposals in Details 74

4.5.4. The Route Proposal Policy: Accepting or Refusing theRoutes 79

4.6. Oriented Communications: Alice Contacts Bob 82

4.6.1. Intuition . 82

4.6.2. Detailed Description . 83

4.6.3. Analysis . 86

4.7. Summary and Discussion . 87

This chapter presents our homogeneous protocol ensuring sender anonymity (SA),
receiver anonymity (RA), message unlinkability (MU), session unlinkability (SU) and
tra�c analysis resistance (TAR) over the Internet. The secu rity of the protocol is anal-
ysed and proved in Chapter5, while Chapter 6 presents a prototype implementation of
the protocol, and studies its practical performances and privacy guarantees.

At a high level, the protocol is an adaptation of Tarzan [FM02] to the mixnet setting,
preventing the very detection of the actions of end-sendingand end-receiving. It di�ers
from usual sender-built circuits, since instead of building circuits on-the-�y and when
needed, circuits are long-lived and built in a proactive manner. That is, the protocol
comprises atopology disseminationphase, where the nodes learn about their extended
neighborhood, and ultimately every other node. Also, the protocol consists in a shift in
terms of identity management: to enable end-receivers to beanonymous even w.r.t. to
end-senders, nodes are identi�ed in the network withrelationship pseudonyms[PK01].

51

4. The Anonymous Protocol

The chapter is organised as follows. The �rst section is a didactic overview of the
protocol, e�ectively summing up the whole chapter. The overview also presents the mo-
tivations and consequences of using relationship pseudonyms. Building on the overview,
and following a similar outline, the complete protocol presentations spans over Sec-
tions 4.2 to 4.5. Section4.2 begins by presenting the routing tables as obtained after the
topology dissemination phase, and Section4.3 details how these tables are used, and the
cryptographic processing of messages by nodes. Section4.4 is devoted to the description
of the dummy messages, controlled tra�c rates and message message re-ordering mecha-
nisms, that play an important role in ensuring SA, RA, and TAR . Section 4.5 describes
in details the topology dissemination, and the construction of routes and routing tables.
Section 4.6 presents the �nal building block, oriented communications, where an infor-
mant anonymously contacts a journalist by leveraging the properties of the pseudonyms.
Finally, Section 4.7 summarises some of the interesting properties of the protocol, and
concludes

4.1. Overview

This section is a summary and an introduction to the full protocol description. It is
organised as the whole chapter, and acts as a condensed version of it.

The protocol works over the Internet, and is based on a homogeneous architecture.
It assumes asparseunderlying topology graph [Dan03a] (an incomplete but connected
graph), where each node knows only its direct neighbors' IP address. How this underlying
topology graph is constructed is out of the scope of this work.

The protocol belongs to the high latency category, for it aims at TAR and uses re-
ordering techniques for that, under the form of pool-based mixing. It can be described
as a restricted-route mixnet [Dan03a] (i.e. not a cascade, but not a free-route network
either), and functions in an asynchronous manner. The routes are long-lived circuits
built starting from end-receivers. A circuit relates to only one end-receiver, but several
end-senders share the same circuit. Neither end-senders, relays, or end-receiver know
which nodes are part of a given circuit: the insider's knowledge is limited to the previous
and next hop. The protocol encrypts messages under aproduct of public keys (including
the end-receiver's public key), uses URE to change the appearance of messages, dummy
messages to prevent the observation of the network edges, and controlled tra�c rates
to protect against corrupted neighbors. Last but not least, nodes designate each other
using pseudonyms instead of their IP addresses or real-world identities.

Relationship Pseudonyms

The protocol proposes a shift from traditional identity man agement, by making nodes
designate each other withrelationship pseudonyms[PK01]. Therefore, in a network of n
nodes, each node hasn � 1 anonymous network identities; and nodesX and Y designate
the same end-receiver nodeR under two completely di�erent and unlinkable pseudonyms.
This design choice, along with the goals of SA, RA, MU, SU and TAR, greatly impacts

52

4.1. Overview

the way the protocol is built, and implies the need to introduce mechanisms that are
non-standard w.r.t. previous works.

This choice is motivated by the need for nodes to be reachablewhile staying anonymous
even from the end-senders. In the considered informant-journalist scenario, this enables
the informant to receive messages from the journalist, while remaining anonymous even
to the latter. In terms of functionality, these pseudonyms can be seen as a stronger
version of Tor's hidden services, where the end-sender doesnot know the real-world
identity of the end-receiver it is communicating with.

Relationship pseudonyms provide better anonymity than traditional ones, which im-
plies that a node is known by every actor in the network under the same unique
pseudonym. It is the case with the pseudonyms used by receivers hiding behind hid-
den services in Tor, or those used by Bitcoin walled addresses [Nak08]. Indeed, with a
traditional pseudonym, all the actions of a given node can belinked together. Ultimately,
this allows pro�ling and easier de-anonymisation [CKK05]. On the other hand, relation-
ship pseudonyms make coordinated attacks from several actors in the network harder to
carry out. Additionally, once a traditional pseudonym is de-anonymised by the adversary
A , the latter can publicly announce the linking between the pseudonym and real-world
identity. With relationship pseudonyms, it is not that simp le, since the relationship
pseudonym used byA is meaningful only to herself: announcing publicly who is hiding
behind that pseudonym does not give information to other nodes. Of course, relation-
ship pseudonyms do not prevent de-anonymisation in themselves. Rather, they limit the
consequencesof de-anonymisation. Actually, endorsing relationship pseudonym is a way
to attest that some nodes will inevitably be de-anonymised at some point, despite the
best e�orts put in the design of the protocol, and to introduce a form of damage control.
Indeed, even provably secure protocols are subject to de-anonymisation (in particular,
by attacks out of their model). For instance, even though mass de-anonymisation of Tor
user is still believed impossible, targeted ones are largely achievable.

In this work, the relationship pseudonym (or anonymous network identity) used by
node X to designate end-receiver nodeR is denoted PSX ! R . These pseudonyms are
designed to be cryptographically secure, meaning at the very least that the real-world
identity of R can not be found from PSX ! R , and two corrupted nodesX and Y should
not be able to compare their pseudonyms,i.e. PSX ! R should beunlinkable to PSY ! R .
Section 4.5.2 provides a more detailed de�nition of pseudonyms. To the best of our
knowledge, the use of relationship pseudonyms as de�ned in this work is new in secure
messaging, although they have been studied as part of various privacy-enhancing identity
management frameworks [CKK05; AG12].

There are consequences to this choice of identity management on the design of the
protocol. Firstly, particular care is taken to avoid using any network-wide identi�er ,
i.e. the protocol avoids to use any piece of data that would be usedby the whole network
to designate the same node. In particular, the public key of anode is considered as a
network-wide identi�er. Thus, the advertising and direct u se of public keys must be
avoided or circumvented. Also, circuits can not be built by end-senders that freely
choose their relays, since they do not know the IP address of the end-receivers they want
to address. Rather, circuits must be built starting from the end-receiver, during a phase

53

4. The Anonymous Protocol

of topology dissemination.

Routes and Routing Tables

Every anonymous network protocol has routing tables, even if they are implicit. In the
Tor protocol, for instance, nodes store mappingsh(ORprev ; cidprev); (ORnext ; cidnext)i ,
often accompanied with various cryptographic tokens. The packets abstractly consist in
a circuit identi�er and some (encrypted) payload data. The circuit identi�ers cid are
what allow the relay node to know where to send a message next.

In this work, routing tables additionally contain the pseud onym of the end-receiver
that circuits lead to. This pseudonym is not used for relaying messages, but for end-
sending. Indeed, di�erent nodes do not designate a given end-receiver with the same
pseudonym, thus it is not possible to route messages based onpseudonyms. Note that,
even though we aim at concealing the IP address of end-receivers, it is unavoidable to
make the IP address of the next hops appear in the clear in order for the protocol to
function as an Internet overlay.

In de�nitive, routing tables entries and packets in this pro tocol, in their simplest form,
respectively consist of:

h(IP prev ; cidprev); PSX ! R ; (IP next ; cidnext)i and hcidnext ; datai

Sending, Relaying, and Receiving Messages

Routing tables are used by nodes in their activities as end-sender, relay, and end-receiver.
But several mechanisms are put into place to ensure SA, RA, SU, MU and TAR.

Firstly, to (partially) ensure MU, and TAR, link encryption and URE are used. That
is, similarly to several existing works, circuit identi�er s are encrypted with a SKE key
shared by neighbors, obtained by a DHKA run at network setup. This prevents ex-
ternal adversaries from knowing which messages belong to which circuit. While circuit
identi�ers change at each hop, the payload does not. The payload is thus encrypted sep-
arately from the circuit identi�er, and its appearance is changed using URE. Although
URE does not seem to integrate well with the traditional client-server architecture, in a
homogeneous setting, it has several advantages over onionsstructures. It allows to sim-
ply encrypt payload a m under some (product of) public key(s), and have relay nodes
re-encrypt the ciphertext at each hop, without even needingto know these public keys.
In regards of the pseudonyms, it also avoids the advertisement of public keys. However,
URE is used in a manner that di�ers from past works. Indeed, the presence of a topology
dissemination phase allows nodes to learn adequate encryptions of one, thus removing
the burden of always sending full URE-Elgamal ciphertexts (i.e. a single Elgamal cipher-
text is routed through the network, instead of two). Also, to prevent the URE-speci�c
attack presented in Section3.4.1, payloads are actually encrypted under aproduct of
public keys, and each relay node on the route divides out its own key.

More speci�cally, during the topology dissemination, eachnodeX obtains a ciphertext
coneX ! R = Enc(pkZ1 � pkZ2 � : : : _pkR ; 1) towards each nodeR, i.e. the value 1 encrypted
under the product of all the keys of nodes along the route betweenX and R. With this,

54

4.1. Overview

X can encrypt a payload m by leveraging the homomorphic properties of the Elgamal
scheme. Namely, it computesPlainMult(coneX ! R ; m). With the same ciphertext coneX ! R ,
X can also re-encrypt any ciphertext that it relays for other end-senders. Note that
encryptions of one, contrarily to public keys, do not constitute a network-wide identi�er,
since there are many possible encryptions of one for any given public key.

The above elements of design mainly participate in ensuringMU. To ensure TAR, mes-
sages are additionally re-ordered during their forwarding, using techniques from mixnets.
Here, we chose to usetimed dynamic pool from Mixmaster [Mol+03], for its robustness
to tra�c analysis. However, instead of maintaining one global pool of messages, a node
maintains one pool for each of its neighbors. Consequently,every tP seconds, a node
checks ifall its pools have enough messages in them, and if so, �res the mixby sending
a random fraction of each pool to the corresponding neighbor.

Finally to ensure SA and RA, in addition to endorsing a homogeneous architecture,
dummy messages and controlled tra�c rates are used, similarly to Tarzan. Here, how-
ever, we pose more constraining rules, aimed at making a nodeappear to link-send as
many messages as it link-receives,i.e make every node appear only as arelay of traf-
�c. Basically, this translates into compensating the excess of link-received messages by
sending out one dummy messageto each neighbor. And similarly for the excess of link-
received messages. Ultimately, we show that these constraints prevent the detection of
sending and receiving activitieseven when only one neighbor of the node is honest.

There is one question left, however: for a given informant Alice that wants to commu-
nicate with a speci�c journalist Bob, how does the informant �nd a route towards that
journalist? Indeed, the informant's routing tables contain no information linkable to the
real-world identity �Bob�. Said otherwise, routing tables leaves only the possibility of
completely anonymous communications, where end-senders and end-receivers have no
idea who they are communicating with. This may be su�cient fo r some applications
such as anonymous �le sharing or online gaming, but not for the informant-journalist
scenario. Thus, the protocol also enablesoriented communication, a way for Alice to
contact Bob speci�cally, by leveraging the properties of pseudonyms and the way they
are constructed. The proposed solution is for Alice and Bob to use anindirection node
I in the network: Alice has the real identity of Bob, and interacts with I to compute I 's
pseudonym towards Bob. During the interaction, care is taken to separate the knowledge
between Alice and the indirection node, so that neither Alice nor the indirection node
can link Bob to its pseudonym(s).

Constructing the Routes

Abstractly, topology dissemination is quite standard: as in every self-discovering network,
nodes start by advertising their presence, and when they learn about other nodes, spread
their knowledge. That is, a nodeX knowing a route towards some other node advertises
it to its neighbor, essentially meaning �I can relay towards this end-receiver�, even if X
may not know the actual identity of this end-receiver. Such an advertisement is hereby
called a route proposal (one route is advertised at a time), and each node begins by

55

4. The Anonymous Protocol

self-proposing. At the outcome of the topology dissemination, nodes may have several
routes towards the same end-receiver, and thus several routing table entries for a same
pseudonymPSX ! R . Additionally, at network initialisation, each pair of nei ghbor nodes
perform a DHKA and derives keying material to later encrypt circuit identi�er and
diverse routing information.

During a route proposal, several tasks are carried out: (i) the exchange of a circuit
identi�er, (ii) the communication of the adequate encrypti on of one coneX ! R used to
encrypt payloads, and (iii) the computation of the pseudonym PSX ! R , used by X
to designate end-receiverR. This pseudonym computation actually consists in a two-
round (three-message) exchange, whereX and R run a secure multi-party computation
(SMPC). Each nodeX may encounter several route proposals for the same end-receiver
R, and must always obtain the same pseudonymPSX ! R . Thus, pseudonyms can not be
simply generated and handed over by the end-receiverR. Instead, the value ofPSX ! R

is determined by a secret ofX , srcX , and a secret ofR, dstR , respectively representing
the identity of X as end-sender, and that ofR as end-receiver.

Because the end-receiver must be involved in pseudonym computations, messages must
make areturn trip betweenX to R for a route proposal to be completed. This is similar
to the telescopic construction of circuits in Tor, with the d i�erence that the construction
starts from the end-receiver. This is depicted in Fig. 4.1, where R �rst self-proposes
to X (solid lines in the �gure), requiring communications only between X and R since
they are direct neighbors in the topology graph. Then,X proposes this route towardsR
to Y (dashed lines in the �gure), and must act as an intermediary node helpingY and
R compute PSY ! R . This process goes on, e�ectively using the already existing routes
to extend them by one more hop. Note that, in the example, payload messages will
eventually then �ow from Y towards R, i.e. in the opposite direction compared to the
propagation of the route proposals.

RXY... (1)
(2)

(2)

(3)(3)

(3)

Figure 4.1. � Propagation of Route Proposals Relating to End-ReceiverR

The circuits are built so that each node only knows its previous and next hop: even
the end-receiver does not know the sequence of nodes constituting the circuit, nor its
length. More generally, to ultimately prevent the adversary from breaking SA and RA,
the topology dissemination phase is made as oblivious as possible, in order to conceal
the constructed routes. For that, route proposals ful�ll several security properties. In
particular, self-proposals and relayed ones are indistinguishable. Also, routing messages
involved in route proposals are actually mixed and re-ordered along with payload and
dummy messages, preventing in particular the tracing of thereturn trip during the
computation of pseudonyms.

This concludes the overview of the protocol. In the remainder of this chapter, the

56

4.2. Routes and Routing Tables

complete protocol presentation builds on this overview. It roughly follows the same out-
line (routing tables, messages processing, and construction of routes), with the exception
that oriented communications are presented last, once all the other components of the
protocol have been described.

4.2. Routes and Routing Tables

The present section �rst reviews the keying material sharedamong neighboring pair of
nodes. In a second time, it presents the contents of the routing table of a node in small
example network.

4.2.1. Neighborhood Management

Since the protocol works over the Internet, any pair of nodescan theoretically be neigh-
bors, since any node can directly communicate with any other(speci�c restrictions due
to e.g. NAT set aside). However, we deliberately restrict the direct communication
partners of nodes, and assume that the underlying topology graph is connected but in-
complete. More exactly, the topology graph is consideredsparse, in the terminology of
Danezis [Dan03a], which means that nodes only have a few neighbors compared to the
total number of nodes in the network. There are two main reasons for this. Similarly to
Tarzan, the protocol uses dummy messages to conceal sendingand receiving behavior.
But using dummy messages on alln2 links of the complete graph would be too costly.
Secondly, this avoids nodes to disclose their IP addresses and their participation in the
network to all other nodes, as noted by Clarkeet al. [Cla+10]. Indeed, in a protocol
where all nodes learn about all others, it is extremely easy to check the participation of
a particular individual in the network: it is su�cient to run a node. In our case, each
node only learns about the presence of a few (e.g. logn) other nodes. Similarly as in
a variant of Freenet [Cla+10], a node can for instance only connect to trusted nodes,
realising a friend-to-friend network, and thus protecting the node's real-world identity.
How these neighbors are selected in practice is out of the scope of this thesis.

Note that the attack against Tarzan, which relies on the fact that a node only builds
circuits using the few other nodes it knew, does not apply here. Indeed, in the present
protocol, nodes do not select their routes, they are constructed by the network as a
whole.

At the start of the network, each node performs a DHKA with each of its neighbors.
This assumes that all nodes agree on a speci�c groupG. For simplicity, we assume
that the description of G (i.e the terms q and g) are publicly known. From the shared
secret, they derive cryptographic materials. Namely, using a secureKDF , nodes generate
two symmetric keys kXY i and kYi X (one for each direction on the link) suitable for a
block cipher such as AES, along with the necessaryIVs. During the network lifetime,
neighbors then perform a new DHKA periodically, and generate new keying material.
This prevents the long-term compromise of link keys.

57

4. The Anonymous Protocol

4.2.2. Routing Tables

During topology dissemination, a nodeX (not necessarily neighbor to nodeR) generally
receives and possibly accepts several route proposals towards each nodeR. It also
proposes several routes towardsR as well. The nodes' routing tables at the outcome of
topology dissemination di�er depending on which node proposed, accepted, or refused
which route proposals: the route proposal mechanism is probabilistic (see Section4.5.4).
A concrete example of constructed routes is depicted in Fig.4.2 and Fig 4.3. The �rst
�gure depicts an example network centered around a nodeX and its neighborsYi , and
the second shows the routing tables entries of nodeX , regarding end-receiverR only.
There are two entries, meaning thatX has two di�erent routes towards R. In Fig. 4.2,
the routes are depicted along with the circuit identi�ers. T he plain arrows correspond
to the �rst route, and the dashed ones to the second. Note thatthe routes shown are
only those towards R, and represent one con�guration among many possible outcomes
of topology dissemination in the example network.

X

Y1

Y2

Y3

Y4

Y5

Z1

Z2

R

cid
2

cid3

ci
d 4

cid
1

cid
0
1

cid
5

Figure 4.2. � Example Network

Prev. hop PS cone cprop Next Hop
Y2; cid2

Y3; cid3

Y4; cid4

PSX ! R Enc(pkY1 ;Z 1 ;R ; 1) Enc(pkY1 ;Z 1 ;R ; dstR) Y1; cid1

Y1; cid0
1 PSX ! R Enc(pkY5 ;Z 2 ;R ; 1) Enc(pkY5 ;Z 2 ;R ; dstR) Y5; cid5

Figure 4.3. � Routing Table of Node X towards R

This example actually contains a lot of information. We will �rst look at each term
in X 's routing table, then analyse the depicted routes. The nextsubsection shows how
tables are used for sending, relaying and receiving messages.

4.2.2.a) Terms in the Routing Tables

The previous hopand next hop �elds are quite self-explanatory. The nodes are denoted
with capital letters, e.g. Y , and can be understood as their IP address or their real-world

58

4.2. Routes and Routing Tables

identity (since the two are assumed publicly linked in Assumption 1). When X receives
a link message with a circuit identi�er present in a previous hop�eld, it must forward
accordingly to the node and with the circuit identi�er of the corresponding next hop
�eld. There can be several previous nodes (and circuit identi�ers) for a given routing
table entry, but there can be only one next hop. That is, forwarding is deterministic:
once a message is sent on a route, the path it is going to take inthe underlying topology
graph is fully determined. This avoid issues with routing loops, as described in the next
paragraph. The PS �eld contains the pseudonym used byX to designate end-receivers.
It is used along with the next hop �eld in its activities as an end-sender. The true utility
of pseudonyms appears later, during the realization oforiented communications (see
Section 4.6). The cone �eld is the encryption of one used to encrypt payload messages
that X sends, and to re-encrypt the onesX relays. It is encrypted under a product
of public keys, wherepkZ1 ;:::;Z n is a shorthand for pkZ1 � pkZ2 � : : : � pkZn . The nodes
Z1; Z2; : : : ; Zn are the nodes on the route betweenX and R. The �rst of the two entries,
for instance, relates to a route going throughY1; Z1 and R, and thus cone is encrypted
under pkY1 � pkZ1 � pkR . Lastly, the cprop �eld stores a ciphertext only used during the
topology dissemination, for X to make route proposals towardsR. It encrypts dstR , a
value secret toR and used to compute pseudonyms that nodes use to designateR.

Note that, even though the routing table entries in the example relate to end-receiver
R, the IP address or identity of R never appears in them. Actually, X does not know
that these entries relate to R.

4.2.2.b) Routes Depicted in The Example

There are two main routes in the example. The one corresponding to the �rst routing
table entry is drawn with plain arrows, the other with dashed ones. The route relating
to the �rst entry of X 's routing table starts with either Y2, Y3, or Y4, goes throughX ,
and then Y1, Z1 and �nally arrives to R. The second one starts withY1, goes through
X , Y5, Z2 and �nally R. Additionally, a third route is depicted, showing that Y4 also
has a second route that directly reachesR through Y5 and Z2.

Circuits are unidirectional , meaning that payload messages are only meant to �ow
from X to R (but as we will see, it is necessary to let some routing messages go up the
circuits). Circuits are also shared by nodes that compose them. Indeed,X may use its
�rst routing table entry, and send its own messages toR through Y1 and cid1. But this
link X cid1��! Y1 may also be used byX to forward messages thate.g. Y3 sends toR via
X . Consequently,Y1 can not know if a message on this link, with this circuit identi�er,
comes fromX or from upstream nodes on the circuit (here,Y2, Y3, or Y4). Abstractly,
this participates in achieving SA and MU-session: circuitsdo not relate to one speci�c
end-sender (and thus do not relate to any end-sender-receiver pair neither). In addition,
nodes do not know who is part of the circuit, apart from their previous and next hops.

In the example network, X is not the only node with several routes towardsR. Y4

can reachR through sequenceX -Y1-Z1, or through Y5-Z2. And Y1 has a direct route
via Z1, but also an indirect one via X , Y5 and Z2. This shows that constructed routes
may not always be the shortest ones. Also, in the example,X can reachR through Y1

59

4. The Anonymous Protocol

with cid1, and vice-versa (with cid0
1). This kind of situation is allowed in the network,

and does not create routing loops, since circuits are separated and unidirectional.

4.3. Sending, Relaying, and Receiving Messages

With their routing tables, nodes have all the elements to send and relay messages. This
section describes how nodes process messages from acryptographic point of view, whereas
the message re-ordering and use of dummy messages is the focus of the next one.

4.3.1. Link Message Format

The packet format of a link message carrying a payload message m for end-receiverR
and meant to go through relay nodesZ1; Z2; : : : ; Zn is as follows:

hfpayload kcid gk ; Enc(pkZ1 ;:::;Z n ;R ; m1); Enc(pkZ1 ;:::;Z n ;R ; m2)i (4.1)

That is, a packet begins with a header consisting of an AES encryption of a circuit
identi�er accompanied by a payload �ag, and two Elgamal ciphertexts. All link messages
between any two nodes have this form, meaning each and every single message part of
the protocol (including link messages that carry routing information). This means that
all link messages have the same size and random-looking appearance (allowing to later
batch them and shu�e them together). The �ag here has value payload , but is also
used to signal routing information or dummy messages. The header is constructed to
always be� = 128 bits long, i.e. one AES block. The symmetric keyk used to encrypt
the header is the link key for the direction of the link message (e.g. kXY for a link
message sent byX to its neighbor Y). Every message containstwo Elgamal ciphertexts.
Indeed, on several occasions, a second ciphertext is needed: for some routing messages,
the second ciphertext is an encryption of one to perform (universal) re-encryptions; and
during oriented communications, the �rst ciphertext conta ins the session identi�er (that
allows to link all payload messages in the session). If thereare cases where a second
ciphertext is not needed, an encryption of random data should still be included.

It is known that the Elgamal scheme can only encrypt group elements, i.e. elements
from G. To encrypt a piece of datam 2 f 0; 1g� with the Elgamal scheme, anencoding is
necessary to transformm into a group element. Yet, this encoding is known to degrade
(or even take away) the homomorphic property of the scheme. In this work, this is
not an issue: the homomorphic properties of the scheme are necessary only forrouting
messages. Thus, the protocol is built so that all plaintexts involved in routing messages
are directly taken in G. More information on this matter can be found in Appendix A.

4.3.2. Creating and Processing a Message

This section describes how a node encrypts a given payload message, and how it is then
processed and relayed to its end-receiver. For that, we de�ne the following primitives,

60

4.3. Sending, Relaying, and Receiving Messages

for c = Enc(pk; m; r) and cone = Enc(pk;1; r one):

ReEncone(cone) := ScExp(cone; r 0) with r 0 $ Zq

= (cone
r 0

0 ; cone
r 0

1)

= Enc(pk;1; r one � r 0)

ReEncnopk(cone; c) := CtxtMult (c;ReEncone(cone))

= (c0 � cone
r 0

0 ; c1 � cone
r 0

1)

= Enc(pk; m; r + r one � r 0)

Encnopk(cone; m) := PlainMult(ReEncone(cone); m)

= (gr one�r 0
; m � hr one�r 0

)

= Enc(pk; m; r one � r 0)

The Encnopk operation leverages thePlainMult homomorphic operation of the Elgamal
scheme, and allows a node to encrypt a plaintext using an encryption of one, and without
a public key. The ReEncone and ReEncnopk are actually the atomic operations realised in
the UReEncprimitive. Indeed, the latter can be expressed as:

UReEnc(C = (c; cone)) =
�
ReEncnopk(cone; c); ReEncone(cone)

�
(4.2)

In contrast with other protocols that use URE, the UReEncprimitive is split . Indeed,
in the present protocol the topology dissemination phase allows to distribute the encryp-
tions of one. As a result, in the protocol, an Elgamal ciphertext does not always need to
be accompanied with an encryption of one (as it would be in theURE-Elgamal scheme).
In addition to saving bandwidth, this optimisation also all ows nodes to generate many
re-encryptions of one in an asynchronous and pre-emptive manner, so that they need
only to perform one CtxtMult operation during the actual forwarding of messages.

With these primitives, given a payload messagem = m1km2 and a end-receiver's
pseudonymPSX ! R , X proceeds in the following way to sendm in the example network
of Fig 4.2. First, it selects one of its two routing table entries for PSX ! R at random.
Let's assume that X chooses its second routing table entry. For this case, Fig.4.4
describes the sequence of link messages fromX to R. The involved Elgamal ciphertexts
are processed as follows. First,X gets the ciphertext coneX ! R = Enc(pkY5 ;Z 2 ;R ; 1) from
its routing table entry, and computes:

c1 Encnopk(coneX ! R ; m1)

c2 Encnopk(coneX ! R ; m2)

X sends these ciphertexts toY5. Upon receiving them,Y5 �nds coneY5 ! R = Enc(pkZ2 ;R ; 1)
by a table lookup on previous hop (X; cid 5). It then partially decrypts c1 and c2, and
re-encrypts them:

c0
1 ReEncnopk(coneY5 ! R ; Dec(skY5 ; c1))

c0
2 ReEncnopk(coneY5 ! R ; Dec(skY5 ; c2))

61

4. The Anonymous Protocol

Y5 then forwards the ciphertexts to Z2, and the process repeats until it reachesR. The
partial decryption carried out by relay nodes can clearly beseen, ensuring that at the
last hop, the Elgamal ciphertext are simply encrypted underR's public key. This partial
decryption and re-encryption of relay nodes is very similarto the processing that Huang
et al. [HLF12] apply in their own protocol.

X ! Y5 : f payload kcid5 gkXY 5
; Enc(pkY5 ;Z 2 ;R ; m1)

| {z }
c1

; Enc(pkY5 ;Z 2 ;R ; m2)
| {z }

c2

Y5 ! Z2 : f payload kcid0gkY5 Z 2
; Enc(pkZ2 ;R ; m1)

| {z }
c0

1

; Enc(pkZ2 ;R ; m2)
| {z }

c0
2

Z2 ! R : f payload kcid00gkZ 2R
; Enc(pkR ; m1); Enc(pkR ; m2)

Figure 4.4. � Sequence of Link Messages fromX to R

In terms of security, the above processing of messages participates in ensuring MU-
tracing (and RA to some extent, since R's public key is never used). First note that,
although it does not appear explicitly, the management of the IVs for the AES encryp-
tions ensures that all link messages between neighboring nodes always exhibit a di�erent,
random-looking header, by using a di�erent IV for each message. Then, for the Elgamal
ciphertexts, note that care is taken to re-encrypt the cone ciphertext before every use,
thus e�ectively emulating the UReEncprimitive, and allowing to re-use Golle et al.'s USS
security property. This intuitively means that ciphertext s change at each hop in such a
way that they are not recognisable, even by the end-senderX . Then, because plaintexts
are encrypted under aproduct of public key (similarly to Huang et al. [HLF12]), rather
than solely under pkR , the protocol resists the re-encryption speci�c attack described
in Section 3.4.1. Finally, by the probabilistic nature of the Elgamal scheme, there are
many encryptions of one for a given (product of) public key(s); and because Elgamal
ciphertexts do not leak which key(s) they are encrypted under since the scheme ensures
key-privacy, encryptions of one do not act as a network-wideidenti�er.

4.4. Messages Re-Ordering, Dummy Messages, and
Controlled Traffic Rates

The previous section only presents the cryptographic processing of messages, and how to
ensure MU. This section is complementary: it presents countermeasures against network-
level attacks, ultimately seeking to ensure TAR, SA, and RA. This is performed by a
conjunction of three tools: message-reordering, dummy messages, and controlled tra�c
rates.

These three tools are interdependent, and must be presentedtogether. In particular,
as noted by Diaz and Preneel [DP04], the policy for producing and emitting dummy
messages has to be designed in conjunction with the message re-ordering mechanism.

62

4.4. Messages Re-Ordering, Dummy Messages, and ControlledTra�c Rates

Moreover, as in the Tarzan protocol, the controlled tra�c ra te mechanism goes hand
in hand with the production of dummy messages as cover tra�c for a node's neighbors.
Here, message re-ordering is performed using a variant of the timed dynamic pool strategy
used by the Mixmaster protocol [Mol+03], but adapted to the homogeneous, fully dis-
tributed setting. On the other hand, dummy messages and controlled rates are inspired
from the Tarzan protocol, but are adapted to provide more robust security guarantees.

This section �rst presents a thorough analysis leading to strict rules that a node must
follow to ensure SA and RA, using dummy messages and controlled tra�c rates. In a
second time, we present how to implement these rules in accordance with the message
re-ordering mechanism.

To avoid confusion, the following de�nition formally makes the distinction between
real and dummy messages. Recall also De�nition8 which makes the di�erence between
sender and end-sender (and likewise for receivers). These terms are used extensively in
what follows.

De�nition 16 (Dummy and Real Messages). A dummy messageis a link message
carrying no payload nor routing information, and not meant to be relayed further than
the link on which it is sent. A real messageis de�ned in opposition, as a link message
carrying a payload or routing message which is meant for a speci�c end-receiver.

A dummy message from nodeX to its neighbor Y consists in the following, for r1;
r2 $ G: D

f dummygkXY
; Enc(pkX ; r1); Enc(pkX ; r2)

E

4.4.1. Dummy Messages and Controlled Tra�c Rates for SA and R A

One of the features ensuring the security of the protocol is that nodes conceal their own
tra�c (messages they end-send or end-receive) within the tra�c of their neighbors. This
realises a homogeneous architecture. Yet, a homogeneous architecture is not enough.
First, because the protocol does not make any assumption on the tra�c load in the
network, it is possible that a node X does not get any tra�c from its neighbors for
a certain period of time, and thus no cover tra�c. Then, even i f there is a lot of
tra�c passing through X , a network observer can still count its incoming and outgoing
messages, and breach SA and/or RA, as exposed in Section3.4.4.

This section shows how to ensure SA and RA, by preventing the observation of end-
sending and end-receiving activities. For that, we presentan analysis of the threats
posed by network observers and by (collusions of) corruptedneighbors, and how dummy
messages and controlled tra�c rates can protect against them. These two kinds of
adversaries call for di�erent approaches: a global observer sees all links a node has with
its neighbors, but can not distinguish a dummy message from areal one; while corrupted
neighbors do not see all the links of a node, but they detect dummy messages that it
sends to and receives from them. This section progresses in incremental steps, building
up towards a solution that ensures SA and RA against both types of adversaries at the
same time.

63

4. The Anonymous Protocol

4.4.1.a) A First Step With Network Observers

We �rst assume that the adversary is only a global network observer. For a given target
node X , this means that every incoming and outgoing link message ofX , to or from
any neighbor, is visible to the adversary (even though they are protected by encryption).
It is assumed that end-sending is detected by the adversary when the number of (real)
incoming messages ofX , noted I , is lower than the number of its outgoing messages
O. Conversely, end-receiving is detected whenI > O . The goal is thus that, from the
adversary's point of view, I seems to be equalto O, i.e. to make X appear as a simple
relay pipe.

First of all, note that, without any particular addition to t he protocol, I and O can
be made equal, ifX end-sends a message when and only when it end-receives one. This
however puts extreme constraints on the nodes and on the network as a whole, and is
highly impractical.

To provide more �exibility, dummy messages are used. By the properties of the AES
and Elgamal schemes, observers can not distinguish betweendummy and real messages.
Thus, to perturb their observations of the numbersI and O, nodes can send dummy
messages. But there must be a speci�c strategy in the sendingof these dummy messages,
a policy that makes I and O appear equal. In particular, simple strategies such as
randomly sending dummy messages from time to time, or sending one everyt seconds
exactly, are not so useful. Indeed, a basic statistical analysis can be enough for the
observer to work around such simple policies. Consequently, the dummy message policy
must instead depend on pastand future values of I and O.

Hereby, in accordance with the message re-ordering mechanism presented later, we
divide time into discrete time intervals, corresponding to the batching rounds. The goal
of the dummy message policy thus becomes that, in each round and for each node,I = O
from the point of view of the adversary. Against mere network observers, and without
taking corrupted neighbors into account, this means that in round r : (i) a node can
end-send only if it received at least one dummy message from one neighbor in the same
round, and (ii) a node must send one dummy message to one neighbor when it end-
receives in roundr . In point (i), the controlled tra�c rates mechanism begins to appear:
a node must retain messages it wants to end-senduntil some condition is satis�ed. To
be complete, the policy should include a third point, brie�y mentioned earlier: (iii) a
node can also end-send if it end-received in the same round.

There is one pitfall that immediately poses a problem in this basic policy. An ini-
tialisation issue arises: which nodeX will send the �rst dummy message(s), that will
allow its neighbor(s) to end-send? More generally, how to prevent the network from
stalling because no node emits dummy messages to any neighbor? This means that the
policy must ensure that each node provides enough dummy messages to its neighbors.
This idea is included in our �nal solution, built up in subsequent sections. Before pre-
senting it, however, the next section considers the impact of corrupted neighbors on the
observations and comments made so far.

64

4.4. Messages Re-Ordering, Dummy Messages, and ControlledTra�c Rates

4.4.1.b) Considering Corrupted Neighbors

Against corrupted neighbors, dummy messages have a limitedimpact, since those can
trivially di�erentiate them from real messages. In the worst case, when a node is sur-
rounded by a collusion of corrupted neighbors, dummy messages are entirely useless, and
the only strategy that makes I and O look equal to the adversary is point (iii) of the
above policy: X systematicallyend-sends a message when,and only when, it end-receives
one.

In addition, when considering corrupted neighbors, the policy proposed above may
actually reveal more information than no policy at all. Indeed, if X follows it to the
letter and sends dummy messages only on aneed basis, corrupted neighbors obtain a
easy way of detecting when a node end-receives. Indeed, a node that end-receives can be
distinguished from one that simply relays a message based onthe fact that the former
one is the only one sending out dummy messages. This calls fora more complex policy,
in particular where the emission of dummy messages does not depend on the actual
end-sent or end-received messagesfrom the point of view of the adversary.

Since the issue seems to be thatX can be detected as end-receiverif it sends a dummy
message to a corrupted neighbor, a naïve approach would be to consider thatX has at
least one honest neighbor, and reformulate points (i) and (ii) of basic policy as: (i) X
can end-send only if it received at least one dummy messagefrom an honest neighbor,
and (ii) X must send one dummy message to an honest neighbor when it end-receives.
This works, because dummy messages exchanged betweenX and its honest neighbors
are indistinguishable from real ones, even for corrupted neighbors. In a senseX 's honest
neighbors act as arelief valve where it gets or dumps cover tra�c. This is the reason
why we make Assumption3, that a node has at least one honest neighbor.

But things are not that simple: X does not know which of its neighbors are honest.
Assumption 3, only states that one neighbor is honest, but not which one. This means
that X has to assume simultaneously that each node may be corrupt. More exactly, a
more conservative version of Assumption3 is to consider that the neighborhood ofX is
partitioned in a least two collusions that do not share knowledge between them. This
allows X to use dummy messages sent to or received from one collusion to fool the other.
And since X is not aware of this partition, it must assume that every possible partition
holds simultaneously, and use a policy that ensures SA and RAin every case1.

In what follows, we formalise the problem and build up towards an applicable solution,
that each node can individually apply.

4.4.1.c) With Formalism and Known Honest Neighbors

The neighbor set of X is denoted n. In a �rst time, we assume that X knows that n
is partitioned in two subsets: honest neighborsh � n, and corrupted neighborsc � n.
The corrupted nodes are assumed to collude together and share their observations and

1Alternatively, to actually increase its chances of not being surrounded by one big collusion of corrupted
nodes and realise Assumption 3, X can mount a reverse Sybil attack, i.e. run several nodes with
di�erent identities, and connect with them in the underlyin g topology graph.

65

4. The Anonymous Protocol

knowledge together and with a global network observer. First, the term I is re�ned
according to the nature of the messages (real or dummy), and to their provenance (honest
or corrupted neighbors). That is:

I = I dum + I real = I h + I c

Additionally, to denote, say, dummy messages received fromhonest neighbors, the term
I h

dum is used, combining subscript and superscript notations. The same notations are
de�ned for outgoing messagesO.

Ultimately, the aim is to make nodes in c and the global observerbelievethat Oreal =
I real , even though X does end-send and end-receive messages. This formally translates
into the following equations to be respected in each roundr . They respectively corre-
spond to points (i) and (ii) expressed in the previous section. Point (iii) also appears
implicitly.

Oc
real � I real + I h

dum (4.3)

I c
real � Oreal + Oh

dum (4.4)

Put together, these relations are equivalent to eq. (4.5), showing that node X can
adjust the di�erence between its outgoing and incoming packets in the margin provided
by the tra�c to and from its honest neighbors.

� Oh � Oc
real � I c

real � I h (4.5)

4.4.1.d) With Formalism and Known Neighbor Collusions

A conclusion from this �rst naïve analysis is that X can end-send and end-receive as
many real messages as it wants through its honest neighbors.However, two issues arise:
a heavy use of honest neighbors asrelief valve will be detected, and, anyway, X does
not know which of its neighbors are honest and can not rely on this strategy. To make a
step towards lifting assumption that X knows which neighbors are honest and which are
corrupted, we model the neighborhood ofX as a partition of collusions C = f c1; c2; : : :g,
such that [i ci = n and ci \ cj = ; for i 6= j . That is, there are no honest nodes; only
groups of corrupted nodes sharing knowledge within their collusion, but not with other
collusions. Now, if X knows the partition C it can go around the collusions, using the
dummy messages sent to and received from one collusion to fool the others. For that,
there must be at least two collusions in the partition C. This can be seen as a variant of
Assumption 3. In this setting, eq. (4.5) must hold for each collusion in C:

8 ci 2 C : � Onnci � Oci
real � I ci

real � I nnci (4.6)

4.4.1.e) With Formalism and Unknown Neighborhood

Finally, let us lift the assumption that X knows the collusion partition of its neighbor-
hood. The only safe option for X is to act as though all possible collusion partitions
were simultaneously in e�ect. That is, it must enforce eq. (4.6) for each possible par-
tition. However, if X has k neighbors, there are

P
i 2 [2;k] i � S(k; i) such equations to

66

4.4. Messages Re-Ordering, Dummy Messages, and ControlledTra�c Rates

enforce, whereS(k; i) are the Stirling set numbers. Indeed, for each possible partition
C containing i collusions, there arei equations to respect. And by de�nition, there are
S(k; i) partitions of size i . This is clearly an impractical policy to implement: heuristics
must be used. The �rst simpli�cation that can be made is to tak e into account only
the worst casecollusion partitions. That is, partitions of size two, where all but one
neighbor are in the same collusion. There arek such partitions, one per neighbor, and
X must thus respect 2k equations. This is a great improvement, but still impractical to
enforce. To further simplify the problem, we examine these equations in the case of SA.

Example 1 (Example for SA and k = 3 neighbors). Let X be a node withk = 3
neighborsY1, Y2, and Y3. To ensure SA (only), X must verify the following 6 equations
derived from eq. (4.3) corresponding to SA:

For C1 = ff Y1g;f Y2; Y3gg : OY2 ;Y3
real � I real + I Y1

dum OY1
real � I real + I Y2 ;Y3

dum

For C2 = ff Y2g;f Y1; Y3gg : OY1 ;Y3
real � I real + I Y2

dum OY2
real � I real + I Y1 ;Y3

dum

For C3 = ff Y3g;f Y1; Y2gg : OY1 ;Y2
real � I real + I Y3

dum OY3
real � I real + I Y1 ;Y2

dum

To simplify the system, it is possible to replace all theI dum terms with the minimum
of all of them, denoted min (I dum), without violating any of the relations. A value
min (I dum) = n means that, in the current round, X received at leastn dummy messages
from each neighbor. Secondly, sinceOreal = OY1

real + OY2
real + OY3

real , X can simply ensure
that Oreal � I real + min (I dum). We successfully reduced the system to one simple
constraint to ensure SA. Proceeding in the same manner for RAshows that it is su�cient
for X to ensureOreal + min (Odum) � I real .

In de�nitive, in order to guarantee both SA and RA without any assumption on the
neighborhood other than Assumption3, each node must ensure that:

� min (Odum) � Oreal � I real � min (I dum) (4.7)

Taking a step back, the tra�c rates equation (4.7) says that X must neither send nor
receive too many real messages. Here, �real messages� designate both relayed and end-
sent/end-received messages. More speci�cally, each node must maintain an equilibrium
between link-sent and link-received real messages: in a given round, it must link-send
approximately as many real messages as it link-received, upto the bounds provided
by its link-sent and link-received dummy messages in this same round. We call these
bounds the dummy budgets. The sending dummy budgetis the lower bound in eq. (4.7),
equal to the minimum over the number of dummy messages that the nodereceived from
each neighbor in that round. It is the minimum over all neighbors that is considered,
because, to protect from every neighbor,X has to adapt to the margins (in terms of
dummy messages) given by the most restricting neighbor. Thereceiving dummy budget
is de�ned in a similar manner, according to the minimum over all neighbors of sent
dummy messages.

Note that eq.(4.7) implies that if X is a simple relay node (neither end-sending nor
end-receiving), it does not need to send nor receive dummy messages. Yet, as explained

67

4. The Anonymous Protocol

earlier, nodes should not send dummy messagesonly on a need basis. More generally,
the dummy message and controlled tra�c rate policy must be implemented to respect
eq. (4.7), while keeping in mind all that has been learned in our analysis. We show next
how a node can proceed to enforce the equation in practice.

4.4.2. Integration With Pool-Based Batching

This section shows how the dummy messages and the controlledtra�c rates policies can
be implemented in conjunction with the message re-orderingmechanism.

4.4.2.a) Batching With Timed Dynamic Pools

Existing literature indicates that pool-based mixes are the most resistant to tra�c anal-
ysis (see Section3.4) [BPS01; SDS02]. We choose to use the already well-tested timed
dynamic pool of Mixmaster [Mol+03], also known as aCottrell mix [SDS02]. A node
implementing this batching strategy places all link messages that need to be sent (i.e. re-
layed or end-sent) in a poolP. The system is parameterized by a time intervaltP , a min-
imal number of messages in the poolnPmin , and a fraction f P . Every tP seconds, if there
are nP messages in the pool, the node randomly selects and sendsn := min(nP � nPmin ;
nP � f P) messages from the pool.

In this thesis, we propose to use a variant of this mechanism,in which a node maintains
one separate pool per neighbor. This facilitates the implementation of the dummy
message policy described in the previous section (which needs to have a per-neighbor
control on dummy messages). Also, this design choice allowsto ensure that, in every
round, each neighbor gets the same number of link messages (regardless of whether
they are real or dummy ones). This prevents against attacks on asynchronous free-route
mixnets [BPS01] (the present network is indeed asynchronous, and not a cascade). The
latter constraint can be formalised asOYi = OYj for all neighbors Yi ; Yj at each roundr .

Therefore, each nodeX maintains one poolPYi per neighbor Yi . When X must send
or relay a message toYi (be it a real or dummy one), it places it in PYi . Every tP seconds,
X sends out messages ifall pools have enough messages in them. More exactly, letnPYi

be the number of messages in poolPYi . At each round, X randomly picks n messages
from each pool, and sends them in a random order, forn de�ned as:

n := min
i

(min(nPYi
� nPmin ; nPYi

� f P)) (4.8)

4.4.2.b) Producing Dummy Messages

With this batching strategy, dummy messages are inserted into pools, according to the
following policy. At the beginning of each round, X inserts a dummy message in a
random fraction f dum of neighbor pools (e.g. f dum = 1=3). Additionally, rounds in
which n is equal to zero according to eq. (4.8), X still sends one dummy message to each
neighbor. This very basic policy has the advantage of respecting the lessons learned from
our analysis. That is, dummy messages are not sent deterministically and on a need basis,
since the policy is completely independent from the end-sent and end-received messages.

68

4.4. Messages Re-Ordering, Dummy Messages, and ControlledTra�c Rates

And secondly, the network is prevented fromstalling, since each node regularly provides
neighbors with dummy messages: each pool gets a dummy every 1=f dum rounds on
average, and when a node can not�re its pools, it still sends out dummies.

4.4.2.c) Tra�c Rates Constraints in Practice

There is an apparent inconsistency between the batching strategy on the one hand, and
the need to respect the tra�c rate equation (4.7) on the other hand. Indeed, the latter
dictates that messages should be randomly selected from pools, whilst the former requires
that, at each round, the batch of selected messages ful�ll certain constraints. To resolve
this, we relax the constraints on the tra�c rates, conserve the random sampling from
pools, but apply a post-processing to the obtained batches.

In practice, a nodeX can ensure the tra�c rate equation at each roundin the following
way. At the beginning of each round, X counts the number of real and dummy link
messages received during the last round, and deducesI real , and I Yi

dum for each neighbor
Yi . It processes the messages according to the protocol, possibly placing in its neighbors'
pools new real messages to end-send or relay. At the end of theround, from I real and
min (I dum), X can deduce the set of solutions to the tra�c rates equation, where Oreal

and min (Odum) are considered as variables, denotedx and y. The set of solutions is
S = f (x; y) j y 2 [0; I real] ; x 2 [I real � y; I real + min (I dum)] g. Then, X samples a batch
of messages from the neighbor pools. If the sampled batches contain a number of real
and dummy messages that �t into S, then X can safely send them. Otherwise, we resort
to a post-processing of the batches. We distinguish two cases: (i) either Oreal is too
high to �t into any of the solutions in S (meaning X is trying to send too many real
messages), (ii) eitherOreal or min (Odum) are too low.

In case (i), to decreaseOreal , X chooses a real message at random from the batches,
replaces it by a dummy message, and repeats the process untilthe batches �t into the
solutions. In case (ii), the situation is not so simple. The simplest approach would be
to either increase Oreal by taking other real messages from the pools, or to increase
min (Odum) by adding in the batches one additional dummy message for each neighbor.
The latter case is to be avoided, for a reason already discussed: a node that sends many
(dummy) messages in a round is easily detected by the adversary as a node that (end-
)receives many messages. We also reject the approach of augmenting Oreal by manually
selecting real messages in the pools, for several reasons: this strongly tampers with the
probabilistic nature of the random batch sampling mechanism, it implies that a node
can be easily forced to send out all its real messages stored in its pools (a neighbor only
needs to send many real messages to it in one round), and it simply fails when there are
no more real messages in the pools.

In order to address case (ii) properly, we choose to relax thetra�c rates constraints
on several rounds, and to useend-to-end dummy messages(i.e. payload messages that
encrypt only an e2e-dummy�ag) as a last resort. That is, to allow a node to handle a
sudden surge in incoming tra�c (a high I real value), when case (ii) appears, a node is
allowed not to respect the tra�c rate equation straight away. Instead, i t can postpone
the resolution of these constraints to a latter round r + � r , for some parameter � r . For

69

4. The Anonymous Protocol

that, it keeps track of unresolved constraints for the last � r past rounds. In most cases,
since all end-senders respect eq. (4.7) and thus send their messages at rather low rates, a
high I real value in round r is likely to be naturally absorbedover � r rounds. When that
is not the case,i.e. when the constraint from round r � � r is still unresolved, we resort
to end-to-end dummy messages. That is, X replaces dummy messages in the batches
with end-to-end dummy ones, that look like real messages toX 's neighbors and more
generally, to all nodes except its end-receiver.X sets the cid value of an end-to-end
dummy message to that of a random next hop in its routing table, e�ectively meaning
that X chooses a random end-receiver for that end-to-end dummy message.

4.4.2.d) Concluding Remarks

The proposed approach ensures TAR, SA, and RA in our adversary model. While
message ordering alone is su�cient to ensure TAR, it is all three tools together (the
dummy messages, the tra�c rates, and the message re-ordering) that protect SA and
RA. Indeed, the message re-ordering system, as proposed in this thesis, mixes together
end-sent and relayed messages. It is the advantage obtainedfrom the adaptation of
mixnet techniques into a homogeneous network architecture, bringing uncertainty to the
adversary when trying to perform advanced tra�c analysis based on �ow �ngerprints
(as described in Chapter3). This element of design, to the best of our knowledge, is
not present in the literature. In comparison, the Tarzan protocol [FM02] does not use
message re-ordering. The thorough analysis conducted in Section 4.4.1 also shows that,
contrarily to our protocol, Tarzan's dummy messages and tra�c rates policy fails to
ensure SA against acollusion of corrupted neighbors

However, the provided security comes at a great cost in termsof delivery latency.
This cost is measured in Chapter6. Also, as the authors of Tarzan note, having nodes
wait for dummy messages from neighbors facilitates DoS attacks: it is su�cient for one
corrupted neighbor ofX to refrain from sending any dummy messages to greatly limit the
end-sending rate ofX . This is however an active attack, not included in the adversary
model. It is also easily detectable, and the misbehaving node can be discarded from the
network.

4.5. Constructing the Routes

So far, we have presented routing tables, how they are used, and how the message
forwarding mechanism is designed. It remains to explain howthe nodes actually acquire
the necessary information to �ll their routing table, such a s the pseudonyms and thecone

ciphertexts. This section bridges that gap, by fully presenting the topology dissemination
phase, in which nodes makeroute proposalsto learn about each other, build circuits, and
compute pseudonyms.

This section abstractly de�nes how topology disseminationis carried out in the pro-
posed protocol. In a second time, it presents the construction of pseudonyms and the
route proposal mechanism in detail. Finally, it discusses theroute proposal policy, which

70

4.5. Constructing the Routes

determines which routes are built among all the possible paths in the network, and
according to which characteristics.

4.5.1. Ideas and Aim of Topology Dissemination

The topology dissemination in the proposed protocol is quite standard in essence, since
it is essentially a gossipprotocol, in which each node exchanges information about the
network with its neighbors. It begins at network startup, wh ere each nodeX has only a
view of its direct neighborhood, and ends when each node learned about all other nodes
in the network. More exactly, during topology dissemination, long-lived circuits are built
starting from the end-receivers, and are extended towards the edges of the network. This
methodology contrasts with the standard sender-initiated circuits commonly found in
anonymous protocols such as Tor [DMS04] or Tarzan [FM02]. In the present protocol,
we use static circuits shared by several nodes,i.e. each node in the circuit (except the
end-receiver) is potentially an end-sender, and also a relay for the upstream nodes in
the circuit. However, a given nodeX that is part of some circuit c does not know the
identities of the other nodes that are in c, except for its previous and next hop (even if
X is the end-receiver itself).

However, one main di�erence between this protocol and a standard network discovery
protocol lies in the fact that nodes do not actually learn the IP address of nodes more
than one hop away from them; instead, they learn a pseudonym.Also, for privacy to hold,
most of the information usually exchanged during a standardnetwork discovery protocol
(such as the exact length of a route) is concealed to nodes. Tocompute pseudonyms,
nodes share their knowledge of the network with other nodes only one route at a time
(rather than exchanging e.g. a list of reachable IP addresses along with a hop count
metric as in RIP). More exactly, we say that a node actually proposesto its neighbors
to relay their messages towards some anonymous end-receiver, by extending an already
existing circuit by one hop. Thus, route proposalsare the atomic information exchange
operation at the heart of the topology dissemination.

4.5.1.a) De�nition of Route Proposals

The main goal of a route proposal is tocreate and extend routes, thus allowing nodes to
learn about (the pseudonyms of) other nodes in the network, along with all the necessary
information to end-send and relay payload messages towardsthem.

De�nition 17 (Route Proposal, Proposer, Proposee). Nodes build and extend
routes via route proposals. The notation RP(X $ Y ! R) denotes aroute proposal by node
Y (the proposer), to its neighbor X (the proposee), towards end-receiver R, meaning
that Y o�ers X to relay its messages towardsR.

In practice, a route proposal consists in a short interaction between the proposer, the
proposee, and the end-receiver, that consists in the exchange of routing messages. At
the outcome of this interaction, the route is extended by onehop: Y notes in its routing
tables that it must relay X 's messages towardsR (by adding X and a circuit identi�er

71

4. The Anonymous Protocol

cid asprevious hopin the adequate entry); andX creates a new entry in its routing table,
with Y and the samecid as next hop. Additionally, the proposee learns the pseudonym
PSX ! R that it is going to use to designate the end-receiver (but notits identity or IP
address), and an encryption of one, denotedconeX ! R , under the appropriate public key(s)
in order to encrypt and re-encrypt messages forR.

It is necessary to involve the end-receiver in the process ofroute proposals, in order
to compute the pseudonym. Indeed, if a given proposeeX gets two di�erent route
proposals towards the same end-receiverR in two di�erent moments of the lifetime of
the network, it must get the same pseudonymPSX ! R . This allows X to know the
number of routes it has towards the same end-receiver, and tolater contact R as an
end-sender. A consequence of the need to solicit the end-receiver in a route proposal
is that routing messages must be relayed (back and forth) over the route between the
proposer and the end-receiver: areturn trip is necessary. This is performed by using
circuits in a reverse fashion, similarly to how Tor routes the answers of receivers back to
users. Note however that the proposer and proposee of any route proposal are always
neighbors.

At the initialisation of the network, or upon joining it, eac h node knows only one
route and one end-receiver: itself. Thus, the �rst action that a node R performs in the
network is a self-proposal. After this self-proposal, one route is created betweenR and
each of its neighbors (routes of length one). Then, its neighbors relay this proposal, thus
extending the routes, and makingR known (under its di�erent pseudonyms) by more
nodes. Then, the 2-hop neighbors ofR relay it, etc. A route proposal is relayed in this
way, and propagates fromR to the edge of the network.

De�nition 18 (Self-Proposal, Relayed Proposal). A self-proposalRP(X $ R! R) is
a route proposal in which the end-receiver is also theproposer. A relayed proposal is
de�ned as any route proposal that is not aself-proposal.

Of course, proposees are allowed to decide whether theyaccept or refuse route pro-
posals, based on several characteristics (e.g. the number of routes it already knows). If
they refuse it, the circuit is not extended. Similarly, when a proposee accepts a route
proposal, it can choose to relay it to its own neighbors or not. These decisions of nodeX
depend on various pieces of information, and are captured bythe route proposal policy.

De�nition 19 (Route Propocal Policy). Proposees make the decision toaccept or
refuse a route proposal, and to relay it further or not, according to the route proposal
policy. This term encompasses both the information that the proposee has access to, and
the (probabilistic) decision process that takes place based on this information.

It is the route proposal policy that determines when thepropagation of route proposal
stops, i.e. when the network reaches a stable state, and no more route areproposed. A
sound route proposal policy must make sure that this happensonly after all nodes learn
about each other. The route proposal policy is discussed in more details in Section4.5.4.

72

4.5. Constructing the Routes

4.5.1.b) Privacy Properties of Route Proposal

Aside from these functional goals, the mechanism of route proposal must refrain from
providing the adversary with elements allowing her to ultimately break SA, RA, or SU,
or MU. More exactly, although these anonymity properties must be ensured for actual
communications (i.e. for payload messages), it is still necessary to ensure some form of
privacy for route proposals as well (i.e. for routing messages). Indeed, if the building of
circuits was completely open and observable by the adversary, then this would give her
a considerable advantage to later breach the privacy of communications.

As such, the route proposal mechanism must ensure the following properties against
the considered adversary:

Route Proposal Homogeneity: A self-proposal RP(X $ R! R) and a relayed pro-
posal RP(X $ Y ! R) towards the same end-receiverR must be indistinguishable,
except for the proposer and the end-receiver.

Route Proposal Indistinguishability: A route proposal RP(X $ Y ! R) towards end-
receiverR must be indistinguishable from a route proposalRP(X $ Y ! R0) towards
a di�erent end-receiver R0, except for the end-receiver itself.

Propagation Untraceability: Route proposalsRP(X $ Y ! R) and RP(X 0$ Y 0! R) to-
wards the same end-receiverR, appearing at di�erent places and/or times in the
network, must be unlinkable.

Return Trip Untraceability: Link messages involved in a given route proposal must
be unlinkable, in the sense of MU-tracing.

The �rst property ensures that proposees receiving a route proposal can not conclude
whether the proposer is the end-receiver or not. If that werethe case, RA would be
directly broken: neighbors of R (who know its IP address) would know which circuits,
and which messages, are �owing towardsR. The second property is complementary. It
ensures that relayed route proposals do not leak information on the IP address or real-
world identity of the end-receiver it relates to. The third m eans that it is impossible to
follow the propagation of the route proposals related to a particular end-receiver, and
thus from inferring the routes built. The last one simply requires messages involved in
the round trip from proposer to end-receiver (in the case of arelayed proposal) to be
untraceable, in the same idea as MU-tracing for payload messages. This is also to avoid
the created routes from being observable.

All four are de�ned w.r.t. the bit pattern of link messages (and the cryptographic
material they carry) involved in route proposals. That is, t hese properties are formulated
independently from TAR, in the same way as MU in Section1.4.1, and for similar reasons
(i.e. the impossibility to prove these properties in presence of tra�c analysis attacks, as
further discussed in Chapter5).

4.5.2. Pseudonyms: Form and Computation

Pseudonyms, in order to be meaningful, must ensure certain properties. They must be
secure, abstractly meaning that they conceal the real-world identity of the end-receiver

73

4. The Anonymous Protocol

they designate. Also, every timeX receives a route proposal towardsR, X should obtain
the same pseudonymPSX ! R . This last point calls for a deterministic computation of
PSX ! R , from values speci�c to R and X .

In practice, the pseudonym of nodeX towards end-receiverR is de�ned as follows:

PSX ! R = h(dstR srcX) (4.9)

Where h : G ! f 0; 1gn is the SHA-3 hash function, the termsdstR 2 G and srcX 2 Z �
q

are values generated by (and secret to)R and X respectively, andG is the same group
used in the Elgamal scheme. More exactly, for any given nodeX , srcX and dstX are
long-lived values, that can be regarded as itsidenti�ers as end-sender and end-receiver
in the network.

This way of computing pseudonyms achieves the following security properties: (i) for
R0 6= R, PSX ! R0 6= PSX ! R with high probability (preventing X from mistaking an end-
receiver for another); (ii) it is not possible for X to recover dstR from PSX ! R (which
would ultimately allow X to impersonate R); and (iii) for two nodes X and X 0, it is
impossible to know that PSX ! R and PSX 0! R actually designate the same node, and
thus impossible to reduce relationship pseudonyms to simple pseudonyms. Respectively
denoteduniqueness, one-wayness, and indistinguishability , these properties are formally
de�ned and proved in Chapter 5. They mainly rely on the properties of the hash function
used, i.e. that SHA-3 can be used to produce outputs indistinguishablefrom a truly
random function. Additionally, note that, because this way of computing pseudonyms
does not rely on the end-receiver's IP address or real-worldidentity, it is impossible for
nodes to make the link between pseudonyms and real-world identities.

The computation of PSX ! R during a route proposal consists in a three-messagese-
cure multi-party computation (SMPC) protocol betweenX and R. During the process,
however,X does not learndstR and R does not learnsrcX . For that, the homomorphic
properties of the Elgamal ciphertext are leveraged. All network considerations left aside,
if there exists a direct and secure communication channel between X and R, this is real-
ized by the sub-protocol depicted in Fig.4.5, using the ScExpoperation of the Elgamal
scheme.

Intuitively, this short SMPC protocol is secure(meaning that srcX and dstR stay secret
to their respective owner) by the IND-CPA property of the Elg amal scheme. Chapter5
provides a formal proof. Its actual realisation inside the network, and in particular,
when X and R are not neighbors, is described in the next section.

4.5.3. Route Proposals in Details

This section details the functioning of route proposals, beginning with self-proposals,
and then describing relayed ones. It also shows how the SMPC protocol from Fig. 4.5
can be ported into the network, and �nally shows how the route proposal mechanism
ful�lls the properties listed in Section 4.5.1. For simplicity, the details on the decision
of accepting and refusing route proposals are only treated in the next section.

74

4.5. Constructing the Routes

R X

Input: dstR Input: srcX

c1 Enc(pkR ; dstR)

c2 Enc(pkR ; 1) c1; c2

c ReEncnopk(c2; ScExp(c1; srcX))

c = Enc(pkR ; dstR
src X)

P SX ! R = h(Dec(skR ; c)) P SX ! R

Figure 4.5. � Two-party Computation of PSX ! R

4.5.3.a) Self-Proposals

When R self-proposes, it sends a link message to all its neighbors.Each of them an-
swers, since they can not know from this �rst message whetherthey need this route or
not. Thus, a self-proposalRP(X $ R! R) takes place betweenR and each of its neighbors
X . Concretely, a route proposalRP(X $ R! R) for one particular X consists in a three
message exchange, depicted in Fig.4.6. It realises the SMPC from Fig. 4.5, with the fol-
lowing di�erences: it uses well-formed link messages (withan encrypted �ag rtprop and
a circuit identi�er cid), it introduces a key pktmp

X , the pseudonymPSX ! R is encrypted
in the last message, and there are two additional Elgamal ciphertexts Enc(pkR ; pktmp

X)
and Enc(pktmp

X ; 1). The �ag informs the correspondents that this link message relates
to a route proposal. The cid is randomly chosen byR among circuit identi�ers not
already in use betweenR and X (note that a di�erent cid can be chosen for each neigh-
bor). This term identi�es both the newly-formed link, and th e ongoing route proposal.
The �ag and the cid value are encrypted with the keyskXR and kRX , generated from
the initial DHKA performed at network setup. Then, because R can not simply send
PSX ! R in the clear over the network in the last message, and becauseR does not know
X 's public key, a key pktmp

X is introduced . This is a temporary public key, generated
by X speci�cally for this route proposal. In the second message,X sends it encrypted
under pkR (using PlainMult(c2; pktmp

X)) . R subsequently answers with an encryption of
PSX ! R under pktmp

X . For reasons that will become clear with the explanation of relayed
proposals,R also sends an encryption of one underpktmp

X .

At the outcome of the route proposal, if X accepts the route, the following entry is
created inX 's routing table, where the ciphertexts c1 and c2 are denoted bycpropX ! R and
coneX ! R , to mark the fact that those are ciphertexts used by X w.r.t. a route towards

75

4. The Anonymous Protocol

m1 : f rtprop kcid gkRX
Enc(pkR ; dstR)
| {z }

c1

Enc(pkR ; 1)
| {z }

c2

m2 : f rtprop kcid gkXR
Enc(pkR ; dstR srcX)
| {z }

c

Enc(pkR ; pktmp
X)

m3 : f rtprop kcid gkRX
Enc(pktmp

X ; PSX ! R| {z }
P S

) Enc(pktmp
X ; 1)

RX
m1
m2
m3

Figure 4.6. � Messages Involved in a Self-ProposalRP(X $ R! R)

R.
Prev. hop PS cone cprop Next Hop

; PSX ! R Enc(pkR ; 1) Enc(pkR ; dstR) R; cid
| {z }

coneX ! R

| {z }
cpropX ! R

X does not tell R whether it accepts the route or not. Therefore, R always adds
(X; cid) as previous hop in its routing entry corresponding to itself. If necessary,R can
discard this previous hop if it stays unused for a long periodof time.

4.5.3.b) Relayed Proposal

OnceX has accepted a proposal, it may relay it (according to the route proposal policy).
Assume that X does so. It thus now assumes the role ofproposer. Node X begins by
sending a link message to all its neighbors. LetX 0be one of these neighbors. The relayed
proposal RP(X 0$ X ! R) is carried out similarly to a self-proposal, the main di�er ence
being that the interaction between proposeeX 0 and end-receiverR must be relayed
back and forth by X (and, more generally, by every node between proposer and end-
receiver). Also, the ciphertexts are now encrypted under aproduct of public keys, that
are accumulated or removed during the return trip.

The proposal by X of the route it just learned to one of its neighborsX 0 consists in
the exchange depicted in Fig.4.7.

The �rst di�erence between a relayed proposal and a self-proposal is that X sends a
�rst message with ciphertexts c0

1 and c0
2 for dstR and 1 encrypted underpkX;R := pkY �pkR .

The nodeX obtains these by running theKeyMult operation with skX on the ciphertexts
cpropX ! R and coneX ! R learned during R's self-proposal. Additionally, X must re-encrypt
the ciphertexts so as to realisepropagation untraceability, i.e. so that (c1; c2) can not be
linked to (c0

1; c0
2) (except by X itself obviously). To summarise:

c0
1 KeyMult(skX ; ReEncnopk(coneX ! R ; cpropX ! R))

c0
2 KeyMult(skX ; ReEncone(coneX ! R))

76

4.5. Constructing the Routes

m1 : f rtprop kcid0gkXX 0
Enc(pkX;R ; dstR)
| {z }

c0
1

Enc(pkX;R ; 1)
| {z }

c0
2

m2 : f rtprop kcid0gkX 0X
Enc(pkX;R ; dstR srcX 0)
| {z }

c0

Enc(pkX;R ; pktmp
X 0)

m3 : f rtproprelay kcidkrcid gkXR
Enc(pkR ; dstRsrcX 0) Enc(pkR ; pktmp

X;X 0)

m4 : f rtproprelay kcidkrcid gkRX
Enc(pktmp

X;X 0; PSX 0! R| {z }
P S

) Enc(pktmp
X;X 0; 1)

m5 : f rtprop kcid0gkXX 0
Enc(pktmp

X 0 ; PSX 0! R| {z }
P S

) Enc(pktmp
X 0 ; 1)

RXX 0

m1
m2 m3

m4m5

Figure 4.7. � Messages Involved in a Relayed ProposalRP(X 0$ X ! R)

The main characteristic of a relayed proposal is thereturn trip from X to R. In
the example, this return trip only takes two link messages (the third and fourth one in
Fig. 4.7), but in general, it takes 2l link messages, wherel is the number of hops (in
the topology graph) between the proposer and the end-receiver. The implementation of
the return trip while ensuring privacy poses two main challenges, that the exchange in
Fig. 4.7 solves.

(i) The need to use circuits in a reverse way(with the fourth message).
Although using circuits in this fashion is trivial in e.g. Tor, where nodes have a
one-to-one mapping from previous to next hops, in the present protocol, a node
may have several previous hops. And in particular, whenX makes a proposal, it
must concurrently handle one proposal towardsR for each of its neighbors. When
X receives the fourth message fromR, it thus needs areverse circuit identi�er rcid
value to be able to know that the message relates to an ongoingproposal with X 0

speci�cally. This value is generated byX and repeated byR on the way back. In
the general case, when there arel hops between proposer and end-receiver, each
of the l relay nodes will independently generate its ownrcid value.

(ii) The need to avoid the tracing of ciphertexts in the retur n trip (and in particular,
of the encrypted PSX ! R on the way back from R to X 0) so that return trip
untraceability holds.
For this, we again use URE and the technique of encryption under a product
of public keys. Note that on the way forward (from X 0 to R), ciphertexts are
encrypted under a product of public keys (here,pkX � pkR) so that an adversary
controlling R and thus knowing skR can not trace them; while on the way back,
it is to prevent tracing by X 0 that they are encrypted under a product of public
keys (here,pktmp

X � pktmp
X 0).

77

4. The Anonymous Protocol

In more detail, the cryptographic operations performed byX (and all relay nodes
on the return trip in the general case) are as follows. On the way forward, given
c1 := Enc(pkX;R ; dstR srcX 0) and c2 := Enc(pkX;R ; pktmp

X 0),

(1) Generate (pktmp
X ; sktmp

X) KeyGen(1�)

(2) Compute c0
1 ReEncnopk(coneX ! R ; Dec(skX ; c1))

(3) Compute c0
2 ReEncnopk(coneX ! R ; Dec(skX ; PlainMult(c2; pktmp

X)))

Send the resulting ciphertext to R (as depicted in line 3 of Fig.4.7). On the way
back, given c1 := Enc(pktmp

X;X 0; PSX 0! R) and c2 := Enc(pktmp
X;X 0; 1),

(1) Compute c0
2 ReEncone(Dec(sktmp

X ; c2))

(2) Compute c0
1 ReEncnopk(c2; Dec(sktmp

X ; c1))

Send the resulting ciphertext to X 0 (as depicted in line 4 of Fig. 4.7). Notice the
use oftemporary public keys: they accumulate in a ciphertext on the way forward
with a PlainMult operation; R then usespktmp

X � pktmp
X 0 to encrypt PSX 0! R ; and on

the way back, relay nodes runDec with their temporary secret key, ensuring that
X 0 gets the ciphertext back encrypted solely underpktmp

X 0 .

Ultimately, if X 0 accepts the route, X adds (X 0; cid0) as previous hop in its entry
towards R, and X 0 adds the following entry to its routing table:

Prev. hop PS cone cprop Next Hop
; PSX 0! R Enc(pkX;R ; 1) Enc(pkX;R ; dstR) X; cid

| {z }
coneX 0! R

| {z }
cpropX 0! R

4.5.3.c) Security of Route Proposals Against Tra�c Analysis

In the described route proposal mechanism,route proposal homogeneity, route proposal
indistinguishability , propagation untraceability, and return trip untraceability are ful-
�lled. Propagation and return trip untraceability have alr eady been discussed extensively.
Route proposal homogeneity is ensured since, from the pointof view of the proposer,
the exact same cryptographic material and link messages aresent and received. Route
proposal indistinguishability is also ensured, because bythe security properties of the
Elgamal scheme, the proposer and proposee get no information on R. In particular, note
that, when X relays the proposal in Fig. 4.7, although it knows that R is the next hop,
it can not be sure that it is the end-receiver. Lastly all four properties hold against
a global network observer, intuitively because, all an observer sees are link messages
carrying random-looking data.

All these claims are formally proven in Chapter 5. That is, it is shown that these
four properties are ensuredcryptographically, in accordance with their de�nition in Sec-
tion 4.5.1.b. However, without any additional protection, they clearly do not hold under
tra�c analysis attacks. In particular, a self-proposal can be distinguished from a relayed

78

4.5. Constructing the Routes

one since it has no return trip and thus takes much less time. Here, we brie�y give addi-
tional measures to thwart tra�c analysis attacks aimed at do wngrading the security of
route proposals. These measures are howevernot included in formal proofs for reasons
exposed in the next chapter.

To prevent tra�c analysis attacks on the return trips, we act ually include routing
messages in the message re-ordering mechanism presented inSection 4.4.2. Meaning
that all messages thatX wants to send as part of a route proposals are not simply sent
to neighbors, but placed in its pools along with dummy and payload messages. As a
result, payload and routing messages are mixed together (this is possible since, by design,
they are of the exact same form). This makes actual communications indistinguishable
from route proposals for network observers, and also has theadvantage of providing
nodes with further cover tra�c. On the downside, this means t hat the completion of
topology dissemination (i.e. making each node learn about each other) can take very
long. This is however the price to pay: intuitively, the topology dissemination has to be
slow in order for it to be stealthy and avoid being subject to tra�c analysis attacks.

Applying message-reordering on route proposal messages contributes directly to pro-
tecting return trip untraceability, but it also helps thwar t basic timing analysis attacks
on route proposal homogeneity, since it introduces latencyin the return trip. Analo-
gously, this helps regarding route proposal indistinguishability, in the sense that it does
not let the adversary easily distinguish two relayed route proposals based on her esti-
mated distance to di�erent end-receivers (in terms of hops). Lastly, it helps regarding
propagation untraceability. Indeed, when a node decides torelay a proposal, it places
the adequate link messages in its pools, and the batching strategy delays the actual
relaying for some time (and a di�erent time for each neighbor).

Lastly, there is a particular threat to route proposal homogeneity: if a node X joins
a network where topology dissemination has already been completed, it will begin by
self-proposing, and be trivially detected by its neighbors. Since these neighbors see the
IP address ofX , and know that it is the end-receiver, they ultimately break RA. This
phenomenon also appears in the Crowds protocol [RR98], and can be solved in a similar
manner, by having all or a subset of nodes aroundX also begin a new cycle of route
proposals under a new identity (with a new dst value). This allows the newcomer to
blend in this subset.

4.5.4. The Route Proposal Policy: Accepting or Refusing the Routes

In traditional routing protocols, nodes often learn several possible routes to every other
node, but select only one or a few of them,e.g. based on performance metrics such as
the length of the route, or the bandwidth it o�ers. Nodes also are careful not to create
routing loops, in which a message could get stuck, inde�nitely going in circle through
the same set of nodes. In the present protocol, this is the role of the route proposal
policy.

This work does not propose a concrete policy. But the presentsection discusses how
information and metrics on the routes may be communicated tothe proposee, and how
based on these information, it can decide to accept or refusea proposal, and relay it or

79

4. The Anonymous Protocol

not.
Note that we do not undermine the importance of the route proposal policy, which

is essential to ensure that topology dissemination does notstop before every node learn
about every other. It also plays an important role in the security of the protocol. First
because it must avoid revealing too much information on circuits so as not to breach
privacy properties. Secondly, it must not be simplistic: in particular, deterministic
policies must be avoided, because given a topology graph, they will always yield the
same circuits. Lastly, because in terms of privacy, some routes are preferable to others:
shortest paths may make the network more e�cient, but are easy to infer for anyone
aware of (portions of) the topology graph.

4.5.4.a) Decision Process

The described protocol already provides nodes with one basic piece of information: by
the properties of pseudonyms, nodes can count the routes they have towards a given
(anonymous) end-receiver. The policy can dictate that a node should not have more
than e.g. three routes towards the same end-receiver. A proposee would thus refuse
a route proposal towards a pseudonym for which it has already5 routing table entries.
However, recall that proposees only getPSX ! R at the very end of the route proposal.
It can thus make its choice onlya posteriori. After the accept/refuse decision, the policy
should also say whether the node should relay the proposal. This can be based on a
simple coin �ip, or on the number of recently received proposal for a given end-receiver
for instance.

To communicate other information about the route, the sub-protocol corresponding to
route proposal must be extended: additional messages must be sent, to carry information
on the circuits. To minimize the information leak on routes, we employ the following
measures: this information is concealed in Elgamal ciphertexts, homomorphic operations
are used to process it, and eventually, a proposee only obtains a yes/no answer on
whether it should accept the route, and another on whether it should relay it or not.
This approach makes it possible to let the proposee choose its own route-selection criteria,
and yet reveals only two bits of information. In practice, th is approach is realised by
designing a speci�cSMPC protocol between proposee and end-receiver for each type of
information to be communicated on circuits.

4.5.4.b) Privately Communicating Information on Routes

Before giving a generic methodology for taking into accountany metric or information
about the route, we give a concrete example of SMPC focused onthe hop count metric.

The most basic metric characterising a route is its lengthl , and routing protocols
must limit it to some number lmax of hops. We show how to extend route proposals
with additional messages in order to allow proposees to obtain a boolean indicating if
the route is longer than lmax or not. This corresponds to a private range test protocol,
for which SMPC constructions already exist [Pen+06]. Hereby, we propose a basic
construction that integrates well with route proposals. First of all, when R self-proposes,

80

4.5. Constructing the Routes

it communicates a ciphertext c` = Enc(pkR ; g1) (since at that time, the route is only one-
hop long). This ciphertext is meant to be treated similarly t o cone and cprop, i.e. encrypted
under the product of all relay nodes' keys, re-encrypted, and included in all relayed
versions of the proposal. Additionally, a node that relays aproposal performs c0

` =
PlainMult(c` ; g) = Enc(gl+1) in order to update the route length. In the general case, a
proposeeX receiving a proposal fromY towards R receivesc` = Enc(pkY;:::;R ; l), which
it uses in the following way to know if l > l max , for a value of lmax publicly �xed.
X begins by computing CtxtMult (Enc(pkY;:::;R ; lmax); c� 1

`) = Enc(pkY;:::;R ; glmax � l). This
latter ciphertext is sent back to R along with the ciphertext for dstRsrcX . R then receives
the ciphertext, can decrypt it, and gets glmax � l . It answers with cb Enc(pktmp ; gb),
where b = 1 if glmax � l 2

h
g0; glmax � 1

i
, and b = 0 otherwise. The ciphertext cb travel

back to X similarly to the one encrypting PSX ! R . X can decrypt it, and accepts the
route only if gb = g.

This small protocol reveals only one bit of information to X , but possibly leaks to
R the exact distance of the proposee. This is deemed acceptable, because circuits do
not correspond to a unique end-sender: payload message received by R incoming on a
particular circuit may have been end-sent by any of the nodesin the circuit.

More generally, any metric or information can be communicated to the proposee fol-
lowing the same ideas as in the hop count example: an initial value is encrypted and
included in self-proposals, the information is then (homomorphically) accumulated as
route proposals propagate, proposees homomorphically process ciphertexts, and obtain
a simple yes/no answer by collaborating with the end-receiverR (the only party able to
fully decrypt and get the piece of information). There is often the choice between using
a very e�cient SMPC protocol that leaks information to R (but not to X), and using
a more complex one that ensures that bothX and R learn only one bit of information.
For better privacy, the latter approach should be favored.

The more complex the route proposal policy is, the more it costs in terms of number
of transmitted messages on the return trip between proposeeand end-receiver. Indeed,
each piece of information must be included in a di�erent ciphertext in the initial message
of route proposals. However, note thatX can sometimes reduce all these ciphertext to
one unique ciphertext encryptinggb before sending it toR, by homomorphically applying
an adequate boolean formula. If not, this can be done byR, saving at least bandwidth
for the way back of the return trip.

4.5.4.c) Routing Loops

An important component of a routing protocol is the preventi on of routing loops in
the forwarding process. However, to the best of our knowledge, there is no existing
privacy-preserving solution to test the presence of loops applicable to the present pro-
tocol. Indeed, the data structure to store information on nodes that are already on the
route must: (i) be of constant size (to avoid leaking the length of the route), (ii) �t
into one or a few Elgamal ciphertexts, and (iii) be manipulable through homomorphic
operations (so as to insert an element in the structure, and test membership). Previous

81

4. The Anonymous Protocol

works [Don+09; Boc+12] proposed the use of a bloom �lter. However, this structure can
not be manipulated by homomorphic operation unless its bitsare encrypted separately.
The same goes with the use of polynomials to represent set operations [KS05]: their
coe�cient must be separately encrypted, yielding too many ciphertexts to handle in a
route proposal. More generally, and to our knowledge, no such (e�cient) data structure
exists and no existing SMPC protocol can appropriately prevent the formation of routing
loop.

However, this is actually not an issue in the present protocol. Indeed, by the way
routing tables are constructed and used, messages can not bestuck inde�nitely in a loop.
That is, a circuit may indeed go twice through a same node, buteven so, messages do
not get stuck in an in�nite loop, thanks to the unidirectiona l use of circuits. We choose
to tolerate such loops. Although they clearly impacts e�cie ncy, they also brings more
privacy, at least compared to a route proposal policy that builds shortest routes.

4.6. Oriented Communications: Alice Contacts Bob

This section presents the �nal building block of the protocol, that enables what is called
oriented communication. It can be seen as an extension of the protocol, since the lat-
ter can fully function without this �nal block. Indeed, give n what has already been
presented, nodes can communicate with anonymous end-receivers that they know under
their pseudonyms. This is su�cient for applications in whic h individuals simply look
for a communication partner, but not for one in particular (in an o nline game, or a
�le-sharing application for instance). It is also su�cient for a use of the network in a
Tor fashion with some nodes acting asexit nodes. The latter application however implies
a client-server architecture in which RA can not be ensured (and also necessitatesexit
policies preventing misuse of the anonymity provided by the network, which is an issue
in itself).

Still, in view of the informant-journalist scenario, the fu nctionality provided by the
protocol is not su�cient: an informant Alice must be able to o pen a bi-directional
communication channel with a speci�c journalist Bob of its choice (while remaining
anonymous to Bob). This mode of communication is hereby called oriented. As they
are, routing tables do not contain information that could help Alice in this endeavor.
This section �lls that gap. It also analyses the SA, RA, SU, MU and TAR properties
w.r.t. oriented communication sessions, showing that the informant and journalist obtain
the desired anonymity.

4.6.1. Intuition

What oriented communications must essentially achieve is to translate �Bob� into Bob's
pseudonym(s) in the network. The simplest solution would befor Bob to publish its
(possibly certi�ed) anonymous receiver identity, dstB . With this, Alice can compute
PSA ! B = h(dstB srcA) and contact Bob. This however consists in a breach of RA: every
nodeX , when sending or relaying a message towardsPSX ! B , will know that the message
is directed to Bob. A slightly better solution would be to communicate dstB only to

82

4.6. Oriented Communications: Alice Contacts Bob

Alice. In this case, only Alice breaks RA towards Bob. Still, we reject this solution
for the infringement to privacy it implies. Instead, we propose a solution based on the
use of anindirection node I , a regular network node (not necessarily trusted), making
the junction between Alice and Bob. This approach, somewhatinspired from rendez-
vous points in past works (including Tor) [DMS04; Nez+09], tilts the privacy/e�ciency
trade-o� in favor of privacy.

The solution relies on a secret sharing scheme applied to Bob'sdstB value. In the
class of secret sharing schemes of interest here [Sha79], a secret valuev is split into two
shares. Given one share, nothing can be learned about the secret, but with two shares,
that value can be recovered. Here, Bob gives one share ofdstB to I , and the other to
Alice. Through yet another SMPC protocol, Alice and I compute PSI ! B , allowing I
to �nd a route towards Bob. Alice then routes each payload message meant for Bob
towards I , which then forwards it on one of its routes towards PSI ! Bob. As a result,
Alice knows the real-world identity of Bob (but not PSAlice ! B), and I knows PSI ! B

(but not Bob's real-world identity). That is, the knowledge is divided, and no one party
can make the connection between real-world and anonymous network identities. The
solution additionally requires a setup step, during which Alice and Bob exchange some
information. That is, Bob must communicate the shares to Alice in some way, one of
which is encrypted so that only I can access it.

An implication of the proposed solution is that two levels of routing, and two kinds
of routes appear: thesimple routes, built during topology dissemination, and the full
oriented communication routes, consisting of two simple routes, respectively denoted the
�rst and second leg. This also means that there are two levels of SA and RA. So far,
the described protocol provides SA and RA for end-senders and end-receivers ofsimple
routes. However, the ultimate goal of the protocol is to provide SA and RA for end
communicants of oriented communication sessions. We will see that privacy of simple
routes realises privacy of the oriented communication routes.

4.6.2. Detailed Description

Hereby, Alice and Bob are assumed to respectively run nodeA and B in the network.
Bob constructs the two shares ofdstB by sampling the �rst share sh1 $ G, and setting
the second share tosh2 = dstB =sh1 2 G. One share reveals nothing ondstB , sinceG is
cyclic, and for i = 1 or 2, f e � shi j e 2 Gg = G, meaning that, given a shareshi , dstB
could still be any element ofG.

The choice of I must be made by Alice. It can not be made by Bob, since Bob
would consequently be unable to communicate the identity ofI to Alice, because of
the indistinguishability of pseudonyms. Alice choosesI by selecting a random entry
EA ! I = hPrevHops; PSA ! I ; coneA ! I ; cpropA ! I ; NextHop i in her routing table. Note
that Alice choses the indirection node, but actually does not know its identity or IP
address.

Alice and Bob then make contact in some way: Alice gives coneA ! I to Bob, who
answers with sh1 and Encnopk(coneA ! I ; sh2) = Enc(pkZ1 ;Z 2 ;:::;I ; sh2) (where Z1; Z2; : : :
are the relay nodes between Alice and nodeI). Additionally, Alice must communicate

83

4. The Anonymous Protocol

an oriented communication identi�er ocomid, and shared keyk to Bob (the latter will
be used to conceal the payload data from the nodeI). This preliminary exchange can be
performed outside of network, as proposed in the existing protocols such as MIAB and
Pung [IKV13 ; AS16]. But it can also be performed byexceptionallyusing the anonymous
network in a client-server fashion, for Alice to contact some (web) server publicly known
to be run by Bob. The advantage of the latter option is that the anonymous network
ensures Alice's privacy even for this preliminary exchange, but reveals that someone
wants to contact Bob.

Regardless of the method used for the interaction between Alice and Bob, once Alice
has sh1 and Enc(pk:::;I ; sh2), she can engage in a SMPC protocol withI , denoted the
oriented communication initialisation . The goal in this interaction is for I to obtain
PSI ! B . In the process, neither Alice norI learns dstB as long as they do not collude.
The SMPC is run inside the network. In particular, Alice and I communicate using the
circuits built during topology dissemination. That is, Ali ce sends end-to-endpayload
messages in order to contactI . However, for I to answer, simple payload messages
are not su�cient: I does not know route towards Alice, nor her pseudonymPSI ! A .
Therefore we use a construction similar to thereturn trip in route proposals, with reverse
circuit identi�ers rcid . That is, I can answer through thereverse route that Alice uses.

We in fact decide to re-use thertproprelay routing messages in exactly the same
way as in route proposals. This makes the oriented communication initialisation look
like a return trip part of a route proposal, and makes oriented communications harder
to detect. Figure 4.8 depicts how this is achieved. The �rst part presents the sequence
of end-to-end messages that realise the oriented communication initialisation (where I
obtains PSI ! B), and the second part is the actual sending of payload datam, �owing
from Alice to I and then from I to Bob. For conciseness and clarity, many details are
omitted. Although Alice and I are not necessarily neighbors, the role of relay nodes
between them is not represented; cryptographic operationscarried out by Alice and I
are referenced by markers and described below the �gure; andmessages are given with
a generic end-to-end message notationhtype ; Enc(data1); Enc(data2)i , where type 2
f payload ; rtproprelay g. The ciphertexts in these messages implicitly undergo the same
processing as described earlier in this chapter (see Section 4.3.2 for payload messages,
and Section4.5.3.b for rtproprelay ones).

The initialisation of an oriented communication thus requires nine end-to-end messages
in the network, and the sending of each payloadmi requires two end-to-end messages
each. Notice how, in each end-to-end messages, the two Elgamal ciphertexts Enc(data1);
Enc(data2) are put to use. All messages sent by Alice consist of a �rst ciphertext contain-
ing control data (the ocomid and a counter), allowing I to link and re-order messages
(indeed, messages are expected to arrive out of order, by themessage re-ordering mecha-
nism); and only the second ciphertext carries data directlyuseful to the computation of
PSI ! B . Likewise, becauseI can only answer Alice using thereverse route, it can send
only one useful ciphertext at a time: it must answer with rtproprelay messages, and
such messages must contain an encryption of one in the secondciphertext.

The operations carried out by nodes at markers (1), (2), (3),and (4) in Fig. 4.8 are
as follows, knowing that Alice starts with sh1, csh2 = Enc(pkZ1 ;Z 2 ;:::;I ; sh2):

84

4.6. Oriented Communications: Alice Contacts Bob

(1) m0 : payload ; Enc(ocomkocomidk0); Enc(pkocom
A)

m1 : payload ; Enc(ocomkocomidk1); csh2

m2 : payload ; Enc(ocomkocomidk2); Enc(csh1 [0])
m3 : payload ; Enc(ocomkocomidk3); Enc(csh1 [1])
m4 : rtproprelay (rcid); Enc(ocomkocomidk4); Enc(pktmp

A)
m5 : rtproprelay (rcid 0); Enc(ocomkocomidk5); Enc(pktmp

A)
(2) m6 : rtproprelay (rcid); Enc(c[0]); Enc(1)

m7 : rtproprelay (rcid 0); Enc(c[1]); Enc(1)
(3) m8 : payload ; Enc(ocomkocomidk8); Enc(PSI ! B)
Initialisation
Payload sending
(4) m8+ i : payload ; Enc(ocomkocomidk8 + i); Enc(f mi gk)

m0
8+ i : payload ; Enc(ocomkocomidk8 + i); Enc(f mi gk)

A

I

B

: : : : : :

(1) m0; : : : ; m5

(2) m6; m7

(3) m8; f m8+ i g i (4) �
m 0

8+ i
	
i

Figure 4.8. � Messages Involved in an Oriented Communication Initialisation

(1) Alice generates (pkocom
A ; skocom

A) KeyGen(1�) and (pktmp
A ; sktmp

A) KeyGen(1�).
She encrypts all plaintexts, including pkocom

A and pktmp
A , using the Encnopk(coneA ! I ;

�) operation, as any plaintext meant to be sent towardsI . Note that csh2 already
encrypts sh2 under the adequate (product of) public key(s), and can be sent as is
(after a re-encryption). Then, Alice doubly encryptthe other sharesh1: once under
pkocom

A (to prevent I from learning it), and once again to be sent in the circuit.
That is, Alice computes csh1 Enc(pkocom

A ; sh1). An Elgamal ciphertext being
made of two group elements, but only being able to encrypt oneat a time, Alice
then separately encrypts the �rst and second components ofcsh1 (noted csh1 [0]and
csh1 [1]) usingEncnopk(coneA ! I ; �). All six messages are then senton the same circuit
towards I .

(2) Having received pkocom
A , pktmp

A;Z 1 ;Z 2 ;::: , sh2, and csh1 , I computes:

(c[0]; c[1]) := c ReEncpk(pkocom
A ; PlainMult(ScExp(csh1 ; srcI); shsrc I

2))

85

4. The Anonymous Protocol

The node I sends backc[0] and c[1] encrypted under pktmp
A;Z 1 ;Z 2 ;::: in two distinct

rtproprelay messages along the reverse route, as though those messages were part
of a route proposal return trip. This is why Alice must send two rtproprelay mes-
sages in the �rst place: to give the opportunity to I to send back twortproprelay
messages, each containing a piece ofc.

(3) Alice receives and decryptsc = (c[0]; c[1]) = Enc(pkocom
A ; dstB src I), hashes the

result to get PSI ! B , and sends it back to I in a regular payload message, still
using the same circuit as before.

(4) Once I knows PSI ! B , Alice starts sending payload data, under the form of several
jqj-bit chunks mi that �t into Elgamal ciphertexts. These are encrypted �rst w ith
k, the key shared between Alice and Bob (to conceal the payloadfrom I), and
then with Encnopk(coneA ! I ; �), and sent to I again with the same circuit.
When I receives a message with a counter greater to 8, it knows it is payload data.
It selects an entry towards PSI ! B in its routing table, and simply relays payload
messages toB (all messages are sent on the same circuit toB).

The solution described here only allows to build a unidirectional route from Alice to
Bob. To answer, Bob can however usereverse route on the whole route (from B back
to I back to A). We suggest, however, that this reverse route only be used for Bob
to obtain shares of Alice's dstA value, so that Bob can then make a separate oriented
communication initialisation. This ensures a clear separation between Alice's messages,
and Bob's answers to them.

4.6.3. Analysis

The correctness of the SMPC is straightforward, sinceshdst I
1 � shsrc I

2 = dstB src I . Cryp-
tographically speaking, security holds becausedstB is a generator ofG (as any element
of G n f 1g), and assuming that Alice and I do not collude. More speci�cally, by the
IND-CPA property of the Elgamal scheme, the security of the secret sharing, the DL
problem, I does not learn anything exceptPSI ! B , and Alice can not recoverdstB nor
srcI . The formal security proof can be found in Chapter5.

The oriented communication mechanism as a whole leaks almost no information to the
concerned parties (Alice, Bob, andI), nor to observers and relay nodes. In particular,
Alice stays anonymous, even to Bob (though Bob is not anonymous to Alice, of course). I
only learns that someonewants to communicate with PSI ! B . Relay nodes can not know
whether the rtproprelay messages correspond to a route proposal or to an oriented
communication initialisation (note that two di�erent rcid values are used for the two
rtproprelay messages). Relay nodesdo detect communications by the presence of
payload messages, but they can not however know whether those are payload messages
on the �rst leg (between Alice and I) or on the secondone (betweenI and Bob). This
makes it harder for corrupted nodes to infer their own location on the route.

As mentioned previously, the oriented communications consist in another level of rout-
ing. It is on this level, and on oriented communication routes, that the SA, RA, SU,

86

4.7. Summary and Discussion

MU, and TAR must ultimately be ensured. The construction of oriented communica-
tion achieves (almost) all of them. SU holds simply because two sessions between the
same Alice and Bob do not share any common data. Even the indirection nodeI di�ers
from session to session. SA (for Alice) and RA (for Bob) hold,because these properties
already hold on each leg of the full oriented communication route, and because the ori-
ented communication initialisation conceals the identity of Bob to I . Similarly, TAR and
MU hold on each leg. However, they do not completely hold on the full route, because
of the position of the indirection node. Indeed,I clearly breaks MU-session, since it can
link together all messages using theocomid. Likewise, MU-tracing can be broken by a
corrupted Alice and/or Bob colluding with a corrupted indir ection node, since the en-
crypted payloadsf mgk are seen by Alice, Bob andI , and are not changed of appearance
on the route. The TAR property is also impacted, sinceI is able to re-order messages.
These infringements to the MU and TAR properties are howeverdeemed acceptable, for
they do not seem to lead to a breach of SA or RA. In particular, an adversary controlling
Bob and I and breaking MU-tracing does not learn much information: for all she know,
any node in the network could still be the end-sender, since any node in the network can
reach I .

In addition to I fully breaking MU-session, note that all exchanged messages between
Alice and I go through the same circuit and the same relay nodes (and likewise for
the second leg, betweenI and Bob). Although this design choice further degrades MU-
session, the formal analysis in Chapter5 shows that it yields better anonymity overall.
If necessary, MU-session can be emulated by Alice by initialising several communication
sessions with Bob, with di�erent indirection nodes, and to split the �ows of data she
needs to send over several channels (as suggested by Serjantov and Murdoch [SM05]).

Finally, note that oriented communications can take a substantial amount of time to
be carried out, because all the messages during the orientedcommunication initialisation
are delayed, as any other message, by the message re-ordering mechanism.

4.7. Summary and Discussion

In this chapter, a new Internet overlay protocol for strongly private communications
was presented. Combining several existing mechanisms, andintroducing new ones, the
chapter details how SA, RA, MU, SU, and TAR are achieved. This last section further
explains how each protocol component participates in realising these properties. Before
concluding, it also presents various interesting properties of the protocol.

Privacy

Table 4.1 summarises all the privacy-enhancing mechanisms or properties of the protocol,
and speci�es which of SA, RA, MU-session, MU-tracing, or TAR they participate in
achieving. If the mechanism is protecting only against external adversaries (and not
internal ones), a partial tick �/� is used. The SU property is not included in the table,
since it is simply ensured by the absence of common elements across sessions. Also,

87

4. The Anonymous Protocol

each mechanism listed in the table is accompanied with a reference to its corresponding
section number in the thesis, where the reader may �nd the relevant details.

SA RA
MU

TAR
sess. trac.

Homogeneous Architecture (4.1) X X /
Dummy Messages (4.4.1) / / /
Tra�c Rates (4.4.1) X X X
Pseudonyms (4.5.2) X
Shared Circuits (4.2.2.b) X X X
Re-encryption (4.3.2) X X
Message re-ordering (4.4.2) X
Split �ows (4.6.3) X X

Route Prop.
(4.5.1.b, 4.5.3.c)

(4.5.3.c)

Homogeneity
Indistinguishability
Propagation Untrac.
Return Trip Untrac.
Batching w/ payload

X
X
X X
X X
X X

Table 4.1. � Which Mechanism Ensures Which Privacy Property?

Abstractly, the protocol conceals almost everything from all network entities. Exter-
nal adversaries only see random-looking data, from the topology dissemination to the
sending of payload data. The knowledge of internal adversaries (corrupted nodes) is
limited to the IP address of their neighbors, and the previous and next hop of each
circuit they are part of. Additionally, by the relay homogen eity and the use of dummy
messages and controlled tra�c rates, a corrupted node can not know for sure if the pre-
vious hop is the sender or not, and if the next hop is the receiver or not. Pseudonyms,
with the procedure initialising oriented communication, are the key to ensure RA, along
with the security properties of route proposals. Oriented communications are designed
to allow Alice to stay completely anonymous to Bob. MU-tracing is mainly ensured
by re-encryption at each hop. MU-session holds �rst by the shared circuits: a relay
can never know if two messages in the same circuit come from the same sender. The
possibility to split �ows of data over several oriented communication sessions also par-
ticipates in ensuring MU-session. The TAR property, being very broad, is realised by
a collection of mechanism. Roughly, all that participates in MU is also useful for TAR.
Dummy messages, and the homogeneous architecture also thwart attacks from external
adversaries, and tra�c rates attacks from internal ones. But the main key to TAR is
of course the message re-ordering mechanism adapted from mixnets. Finally, the whole
design of route proposals is eventually aimed at concealingthe end-receiver of circuits,
and preventing the adversary from inferring the circuits created (and thus ultimately
protecting MU-tracing). And the fact that routing and paylo ad messages are batched
and re-ordered together can only improve resistance to tra�c analysis.

Table 4.1 however presents security mechanisms and their role in an informal manner.

88

4.7. Summary and Discussion

As discussed in the next chapter, not all the elements in thattable appear in formal
proofs (and in particular, TAR can not be proven).

Compared to previous works, note that cascade mixnets oftenclaim relationship
anonymity is ensured as long as there is only one non-corrupted node on the path
between sender and receiver. In the present protocol, SA, RA, and thus relationship
anonymity can hold even if all relay nodes are corrupted. Indeed, in the general case, a
collusion of corrupted nodes can not even know that it occupies the full path. This is
also a property of Crowds and Tarzan, and of homogeneous networks in general.

Conclusion and Insight

In this chapter, we proposed a new Internet overlay for strongly private communications.
Building upon existing protocols, Tarzan and mixnets in particular, it ensures unobserv-
able communicationsin a fully distributed network. For that, we adapted the message
re-ordering mechanism from mixnets into a peer-to-peer, homogeneous network architec-
ture. Inspired by Tarzan's mimics system, we conducted a thorough analysis showing
that, by introducing dummy messages and controlling the nodes' tra�c rates, it is pos-
sible to prevent the detection of end-sending and end-receiving activities, even from a
global network observer and collusions of corrupted nodes.We additionally proposed a
new way to manage anonymous network identities, showing howrelationship pseudonyms
can allow end-receivers to remain anonymous even to end-senders. The protocol addition-
ally proposes a cryptographically secure implementation of these pseudonyms, leveraging
the homomorphic properties of the Elgamal scheme. Finally,the protocol was designed
without anchoring trust into a particular central authorit y or a group of central servers.
Indeed, privacy stems not from such central entities, but from the willingness of nodes
to help each other in staying anonymous. By design, the more anode helps its neighbors
with cover tra�c, the more those can help it in return.

The resulting protocol is complex, and mainly aimed at userswilling to pay a high
price in e�ciency and latency to obtain very strong privacy g uarantees. The protocol is
also less �exible than plug'n'play protocols that build circuits on demand, such as Tor,
which is now bundled in browsers and allows users to start using the network immediately
after joining it. Indeed, in the proposed protocol, before starting communications, a user
joining the network must make itself known, and learn about other nodes in the network
using route proposals. Additionally, every (oriented) communication session must be
preceded by aninitialisation requiring a secret token from the end-receiver. On the other
hand, in contrast to protocols constructing circuits on demand, the proposed approach
allows to build circuits shared by many senders, thus participating in preventing tra�c
analysis and ultimately ensuring strong sender anonymity.

In the next chapters, the security of the cryptographic components of the protocol is
formally proven, and its practical e�ciency studied.

89

5. Security and Privacy Proofs

5.1. General Methodology . 92

5.1.1. Cryptographic Proof Frameworks . 92

5.1.2. Approach and Assumptions . 96

5.2. Summary of Results . 99

5.3. Formal Security De�nition of Cryptographic Assumptio ns 101

5.4. Security of Pseudonyms . 104

5.5. Security of the Route Proposal Mechanism 106

5.5.1. Modeling � rtprop into an Ideal Functionality F rtprop 106

5.5.2. � rtprop UC-realisesF rtprop . 112

5.5.3. Analysis ofF rtprop . 115

5.6. Security of the Protocol as a Whole . 120

5.6.1. Modeling � into an Ideal Functionality F 120

5.6.2. � UC-Realizes F . 126

5.6.3. Analysis ofF . 127

5.7. Summary . 134

The presented protocol invokes the security properties of various tools, and makes
security claims, but in an informal way. This chapter gathers all the formal treatment
of the protocol and its properties. Namely, it formally studies the security and privacy
guarantees of the protocol, according to the principles ofprovable security.

In a �rst time, Section 5.1 introduces the relevant cryptographic proof frameworks
(mainly, the UC and AnoA frameworks), and presents the approach and methodology to
carry out our formal analysis of the protocol. Section5.2 then informally summarises the
results of the analysis. Then, Section5.3 presents the formal security de�nition of the
cryptographic schemes used in the protocol, such as the Elgamal scheme and hash func-
tions. Finally, Sections 5.4, 5.5, and 5.6 respectively study the security of pseudonyms,
of the route proposal mechanism and its properties, and of the whole protocol along with
the sender anonymity (SA), receiver anonymity (RA), session unlinkability (SU), and
message unlinkability (MU) properties. Each of these properties are formally de�ned,
and proven. Only the tra�c analysis resistance (TAR) proper ty is not studied.

Due to the length of the proofs, this chapter provides onlyproof sketches, and the full
proofs are placed in AppendixB.

91

5. Security and Privacy Proofs

5.1. General Methodology

This �rst section presents the cryptographic frameworks used as base for our analysis. It
then discusses the di�culties encountered in the formal treatment of the protocol (and in
particular, what can and can not be proved with the current state of provable security),
and how we overcome them. Finally, this section summarises all the assumptions on
which our analysis relies.

Table 5.1 describes the notations and symbols used throughout the chapter, that are
not previously de�ned in this thesis.

Notation Description Example
c
� Computational Indistinguishability [Gol01] f X (n) g8n

c
� f Y (n) g8n

A Cryptographic adversary

F UC Ideal Functionality

Sim UC Simulator

E UC Environment

Ch AnoA Challenger

f (x; �) Function with a �xed �rst argument

A f Oracle access to functionf for the adversary A O , A f (x; �)

 Set of all nodes in the network

 c,
 h Subset of corrupted (resp. honest) nodes

Table 5.1. � Cryptographic Notations for Formal Proofs

5.1.1. Cryptographic Proof Frameworks

Following works on Tor [Bac+12; BMS16] or on the recent mixnet cMix [Cha+16] for
instance, the proofs are made in two steps. The �rst step consists in proving that the
protocol realises an ideal functionality using the UC framework [Can13]. In a second
time, this ideal functionality is then further analysed, to prove properties such as SA
and RA. This is done with the AnoA framework [Bac+13], or with a custom security
de�nition depending on the property to prove.

5.1.1.a) The UC Framework

In provable security, the main way to formally express the security of a cryptographic
protocol (as opposed to aprimitive) is using the real vs. ideal paradigm. For an in-depth
introduction to this concept, the reader may refer to a tutor ial by Lindell [Lin16a]. The
basic idea of this proof methodology is to prove that there exists no PPT distinguisher
between a real execution in which an adversary A interacts with a protocol �, and

92

5.1. General Methodology

an ideal execution in which a simulator Sim (also called the ideal adversary) interacts
with an ideal functionality F . The latter is the idealisation of protocol �, and is meant
to capture its security properties. An ideal functionality F is usually devoid of crypto-
graphic operations, and explicitly speci�es the information that an actual adversary gets
by interacting with the protocol in a real-world scenario.

The UC framework [Can13], is directly inspired from this proof methodology. Its
speci�city, compared to the so-called standard model [Lin16a], is to allow to prove se-
curity under concurrent composition of protocol instances. That is, while the standard
model only guarantees security undersequential composition, a protocol proved secure
with the UC framework ensures that, even if several protocolinstances run concurrently,
one protocol instance can not be used to attack another. To achieve universal compos-
ability, the UC framework transforms the distinguisher from the standard model into
an interactive distinguisher. The latter is called the environment, and denoted E. It
is responsible for giving the protocol inputs to the adequate parties, and receives their
outputs. It is not allowed to interact with the parties in any other way, meaning in
particular that it can not play a corrupted party in the proto col. However E controls
the adversary A , which itself can interact with nodes and play a role in the protocol.
A can be considered asE's proxy in the protocol. This seemingly trivial change to the
standard model actually has crucial implications for the proofs. Indeed, while in the
ideal execution in the standard model, the simulator is freeto act as it will, in the ideal
execution of the UC framework, the simulator must carry out the instructions of the
environment just like A would (since otherwise,E would be trivially able to distinguish
between the real and ideal executions). This can also be explained in terms of quanti�ers:
while in the standard model, the proofs must hold such that �for all A , there exists a
simulator Sim� that makes the ideal execution indistinguishable from the real one, in
the UC framework the proof must hold such that �there exists a simulator Sim such
that for all A �. This implies in particular that in the UC framework, it is n ot possible to
rewind of the adversary, a technique largely usede.g. in security proofs of zero-knowledge
proofs schemes. Lindell's tutorial [Lin16a, Section 10.1] gives a good explanation of the
di�erences between the standard model and the UC framework [Lin16a].

In addition to providing security under concurrent composition, the UC framework is
very �exible. It allows to express many types of adversary (static, adaptive, semi-honest,
or malicious, in particular), and many system models [CSV16]. It also comes with a
composition theorem that allows a modular approach to proofs of complex systems:if a
protocol uses one (or several) sub-protocols, the securityof the sub-protocol(s) can be
proved �rst and independently; and to prove the larger protocol, one can then safely
use the sub-protocol's ideal functionality, arguably simpler than the corresponding sub-
protocol. On the downside, the UC framework is also extremely complex. The interested
reader may refer to the full paper [Can13], or to the simpler variant of the UC frame-
work [CCL15], which was designed so as to make the UC framework easier to understand
and use.

In addition to the elements already presented, the UC framework comes with speci�c
terms, that we de�ne here. The UC framework models parties ofthe protocol as in-
stances of interactive turing machines(abbreviated ITI for ITM Instance), with input,

93

5. Security and Privacy Proofs

output, and communication tapes (the latter is dedicated to the receiving of protocol
messages). The real and ideal executions are meticulously de�ned as an executing sys-
tem of ITIs, with rules on which ITI can write on which tape of g iven ITIs. When an ITI
writes in the input tape of another ITI and provides input to i t, it is said to use the latter
as subroutine. The real execution is denotedExec Real

� ;A ;E, and involves the environment
E, a protocol �, and the adversary A . The ideal execution is denotedExec Ideal

F ;Sim;E, and
involves E, a simulator Sim (also called the ideal adversary), and an ideal functionality
F . In the real execution, each party in � is represented by one ITI, and exchanges
messages with the other parties' ITIs. In the ideal execution, those parties are replaced
with dummy parties, which are simple interface, that merely pass the inputs they receive
from E to F and vice-versa (the dummy parties thus use the ideal functionality as sub-
routine). The information available to the real execution adversary A , in the restricted
model considered in this thesis, is basically all that is written on any tape of corrupted
parties' ITIs, and all messagesexchanged between ITIs (including those of honest par-
ties). However, A can not see the (subroutine) input/outputs that parties giv e to other
ITIs that they use as subroutine. The information available to the simulator Sim in the
ideal execution is all that is written on the tapes of corrupted (dummy) parties' ITIs,
and what F explicitly leaks. However, Sim does not see the inputs that honest dummy
parties give to F .

In the UC framework, a protocol � is said secure if it UC-realisesan ideal functionality
F , which corresponds to the requirement:

9Sim s.t. 8A ;
n

Exec Real
� ;A ;E(z)

o

8z2f 0;1g�

c
�

n
Exec Ideal

F ;Sim;E(z)
o

8z2f 0;1g�

where z represents the input that the environment Sim receives (it can be considered
as its source of randomness, from whichE generates all other inputs). Finally, when,
in a real execution, a sub-protocol � sub is replaced by a (sub-)ideal functionality Fsub

used as subroutine by parties in the larger protocol, the proof is said to stand �in the
Fsub-hybrid model�.

5.1.1.b) Analysis of the Ideal Functionality

Usually, proving that a protocol � UC-realises an ideal func tionality F is enough of a
proof in itself. For simple and short protocols, F allows to immediately see what is
learned by the adversary (since the information learned by the adversary is explicitly
speci�ed), and the protocol's security properties appear clearly. However, for network
communication protocols (and more generally, for complex and large protocols), the
ideal functionality often remains too large for the security properties of the protocol
to be trivially deduced from it (although F is generally simpler than �). Thus, it is
common, at least in networking protocols, to further study the ideal functionality in
order to put in evidence the security and anonymity properties of the protocol [Bac+12;
BMS16; Cha+16]. Note that the analysis could be conducted directly on the protocol �,
thus skipping the UC framework step. However, ideal functionalities are usually simpler
than the protocol they model, and being devoid of (almost) all cryptographic operations,
allow for a crypto-free analysis.

94

5.1. General Methodology

The base idea to analyse an anonymous network protocol or a protocol's ideal func-
tionality is to let the adversary choose two possibleneighboring runs of the network. A
random one among them is chosen, and the protocol is then run with A controlling the
corrupted parties. Finally, A is asked to guess which of the two runs was picked [HM08;
Bac+13]. For instance, for SA, the adversary would choose two di�erent end-senders
S0 and S1, a messagem, and an end-receiverR. For a random b $ f 0; 1g, the sender
Sb is then asked to sendm to R. A must guess which ofS0 or S1 sent the message.
In our literature research, we found two existing tools that allow the formalisation of
this security de�nition: the AnoA framework [Bac+13], and a framework by Hevia and
Micciacio [HM08]. The latter does not take into account corrupted nodes, andexpresses
privacy w.r.t. computational indistinguishability. On the other hand, the AnoA frame-
work models node corruption, and allows for aquantitative characterisation of anonymity,
with possibly non-negligible advantage. Indeed, as pointed out by the authors of AnoA,
in the presence of corrupted nodes, the adversary necessarily has a non-negligible ad-
vantage in breaking privacy properties. The Tor and cMix protocols were analysed with
the AnoA framework [Bac+13; Cha+16]. Because we want to carry an analysis of the
protocol in the presence of corrupted nodes, we also choose the AnoA framework.

More precisely, in this thesis, we use two methods. For high-level properties such as
SA, RA, and SU, the AnoA framework [Bac+13] is used (as discussed next, for other
properties we use a custom security de�nition). This framework uses security de�nitions
inspired from the notion of di�erential privacy. Formally, in AnoA, a ideal function F
(or, more generally, any kind of protocol) is said to be (�; �)-� -ind-cdp w.r.t. adjacency
function � if for all PPT adversary A ,

Pr
h
A Ch(F ;�; 0) = 0

i
� e� � Pr

h
A Ch(F ;�; 1) = 0

i
+ � (5.1)

This equation formalises a setup in whichA interacts with a challenger Ch (here, rep-
resented as an oracle ofA), which itself runs F . The challenger is given as input the
ideal functionality F , the adjacency function � , and a bit b 2 f 0; 1g. The function �
models the security property to prove. For instance, the adjacency function for SA, in
its most simplistic form, takes as input r0 = (S0; R; m), r1 = (S1; R; m) and b, and out-
puts (Sb; R; m). The terms r0 and r1 are called thechallenge rows1. Ultimately, if the
inequality (5.1) holds, this implies that A has only asmall (but possibly non-negligible)
probability of distinguishing a run with r0 from a run with r1. Finally, we note that the
AnoA framework is �exible, and allows more complex � functions and various adversary
models. We give more details on how the model considered in this thesis is formalised
into the AnoA framework in Section 5.6.3.b (page 128), which deals with the proof of
the SA, RA, and SU properties.

For route proposal properties, and for the MU property, we propose and use a custom
security de�nition (which we describe in Section 5.5.3). Indeed, these properties can not
be simply expressed with the AnoA framework. The next section discusses this point,
and explains the rationale behind the custom security de�nition that we propose.

1The term row stems from the literature on di�erential privacy in databas es.

95

5. Security and Privacy Proofs

5.1.2. Approach and Assumptions

With the presented tools, the de�nitions and proofs of security and anonymity properties
are divided in the following way. Firstly, pseudonyms are proven secure, using traditional
indistinguishability-based de�nitions. Secondly, the route proposal mechanism is studied.
It is expressed as a protocol �rtprop , and shown to UC-realise an ideal functionality
F rtprop . The latter is then analysed to prove the route proposal homogeneity, route
proposal indistinguishability, propagation untraceability, and return tric untraceability
properties of the route proposal mechanism. (see Section4.5.1.b, page 73). In a third
time, the entire protocol � is described as pseudo-code, using F rtprop as subroutine. It
is then proved to UC-realise an ideal functionality F . Finally, this latter functionality is
analysed, to prove the SA, RA, SU, and MU properties. We choose this two-step analysis
of the protocol (�rst, the route proposal mechanism � rtprop , and then the entire protocol
�) in order to be able to study the route proposal properties w ith F rtprop , and to reduce
the complexity of proving the whole protocol in one large proof of UC-realisation.

The remainder of this section details what can and can not be proved with the tools
we consider to use, and how we work around the issues that arise. It also discusses our
custom security de�nition, and details the assumptions on which all proofs rely.

5.1.2.a) What Can and Can Not be Proved

In the realm of formal proofs, it is widely admitted that, wit h today's knowledge, there
are elements and properties of network communication protocols that can not be proved.
That is, some elements of design, such as dummy messages or message re-ordering strate-
gies, are di�cult to take into account in formal proofs. Ther e are also properties for which
a proof methodology is yet to be discovered (if it exists).

The most straightforward example is the impossibility to prove resistance to tra�c
analysis [SW06]: it seems that any non-trivial protocol will always allow t he adversary to
trace messages, if given enough (polynomial) time. Some works choose to exclude these
elements that are of anon-cryptographic nature from the model and the proofs, stating
that e.g. tra�c analysis attacks should be handled by orthogonal mechanisms[DG09].
Other works take a conservative approach (as it is standard in provable security), and
consider theworst-caseassumption. That is, they make the assumption that the adver-
sary is able to perform tra�c analysis, and in particular, ca n perfectly trace message.
It is the case of the formal treatment of onion routing [CL05] and of the Tor proto-
col [Bac+12].

In this thesis, the security of the protocol relies largely on the impossibility to perform
tra�c analysis (contrarily to low latency protocols). Ensu ring TAR is the role of the
message re-ordering, dummy messages, and controlled tra�crates mechanisms. However,
in light of the above remarks, it is not possible to formally prove that these mechanism
achieve the desired level of protection. As a result, if we were to choose aconservative
approach, we would assume that they do not o�er any protection at all. Therefore, the
global network observer in our considered adversary model would be able to perfectly
trace all messages, which amounts to stating that the protocol provides no anonymity

96

5.1. General Methodology

whatsoever. On the other hand, if we were to choose to make the(strong) assumption
that the protocol perfectly resists tra�c analysis, we obta in security guarantees that
are possibly too optimistic . For the sake of obtaining proofs as close to the actual
anonymity provided by the protocol, we propose a middle ground between these two
extremes. Namely, we assume that internal adversariescan perform tra�c analysis, but
not external ones. This boils down to assuming that the dummymessages and controlled
tra�c rates mechanisms of the protocol prevent network observers from distinguishing
real from dummy messages, and thwarts the observation of messages exchanged between
neighbors. This chosen approach translates into an assumptions, formalised in the UC
framework under an ideal functionality F link , presented in the next section.

This settles the question of TAR. Another element that arguably participates in the
security of the protocol is the concurrency among network events,e.g. among route pro-
posals, or oriented communications. Informally, the fact that several events happen in
parallel in the network provides cover tra�c , and introduces uncertainty in the adver-
sary's observation. However, this element can not be included in the formal proofs either.
To illustrate this issue, the most straightforward example is that of the route proposal
homogeneity property, which states that it should be impossible to distinguish a self-
proposal from a relayed one. This property is formalised by running the network either
with Y self-proposing to a (possibly corrupted) proposeeX , either with Y proposing to
X a route towards R. Let us assume in a �rst time, for the sake of the argument, that
there is no concurrency among network event, as it is the casefor the analysis of Tor
with the AnoA framework [Bac+13], and thus there is only one route proposal occurring
in the network at any time. Then, distinguishing the self-proposal from the relayed one
is trivial for the adversary, since only the latter necessitates a return trip. Indeed, if,
during the challenge route proposal, the adversary sees that one of its corrupted nodes
Z is solicited as part of a return trip, it can be sure that a relayed proposal was executed.
Now, let us assume that there are always several route proposals being carried out at the
same time, which can also be modeled in the AnoA framework, and which better re�ects
a real-world scenario. Then the situation is not as favorable to the adversary. Indeed,
if, during the challenge, a corrupted nodeZ is solicited as part of a return trip, she can
not know for sure whether this return trip relates to the challenge route proposal, or to
some other route proposal happening in parallel. In a thorough proof, this uncertainty
of the adversary should be quanti�ed, or at least over-approximated. However, there
is no formal foundations for such an analysis, not in AnoA, nor in any other existing
framework, to our knowledge.

To overcome this di�culty, we choose to largely over-approximate the adversary's
advantage: since the impact of the presence of one (or several) corrupted nodes can not
be accurately quanti�ed, it is considered that it fully brea ks the property (i.e. that it
gives a probability 1 for the adversary to break the property). For instance, for RA,
we consider that, if there is a corrupted node on the second leg of the challenge session,
the adversary �nds the receiver with probability 1. The bene�t of this approach is that
it yields results that hold even against a very strong adversary, able to control all the
tra�c in the network (i.e. even when there is no concurrency among network events).

97

5. Security and Privacy Proofs

On the other hand, this only gives a lower bound on the actual anonymity provided by
the protocol.

On top of these di�culties, the MU property, as well as the return trip untraceability
property of route proposals, can not simply be expressed with the AnoA framework
(and any other existing framework, to our knowledge). Indeed, AnoA is mainly suited
to expresshigh levelproperties, pertaining to communication sessions (such asSA, RA,
and SU), but not to express more �ne-grained properties that necessitate to formulate
challenges that do not apply on full sessions, but on messages, or parts of routes.

Another (orthogonal) issue arises for the formalisation ofthe route proposal properties.
Indeed, even if we set aside the issue of corrupted relay nodes in the above example about
the route proposal homogeneity property, there is another pitfall. For instance, the
adversary may know, from past interactions in the network, that the corrupted proposee
X , before the challenge, hasn1 routes towards Y , and n2 6= n1 routes towards R. Thus,
at the end of the challenge, whenX learns either PS = PSX ! Y or PS = PSX ! R , X
can see that it previously hadn1 or n2 routes towards this pseudonymsPS, and deduce
whether Y was self-proposing or not. More generally, route proposal properties must
be studied by taking into account all the previous route proposal the adversary was
involved in, and what she has learned through them. We do not know of a way to take
into account all past actions of the adversary, nor theside-channel information in the
example of route proposal homogeneity. Therefore, in a �rststep, we aim at proving
these propertiesoutside of the network dynamics, and without taking these elements
into account.

In light of these remarks, we propose in Section5.5.3 a custom security de�nition
based on adversarialviews, and use it to prove the MU property, and the properties of
route proposals. This de�nition is designed to address all the above mentioned issues.
That is, it circumvents the issue regarding the corrupted relay nodes' impact on the
adversary's advantage (by allowing to model challenges in which the corrupted relay
nodes are the same in both cases,i.e. whether b = 0 or b = 1). Secondly, it allows the
expression of more�ne-grained challenges, onportions of routes rather than on entire
communications. Finally, it allows to analyse a route proposal out of the dynamics of
the network, thus avoiding the need to take into account all the information that the
adversary may have obtained from past route proposals.

5.1.2.b) Assumptions

Here, we summarise all the cryptographic and network assumptions made throughout
the chapter. Generally, the adversary is consideredPPT , and can eavesdropall com-
munication links, and/or corrupt an arbitrary fraction of t he network. The adversary is
considered passive (orsemi-honest), and static (as opposed toadaptive), meaning that
the set of corrupted node is �xed at the beginning of the network lifetime and does not
change afterwards. AppendixB.2 expands on how these adversary models translate into
the UC framework. Our results rely on the assumption that the pseudonym indistin-
guishability property, and the IND-CPA, IK-CPA, and USS pro perties of the Elgamal

98

5.2. Summary of Results

schemes hold. Ultimately, this means that our proofs rely onthe hardness assumption
of the DDH problem, and on assumption that the hash function used is indistinguish-
able from a random function. All these cryptographic properties and hard problems are
presented in Section5.3.

Additionally, when proving the security of the full protoco l, with oriented communi-
cations, it is assumed that end-senders and indirection nodes do not collude, so that
the adversary does not learn thedst value of honest nodes. Also, it is assumed that
route proposals essentially consist in the computation of apseudonym, and do not leak
information such as the route length or identity of the nodeson the route. Without loss
of generality, it is also assumed that there is an upper boundlmax on the length of the
created route.

The assumption presented in the previous section, on the impossibility for external
adversaries to perform tra�c analysis, translates into an i deal functionality F link in
the UC framework. This ideal functionality abstracts the du mmy messages policy, the
controlled tra�c rate, and the message re-ordering mechanisms. That is, in the real UC
execution, nodes do not exchange messages, but only communicate by input/outputs,
using F link as subroutine. As a result, UC proofs are said to standin the F link -hybrid
model. This assumption itself is studied in Appendix B.7, which presents a protocol that
arguably UC-realisesF link under strong assumptions on the tra�c load. On the other
hand, it is assumed that corrupted nodes can perform tra�c analysis. For instance, on
a route of the following form:

(S cid1�! Z1
cid2�! Z2

cid3�! Z3
cid4�! Z4

cid5�! R)

if Z1 and Z4 are corrupted, it is assumed that they are able to know that they are on the
same route. That is, whenZ1 sends a message toZ2 with cid2, it knows that the message
will arrive to Z4 from Z3 and with cid4. Note however that, although the receiverR is
situated just after the corrupted node Z4, this does not mean, in the general case, that
Z4 knows that R is the receiver: for all it knows, R could be another relay towards a
receiver further down the road.

5.2. Summary of Results

This section summarises the results of the formal analysis of the protocol. First, we show
that the route proposal mechanism UC-realises the ideal functionality F rtprop (de�ned in
Fig. 5.6 on page110), and then that the full protocol UC-realises the ideal functionality
F (de�ned in Fig. 5.10 on page125). Without further analysis, a simple inspection of
F rtprop and F immediately shows that external adversaries do not get any information
whatsoever about route proposals nor about oriented communications. This is in partic-
ular due to the fact that proofs stand in the F link -hybrid model. Therefore, we are able
to show that all properties (SA, RA, SU, MU, and route proposal properties) perfectly
hold against any PPT external adversary.

Against corrupted nodes (i.e. internal adversaries), the situation is more complex.
Firstly, it can be noted that both ideal functionalities lea k dstsrc values to end-senders

99

5. Security and Privacy Proofs

and/or end-receivers. This is due to the way pseudonyms are computed. Indeed,
F rtprop implicitly contains the sub-protocol from Fig. 4.5 (on page 75) that computes
the pseudonyms during route proposals; and, similarly,F implicitly contains the sub-
protocol from Fig. 4.8 (on page85) that computes the pseudonyms during oriented com-
munication initialisations. The ideal functionalities sh ow that, during a route proposal,
a (corrupted) end-receiverR learns dstR srcX w.r.t. proposeeX , and during an oriented
communication initialisation, a (corrupted) end-sender S learns dstRsrc I w.r.t. the end-
receiver R and the indirection node I . Another remark that can be made by inspecting
the ideal functionalities, is that (corrupted) relay nodes do not learn information from
the link messages they relay. More exactly, they do not learninformation from the mes-
sagesthemselves. However, the very fact that a corrupted node is solicited to relay a
message, on a speci�c route (with a speci�ccid value and next hop node) does indirectly
reveal information. As already discussed in the previous section, quantifying the advan-
tage this information provides to the adversary is far from trivial, and not possible with
the tools at hand.

These general remarks do not however prevent the proofs of the protocol properties
to be carried out, since we work around these shortcomings. With the approach and
assumptions described in Section5.1.2, the proof of each property results in a quan-
ti�cation of the probability that the adversary breaks that property. This probability
depends in particular on the number of corrupted nodes in thenetwork. Namely, the
result for each property is as follows:

� Sender anonymity (SA) holds with probability equal to
� j
 j� lmax

j
 c j

�
=
� j
 j

j
 c j

�
, which

corresponds to the probability that the �rst leg of the orien ted communication is
devoid of corrupted nodes.

� Receiver anonymity (RA), holds with the same probability a s SA (up to a negligible
additive factor, however), which corresponds to the probability that the secondleg
of the oriented communication is devoid of corrupted nodes.

� Session unlinkability (SU) holds with probability
� j
 j� 2lmax +1

j
 c j

�
=
� j
 j

j
 c j

�
, which corre-

sponds to the probability that both legs are devoid of corrupted nodes.

� Message unlinkability (MU) is divided into MU-session and MU-tracing, as de�ned
in Chapter 1 (on page 13). We do not make an attempt at proving MU-session,
because it seems that it is trivially broken by the adversary. More accurately,
we were not able to �nd a meaningful formal de�nition of MU-session that is not
trivially broken by A . To prove MU-tracing, we express it in two ways, depending
on whether the challenge consists in tracing messages on the�rst or second leg of
an oriented communication route. It appears that MU-tracin g for the second leg
holds perfectly (up to a negligible probability), and with p robability

� j
 j� 2
j
 c j

�
=
� j
 j

j
 c j

�

for the �rst leg. This discrepancy is due to the privileged place that the indirection
node occupies in oriented communications.

� Finally, the four route proposal properties are proven to hold perfectly (up to a
negligible probability).

100

5.3. Formal Security De�nition of Cryptographic Assumptio ns

In these results, everynegligible factor that appears is due to the leaking of pseudonyms
or encryptions of one to the adversary. In all cases, these informations give a negligible
advantagenegl(�), by the indistinguishability of pseudonyms and the IK-CPA property
of the Elgamal scheme. Additionally, note that we are able toshow that the route pro-
posal properties holdperfectly only because we formally de�ne these properties in a way
that nulli�es the impact of corrupted nodes, and because ourcustom security de�nitions
takes route proposalsout of context. Although this approach signi�cantly reduces the
impact of the results, this is a �rst step towards proving these properties in more general
cases.

In a network with j
 j = 1000 nodes and a maximum route length oflmax = 10 hops,
these results lead to the following probabilities for SA, RA, SU, and MU-tracing to hold.
When there are j
 cj =j
 j = 1% of corrupted nodes in the network, SA and RA hold
with probability 0 :9, SU holds with probability 0:83, and MU-tracing (on the �rst leg)
holds with probability 0 :98. However, these �gures decrease rapidly when the ratio of
corrupted nodes augments. Indeed, whenj
 cj =j
 j = 10%, SA and RA hold only with
probability 0 :35, and SU with probability 0:13. However, these results compare well with
those of a recent analysis of the Tor network [BMS16]. The authors of the study show
that, with only 20 corrupted Tor servers among the 6000 ones in the network at the
time 2, which means a corruption ratio of c=n � 0:33% < 1%, SA and RA respectively
hold with probability � 0:85 and � 0:75. Chapter 6 further illustrates these results, and
completes them with an empirical quanti�cation of anonymit y, inspired from a (non-
formal) methodology proposed by the authors of Tarzan.

5.3. Formal Security Definition of Cryptographic
Assumptions

Before describing the proofs, the cryptographic assumptions and hard problems used in
this work must be formally de�ned. In particular, the de�nit ions of the semantic security
(IND-CPA), key-privacy (IK-CPA), and universal semantic s ecurity (USS) properties are
presented. Recall that the groupG is de�ned for primes p and q such that p = 2q+ 1, as
the subgroup of Zp

� of order q. Appendix A provides more details on the construction
of G.

5.3.a) The Decisional Di�e-Hellman and Discrete Logarithm Proble ms

The DDH problem consists, giveng; ga; gb; gc 2 G4, with a; b $ Zq, in distinguishing
whether c = abor c $ Zq. Solving this problem in polynomial time is believed impossible
in the subgroup G considered in this work. The hardness assumption of the DDH
problem is denoted in short as theDDH assumption.

2https://metrics.torproject.org/networksize.html

101

5. Security and Privacy Proofs

5.3.b) IND-CPA Security of PKE Schemes

Semantic security is one of the most basic security de�nitions in cryptography. The
Elgamal scheme is proven IND-CPA under the DDH assumption [TY98]. The generic,
game-based indistinguishability de�nition is as follows.

De�nition 20 (Indistinguishability under Chosen Plaintext Attacks (IND -CPA)).
Let (KeyGen; Enc; Dec) be a PKE scheme, and� 2 N. The scheme is said to ensure the
IND-CPA property if the function Advind-cpa

A (�) is negligible for any PPT adversary A ,
where

Advind-cpa
A (�) :=

�
�
�Pr

h
Exp ind-cpa

A (�) = 1
i

� 1=2
�
�
� (5.2)

with Exp ind-cpa
A (�) depicted in Fig. 5.1.

Exp ind-cpa
A (�)

(pk; sk) KeyGen(1� ; pp) ; b $ f 0; 1g
(st; m0; m1) A (pk)
b� A (st; Enc(pk; mb))
return b = b�

Exp uss
A (�)

pp Setup(1�) ; b $ f 0; 1g
(pk0; sk0) KeyGen(1� ; pp)
(pk1; sk1) KeyGen(1� ; pp)
(st; m0; m1; (r0; r one0); (r1; r one1)) A (pk0; pk1)
For i 2 f 0; 1g:

ci Enc(pki ; mi ; r i); conei Enc(pki ; 1; r onei)
c0

i ReEncnopk(conei ; ci)
b� A (st; cb; c1� b)
return b = b�

Exp ik-cpa
A (�)

pp Setup(1�) ; b $ f 0; 1g
(pk0; sk0) KeyGen(1� ; pp)
(pk1; sk1) KeyGen(1� ; pp)
(st; m) A (pk0; pk1)
b� A (st; Enc(pkb; m))
return b = b�

Figure 5.1. � IND-CPA, IK-CPA, and USS Security Games

5.3.c) Key-Privacy of PKE Schemes

Key-privacy [Bel+01] is a property of to PKE scheme which is orthogonal to IND-CPA
security. Abstractly, ciphertexts of a scheme satisfying key-privacy do not leak informa-
tion about the public key under which they are encrypted. This property only makes
sense for public keys that are based on the samepublic parameters. For instance, in
the Elgamal scheme, that would be public keys belonging to the same groupG. Thus,
to formulate key-privacy, we add Setup, a fourth operation to the description of PKE
schemes, that inputs 1� and outputs public parameterspp, that are then fed to KeyGen3.
Generally, pp is assumed to be publicly known to any entity in the system. The general
de�nition of key-privacy, formally denoted IK-CPA, is as fo llows.

3 In a scheme description without the Setup operation, KeyGen implicitly generates its own public
parameters on-the-�y .

102

5.3. Formal Security De�nition of Cryptographic Assumptio ns

De�nition 21 (Indistinguishability of Keys under Chosen Plaintext Attac ks
(IK-CPA)). Let (Setup; KeyGen; Enc; Dec) be a PKE scheme with a common key gener-
ation procedure Setup, and let � 2 N. The scheme is said to ensure the IK-CPA property
if the function Advik-cpa

A (�) is negligible for anyPPT adversary A , where

Advik-cpa
A (�) :=

�
�
�Pr

h
Exp ik-cpa

A (�) = 1
i

� 1=2
�
�
� (5.3)

with Exp ik-cpa
A (�) depicted in Fig. 5.1.

5.3.d) Universal Semantic Security of URE

Universal semantic security informally states that a ciphertext can not be recognised
after it has been re-encrypted. In the case of the Elgamal scheme for instance, univer-
sal semantic security actually stems from the IND-CPA and IK-CPA properties. The
security gameExp uss

A (�) de�ning USS actually look like a merger of the IND-CPA and
IK-CPA games. Here, the notion is presented according to thede�nition by Golle et
al. [Gol+04], but speci�cally adapted to the Elgamal scheme.

De�nition 22 (Universal Semantic Security under Re-Encryption (USS)). Let
(Setup; KeyGen; Enc; Dec; ReEncnopk) be the Elgamal PKE scheme augmented with the
ReEncnopk operation (de�ned in Section 4.3.2), and let � 2 N. The Elgamal scheme
is said to ensure theUSS property if the function Advuss

A (�) is negligible for any PPT
adversary A , where

Advuss
A (�) := jPr[Exp uss

A (�) = 1] � 1=2j (5.4)

with Exp uss
A (�) depicted in Fig. 5.1.

5.3.e) Hash Functions

The Keccak function family, and in particular the SHA-3 hash function, has its security
de�ned by comparison to a truly random function Rand, which returns truly random
number (but always the same number for the same input). De�ning the security of hash
functions in this way is di�erent from modeling the hash function as a random oracle.
Indeed, contrarily to the random oracle model(ROM), here, the function Randis directly
accessible to the adversary, and can not beprogrammed in reduction proofs [Fis+10],
thus better modeling real-world setups.

The authors of Keccak de�ne the security of their function in the following way
(adapted from [Ber+11])

De�nition 23 (Hash Function Indistinguishable from a Rando m Function).
A hash function h : f 0; 1g� ! f 0; 1gn is indistinguishable from a random function Rand
if the function Advh =Rand

A (�) is negligible for any PPT adversaryA , where

Advh =Rand
A (�) :=

�
�
�Pr

h
A O (�) ! 0

�
�
� O = h

i
� Pr

h
A O (�) ! 0

�
�
� O = Rand

i �
�
�

103

5. Security and Privacy Proofs

The above de�nition is used to prove a part of the security of pseudonyms. How-
ever, the more standard notions of preimage and collision resistance are also used, and
presented below for the sake of completeness. Note that the above de�nition of indis-
tinguishability from a random function implies all three fo llowing properties (de�nitions
are adapted from [RS04]):

De�nition 24 (Hash Function Properties).

Preimage resistance

Advh � pre
A (�) := Pr

h
h(x) = h(x0)

�
�
� x $ f 0; 1g� ; x0 A (1� ; h(x))

i
� negl(�)

2nd preimage resistance

Advh � 2ndpre
A (�) := Pr

h
x 6= x0^ h(x) = h(x0)

�
�
� x $ f 0; 1g� ; x0 A (1� ; x)

i
� negl(�)

Collision resistance

Advh � coll
A (�) := Pr

h
x 6= x0^ h(x) = h(x0)

�
�
� (x; x 0) A (1�)

i
� negl(�)

5.3.f) Secret Sharing

This thesis makes use of a custom and extremely simple secretsharing scheme, which
was already presented in Chapter4. It consists, given e 2 G, in splitting e into two
sharessh1 $ G and sh2 = e=sh1. The reconstruction of e from the shares involves a
single group multiplication.

Adapting the de�nition from generic secret sharing scheme [MOV96], the present
scheme is saidsecureif given only sh1 or only sh2, no information (in the sense of infor-
mation theory) is learned about e. Clearly, this scheme is correct and secure w.r.t. the
above de�nition since in G, for any given e1, f e1 � e2 j e2 2 Gg = G, and thus given one
share and no information on the other, the secret could be anygroup element.

5.4. Security of Pseudonyms

The �rst protocol component that is studied in this chapter a re the pseudonyms. As
explained in Section 4.5.2, the pseudonyms must ensure theuniqueness, one-wayness,
and indistinguishability properties. This section de�nes them formally and proves that
our implementation of pseudonyms guarantees them. Note that the security of the
protocols computing the pseudonyms (e.g. during a route proposal) is not treated in this
section, but in following ones.

The following theorem de�nes the three properties for the proposed pseudonym im-
plementation.

Theorem 1 (Security of Pseudonyms). Let G be a publicly known group where
the DDH assumption holds, andh : G ! f 0; 1gn be a public hash function satisfying
De�nition 23 with n polynomial in � . Denote by f : Z �

q � G ! f 0; 1gn the function
computing the pseudonyms,i.e. which on input (src; dst) returns h(dstsrc).

104

5.4. Security of Pseudonyms

The following properties hold for anyPPT adversary A with direct (public) access to
f (�; �):

� Uniqueness: 8 src 2 Zq� ,

Advps� uniq
A (�) := Pr[f (src; dst1) = f (src; dst2) j dst1; dst2 $ G] � negl(�)

� One-wayness: 8 src 2 Z �
q,

Advps� ow
A (�) := Pr

h
f (src; A f (�;dst) (1� ; src)) = f (src; dst)

�
�
� dst $ G

i
� negl(�)

� Indistinguishability : 8 src 2 Z �
q

Advps� ind
A (�) :=

�
�
�Pr

h
Exp ps� ind

A ;src (�) = 1
i

� 1=2
�
�
� � negl(�)

with Exp ps� ind
A ;src de�ned in Fig. 5.2.

Exp ps� ind
A ;src (�)

dst0; dst1 $ G ; b $ f 0; 1g
Let PS1 := f (src; dstb) and PS2 := f (src; dst1� b)
b� A f (�;dst 0);f (�;dst 1)(1� ; src; PS1; PS2)
return ? if f (src; dst0) or f (src; dst1) was called by A
Otherwise, return b� = b

Figure 5.2. � Pseudonym Indistinguishability Security Gam e

Intuitively, uniqueness states that, for any nodesX; R; R 0 such that R 6= R0, PSX ! R

is di�erent from PSX ! R0 with all but negligible probability. This ultimately preve nts
X from mistaking an end-receiver for another, and ensures thegood functioning of
the routing in the network. One-wayness ensures thatdstR can not be recovered from
a pseudonym, and ultimately that a node can not impersonate another node (as end-
receiver). Indistinguishability implies that a pseudonym does not leak any information on
the end-receiver it designates, or rather on thedst value of the end-receiver it designates.

The one-wayness property is modeled by givingA oracle access tof (�; dst), allowing
her to compute pseudonyms for the challengedst value. Note that this modeling is
stronger than simply giving A one pseudonymf (src; dst). This accounts for the fact that
several corrupted nodes can collude to attack one speci�c pseudonym, or equivalently
that the adversary can have polynomially many pseudonyms that she knows designate
the same end-receiver. This is a worst-case scenario, sinceit implicitly assumes that
corrupted nodes in the collusion werealready able to link these pseudonyms together in
some way. Likewise, in the pseudonym indistinguishabilitygame, A has access to two
oracles f (�; dst0) and f (�; dst1), to represent a scenario in which each corrupted node

105

5. Security and Privacy Proofs

X i 2 f X 1; : : : ; X n g (for a polynomial n) already know that f (srcX i ; dst0) and f (srcX i ;
dst1) designates respectivelyR0 and R1. The de�nition states that, even in this case, if
a new corrupted nodeX n+1 comes in with f (src; dst0) and f (src; dst1), it can not know
which value designates which end-receiver. Finally, note that the properties hold for all
src value in Z �

q, meaning that any src value A can choose will not give her a better than
negligible advantage.

Proof Sketch 1 (Theorem1). For a full proof, see Appendix B.1. Each property is proven
independently. Although all three properties can be provedunder the assumption thath
is indistinguishable from Rand, when possible, we simply considered it as a hash function
with e.g. collision resistance. The versatility of the Keccak function family allows this.

� Uniqueness is trivially proven based on the assumption that the hash function used
is collision resistant.

� We show that if there exists an adversaryA successfully outputtingdstA such that
f (src; dstA) = f (src; dst), then it is possible to construct an adversaryB that
distinguishes h from a random function Rand. Note that intuition would suggest
that one-wayness can be proved from assuming the preimage and 2nd preimage
resistance of the hash function, the reduction fails because it is not possible to
construct an adversary B that successfully binds its own challengeh(x) with A 's
and at the same time answerA 's oracle queries consistently. This is because the
proof doesnot take place in the random oracle model. Alternatively, it is possible
to prove that indistinguishability implies one-wayness.

� Indistinguishability is trivially proven under the assumption that the hash function
is indistinguishable from a random one. Intuitively, pseudonym indistinguishabil-
ity holds becausedstsrc is passed through a function that destroys all algebraic
properties between (pairs of) pseudonyms.

5.5. Security of the Route Proposal Mechanism

In Section 4.5.1.b, four properties for the route proposal mechanism were put forward:
route proposal homogeneity, route proposal indistinguishability, untraceable route pro-
posal propagation, and untraceable return trip. The present section de�nes them more
formally, and proves them. First, the topology dissemination phase is given in pseudo-
code � rtprop , then modeled as a UC ideal functionalityF rtprop . Then, � rtprop is shown to
UC-realise F rtprop . Finally, based on a study of the information an adversary gets from
F rtprop , the four properties are proved with a custom security de�nition.

5.5.1. Modeling � rtprop into an Ideal Functionality F rtprop

Prior to describing � rtprop , we present the two ideal functionalities that it uses as sub-
routines: F link and F reg. They are respectively described in Figures5.3 and 5.4. Their
pseudo-code, and more generally, the pseudo-code of all protocols and ideal function-
alities in this chapter, is written in the message-state paradigm, as it is standard for

106

5.5. Security of the Route Proposal Mechanism

describing network protocols in the UC framework [Bac+12; Cha+16]. That is, pseudo-
codes in this chapter featureentry points corresponding to the receiving of messages,
inputs, or subroutine outputs. These entry points are marked by the upon keyword.

1 : The functionality F link is responsible for delivering link messages.

2 : upon input (link-send; sid; Y; m) from party X :

3 : Output (link-rcvd; sid; X; m) to party Y .

Figure 5.3. � The Link Message Functionality F link

1 : The functionality F reg is responsible for delivering key pairs consistently across all com-
ponents of the protocol.

2 : upon input (keys; sid; X) from party P:

3 : if T [X] = ? then set T [X] KeyGen(�).

4 : if P = X or (P is the adversaryand X 2
 c) or P is F rtprop then

5 : Output T [X] to party P.

Figure 5.4. � The Register Functionality F reg

The functionality F link is used by nodes to exchange messages, instead of using their
communication tapes as they would normally do in the UC framework. That is, F link ab-
stracts the AES link encryption, dummy messages, controlled tra�c rates, and message
re-ordering, and models the assumption of the impossibility to observe link messages for
external adversaries. This assumption is broken down in Appendix B.7, by attempting
to UC-realise the F link ideal functionality. A node X usesF link by giving it link-send
subroutine inputs, with sid the session identi�er of the protocol � rtprop of which nodeX
is part, and Y the neighbor of X to which the messagem must be sent. Upon such an
input, F link simply gives alink-rcvd subroutine output to party Y , specifying the message
m and the identity of X , letting Y know that the message is from its neighborX (also,
this models the fact that, in an Internet overlay, a node knows the IP address of its
neighbors).

Functionality F reg is responsible for delivering key pairs. It is necessary in order to
then composeF rtprop with the full ideal functionality F , and its role will thus be made
clear in the modeling of the full protocol in Section 5.6. The functionality F reg answers
requests of the form (keys; sid; X), where sid is again the session identi�er of � rtprop , and
X speci�es which party's keys are requested. The functionality maintains a table T of
already generated keys, to answer consistently if the key pair of given party is requested
more than once. Note that F reg only answers to request forX 's key pair if the request
comes from the partyX itself, or from the adversary if X is corrupted. F reg also answers
request from the ideal functionality F rtprop : the latter needs these keys, in particular, to
be able to output encryptions of oneconeX ! R .

Functionalities F link and F reg being de�ned, Fig. 5.5 (page 108) describes � rtprop , the
protocol for the topology dissemination phase. More speci�cally, it describes the pseudo-

107

5. Security and Privacy Proofs

1 : upon input (setup; sid; src X ; dstX): // Init. node
2 : Store srcX and dstX ; Query F reg and store (pkX ; skX)

3 : upon input (proposer; sid; (Y; cid); P SX ! R ; (Y 0; cid0)): // Propose a route
4 : if P SX ! R = h(dstX

src X) then // Self-proposal
5 : Send hrtprop kcid; c1 ; c2 i to Y , where c1 Enc(pkX ; dstX) and c2 Enc(pkX ; 1)
6 : else // Relayed proposal
7 : Retrieve (routing-table-entry; P SX ! R ; cpropX ! R ; coneX ! R ; (Y 0; cid0))
8 : Send hrtprop kcid; c1 ; c2 i to Y

9 : upon receiving messagehrtprop kcid; c1 ; c2 i from Y : // Proposer $ Proposee
10 : if cid is unknown then // Proposee, 1 st step
11 : Generate (pk tmp

X ; sk tmp
X) KeyGen(1�), and send

rtprop kcid; c0

1 ; c0
2

�
to Y ,

12 : where c0
1 ReEncnopk(c2 ; ScExp(c1 ; src X)) and c0

2 Encnopk(c2 ; pk tmp
X)

13 : Store (proposee; (Y; cid); cprop := c1 ; cone := c2 ; (pk tmp
X ; sk tmp

X))
14 : elseif cid relates to a proposal made by X then // Proposer, 2 nd step
15 : Retrieve the information related to the ongoing route pr oposal with cid
16 : if the proposal is a self-proposal then
17 : Compute P SX ! Y = h(Dec(skX ; c1)) and pk tmp

Y = Dec(skX ; c2)

18 : Send

rtprop kcid; c0
1 ; c0

2

�
to Y , where c0

1 Enc(pk tmp
Y ; P SX ! Y) and c0

2 Enc(pk tmp
Y ; 1)

19 : else
20 : Set c2 PlainMult (c2 ; pk tmp), and c0

i ReEncnopk(coneX ! R ; Dec(skX ; ci)) for i 2 f 1; 2g
21 : Sample rcid $ f 0; 1g� and store (relay; (X; cid); null ; rcid; (Y 0; cid0))
22 : Send

rtproprelay kcid0krcid; c 0

1 ; c0
2

�
to Y 0

23 : elseif 9 stored (proposee; (Y; cid); cprop; cone; (pk tmp
X ; sk tmp

X)) then // Proposee, 2 nd step
24 : Get P SX ! R = Dec(sk tmp

X ; c1), and store (routing-table-entry; P SX ! R ; cprop; cone; (Y; cid))
25 : Output (proposee; P SX ! R ; ReEncone(cone); (Y; cid))

26 : upon receiving hrtproprelay kcid krcid; c 1 ; c2 i from Y : // Return trip
27 : if 9 h(Y; cid); _ ; coneX ! R ; NextHops i 2 RT then // Relay fwd
28 : if NextHop = (Y 0; cid0) and rcid is unknown then
29 : Sample rcid $ f 0; 1g� , (pk tmp ; sk tmp) KeyGen(1�)
30 : Store (relay; (Y; cid); rcid; sk tmp ; rcid 0; (Y 0; cid0))
31 : Set c2 PlainMult (c2 ; pk tmp), and c0

i ReEncnopk(coneX ! R ; Dec(skX ; ci)) for i 2 f 1; 2g

32 : Send

rtproprelay kcid0krcid 0; c0
1 ; c0

2

�
to Y 0

33 : elseif NextHop = ? then // End-rcvr reached
34 : Compute P S = h(Dec(skX ; c1)), and get pk tmp = Dec(skX ; c2)
35 : Set c0

1 Enc(pk tmp ; P S) and c0
2 Enc(pk tmp ; 1)

36 : Send

rtproprelay kcid krcid; c 0
1 ; c0

2

�
to Y

37 : elseif 9 stored (relay; (Y 0; cid0); rcid 0; sk tmp ; rcid; (Y; cid)) then // Relay back (or
38 : Set c0

2 ReEncone(Dec(sk tmp ; c2)), c0
1 ReEncnopk(c0

2 ; Dec(sk tmp ; c1)) // Proposer 2 nd step)
39 : if rcid 0 = null then h [rtprop kcid0] else h [rtproprelay kcid0krcid 0]
40 : Send

h; c0

1 ; c0
2

�
to Y 0

Figure 5.5. � Description of � rtprop for Node X

code of any given nodeX , de�ning all its actions during the topology dissemination phase.
This consists in proposing routes, and handling route proposals from its neighbors. Since
the code is from nodeX 's point of view, it simultaneously depicts the behavior of X
as proposee, proposer, end-receiver, or relay. With regards to the UC framework, the
�gure describes the code that each ITI runs in the real execution: there are as many
running copies of this code as there are nodes in the network.It is assumed that every
node X maintains a local state during the protocol execution, and that, upon receiving
an input from the environment or a message from another node,X behaves according to

108

5.5. Security of the Route Proposal Mechanism

this state. Here, a node stores routing information (although, in the code, actual routing
tables do not explicitly appear). In the code, the parties denoted Y or Yi are the node's
direct neighbors in the topology graph, while R denotes a distant receiver. Messages
are denoted by hmsgi . The entry points of the code (marked by the upon keyword),
either correspond to an input that the ITI of node X receives from the UC environment
E, or to the receiving of a message from another node (i.e. another ITI). We review
these entry points in details in the following paragraphs. The �rst entry point (line 1
of the code) is asetup input, given once and only once by the environment to the ITI
of node X . It instructs the node to initialise itself with speci�c srcX and dstX values,
and to obtain its keys from F reg. The second entry point (line 3) is a proposerinput
from the environment E, asking the node to propose a route to its neighborY using a
new circuit identi�er cid. The speci�c route that X must propose is identi�ed by the
pseudonymPSX ! R of X towards the end-receiverR4, along with the �rst hop (Y 0; cid0).
E being semi-honest, this route is assumed present in the node's routing table (and more
generally, all inputs are assumed well-formed). NodeX may behave in two ways upon
a proposerinput, depending on whether X is asked to perform a self-proposal (line4),
or to relay another proposal (line 6). In any case,X eventually sends artprop message
to the speci�ed neighbor Y . This sending of message is implicitly done through the
F link ideal functionality: in order to simplify the code descript ion, the instruction �send
messagem to Y � is used to formally mean �give subroutine input (link-send; sid; Y; m)�.
The same goes for the receiving of messages.

The third entry point (line 9), denotes the receiving of artprop message. As per
the description of the protocol from Chapter 4, X can react in three di�erent ways to
this kind of messages, depending on whether it is the �rst (line 10), second (line 14),
or third (line 23) message exchanged between the proposee and the proposer. Note
that in the second case (whenX is proposer w.r.t. this route proposal), two cases arise,
depending on whetherX is self-proposing or not. Also, in the last case, whenX is a
proposee receiving the �nal rtprop message, note that,X makes aproposeroutput to
the environment, specifying the newly learned pseudonym, the encryption of one, and
the next hop of the new route. The last entry point (line 26) deals with the receiving
of a rtproprelay message, that must be relayed from the proposee to the receiver and
back. This part of the code describes the behavior of node X as: relay on the way
from proposee to the receiver (line28), receiver (line 33), relay from receiver to proposee
(line 37), and proposer (line 37 as well).

Then, Fig. 5.6 (page110) models the ideal functionality F rtprop corresponding to � rtprop .
In F rtprop , and in the remainder of this chapter, the set of nodes in the network is denoted

, and the subset of honest (resp. corrupted) nodes is denoted
 h (resp.
 c). The code
of the functionality F rtprop is also written with the message-state paradigm. However,
it is not given for a speci�c node X , but for the whole network. Indeed, in the ideal
execution, as per the UC framework, each node is representedby a dummy ITI (or
dummy party) that accepts inputs from the environment and automatically pass them

4Note that the identity of R is not known to X . The term R is only here for denotational purposes.

109

5. Security and Privacy Proofs

1 : F rtprop internally runs an instance of � rtprop along with F link .
2 : All inputs received by F rtprop are automatically passed on to the adequate party in � rtprop , and conversely

for outputs (unless explicitly stated otherwise). Note tha t F rtprop knows all the routes and the relay nodes
that compose them perfectly, as well as the src and dst values.

3 : upon input (setup; sid; src Y ; dstY) from dummy party Y :
4 : Pass the input to party Y in the internal � rtprop instance.

5 : upon input (proposer; sid; (X; cid); P SY ! R ; (Z1 ; cid0)) from dummy party Y :
6 : Pass the proposer input to party Y in � rtprop

7 : F rtprop deduces the end-receiver R, and the nodes (Z1 ; : : : ; Z n) between Y and R.
8 : Let Z0 := Y , Zn +1 := R
9 : Let pred(Z i ; Z j) = true i� Z i and Z j are the 1st and last honest nodes in (Z0 ; : : : ; Z n +1)

10 : Send the following to Sim, as the corresponding events happen in � rtprop

11 : (I) if Y; Z1 ; : : : ; Z n ; R 2
 c and X 2
 c [
 h then

12 : (rtprop ; sid; X
cid

 �! Y
cid 0���! (Z1

cid 1�! : : :
cid n � 1

�! Zn)
cid n���! R; dst R

src X) when R is solicited
13 : (II) elseif Y; R 2
 c and X 2
 c [
 h and 9 1 � i � j � n s.t. pred(Z i ; Z j) then

14 : (rtprop ; sid; ? ! (Z j
cid j +1

�! : : :
cid n�! Zn) ! R; dst R

src X) when R is solicited

15 : (rtprop ; sid; X
cid

 �! Y
cid 1���! (Z1

cid 1�! : : :
cid i � 1

�! Z i) ! ? ! R) when Y sends the last rtprop msg.
16 : (III) elseif X; R 2
 c and 9 0 � j � n s.t. pred(Y; Z j) then

17 : (rtprop ; sid; X
cid

 �! Y ! ?) when X receives the �rst rtprop message.

18 : (rtprop ; sid; X $? ! (Z j
cid j +1

�! : : :
cid n�! Zn) ! R; dst R

src X) when R is solicited.
19 : (IV) elseif R 2
 c and X 2
 h and 9 0 � j � n s.t. pred(Y; Z j) then

20 : (rtprop ; sid; ? ! (Z j
cid j +1

�! : : :
cid n�! Zn) ! R; dst R

src X) when R is solicited
21 : (V) elseif X 2
 c and Y; R 2
 h then

22 : (rtprop ; sid; X
cid

 �! Y ! ?) when X receives the �rst rtprop msg
23 : (V I) elseif Y 2
 c and X 2
 c [
 h and 9 1 � i � n + 1 s.t. pred(Z i ; R) then

24 : (rtprop ; sid; X
cid

 �! Y
cid 1���! (Z1

cid 2�! : : :
cid i�! Z i) ! ?) when Y sends the last rtprop message

25 : For each sub-sequence (Z i 0; : : : ; Z j 0) � (Z1 ; : : : ; Z n) of corrupted nodes framed by two honest nodes

Z i 0 and Z j 0 that is solicited for relaying a message, send (subpath; sid; (Z i 0
cid i 0+1

�! : : :
cid j 0
�! Z j 0)), when the

corrupted nodes in � rtprop are actually solicited (cidk denotes both the cid and the rcid value of the
kth link)

26 : if X 2
 h and R 2
 c then wait for (continue; sid; X
cid

 �! Y) from Sim
27 : When X in � rtprop outputs (proposee; sid; P S X ! R ; coneX ! R ; (Y; cid)), relay it.

Figure 5.6. � The Ideal Functionality F rtprop

on to the ideal functionality. All the dummy parties use the same, unique instance of the
ideal functionality. This explains why F rtprop 's code entry points are inputsfrom dummy
parties rather than the environment. Also, F rtprop only features entry points for inputs
(for setupand proposerinputs, the same as � rtprop), and not for received message, since in
a UC ideal execution, no messages are actually exchanged: all happenswithin the ideal
functionality (this is the very principle of ideal function alities in the UC framework).
We further describe F rtprop in the following paragraphs.

Aside from the already mentioned high-level di�erences between F rtprop and � rtprop ,
note that the structure of their code is also quite di�erent. While � rtprop is really a
pseudo-code that could be turned in an actual implementation of the protocol, F rtprop is
a theoretical object that realises all the protocol within itself. This means in particular
that it plays the role of all nodes. Actually, here, we have chosen to modelF rtprop by

110

5.5. Security of the Route Proposal Mechanism

making it run an internal instance of � rtprop , meaning that F rtprop re-creates the execution
of the protocol internally: it executes copies of the code inFig. 5.5 for each node, and
make those nodes exchange messageswithin itself . When a route proposal concludes in
the internal � rtprop instance, F rtprop accordingly makes aproposeeoutput to E (via the
adequate dummy party Y), by simply passing on the output of what X in the internally
ran � rtprop outputs (see line27 of the code). But F rtprop does not simply run � rtprop : as
any UC ideal functionality, it also explicitly leaks information to the (ideal execution)
adversary. That is, F rtprop explicitly sends information to the ideal adversarySim. These
information leaks are actually most of the code, and all happen in the second entry point
of the protocol, for proposerinputs (line 5).

Let us review in more details this part of the code. First, note that, to mirror the
notations from Chapter 4, Y always denotes the proposer,X the proposee,R the end-
receiver, and Z i the relay nodes between proposer and end-receiver5. When the ideal
functionality receives (proposer; sid; (X; cid); PSY ! R ; (Y 0; cid0)) from dummy party Y
(meaning that the UC environment E instructed Y to propose a route), it �rst copies
that input to Y in the internally ran instance of � rtprop . Then, F rtprop deduces all the
information on the route to propose (line 7). Indeed, becauseF rtprop plays the role of
all nodes in the network, it knows all src and dst, as well as all public and private keys.
It also knows, at any point in time, the exact routing table of all nodes. Consequently,
from the pseudonymPSY ! R and the �rst hop (Z1; cid0), F rtprop deduces the full route,
meaning all nodes, including the end-receiver. It is also assumed that F rtprop knows
which nodes are corrupted and which ones are honest. From allthese information, and
depending on which nodes on the route are corrupted,F rtprop starts leaking information.
More exactly, there are six di�erent cases, depending on thecorruption state of the
proposeeX , proposer Y , end-receiver R, and relay nodesZ i . They are marked with
roman numerals in Fig. 5.6. In addition to these six cases, the ideal functionality always
leaks intermediary corrupted sub-paths, i.e. portions of routes made of corrupted relay
nodes that are neither the proposee, proposer, or end-receiver (line 25).

To take an example, let us look at case (IV), on line 19 of the code. It corresponds
to the case when the end-receiver is corrupted, possibly along with the last relay nodes

Z j +1 ; : : : ; Zn before R. The leaked information, here, is (rtprop; sid; ? ! (Z j
cid j +1�! : : : cidn�!

Zn) ! R; dstR
srcX), giving the following information Sim: the session identi�er sid, the

description of the last portion of the route (that is made of corrupted nodes from Z j +1

up to R), and the value dstRsrcX . The question mark denotes the fact that the route
may start before Z j , but this portion of the route is not leaked. Note that this le aked
information corresponds to what an actual adversary in an execution of our protocol
over the Internet would learn about this particular route pr oposal in which nodesZ j +1 ;
: : : ; Zn ; and R are corrupted. These explicit leaks are one of the fundamental features
of the UC framework: by looking at an ideal functionality, it is possible to see what the
adversary learns, much easier so than by studying the full protocol.

Note that each information leak is made at a speci�c moment: for our proof that

5Note that these naming naming conventions for parties does not appear in the code of � rtprop , because
the latter is given from the point of view of one node, always d enoted X .

111

5. Security and Privacy Proofs

� rtprop UC-realisesF rtprop , it is necessary that the leaked information re�ects the actual
ordering of events in a real-world network. For instance, leak (IV) is made only when the
corrupted end-receiverR is solicited in the � rtprop instance that F rtprop internally runs,
since this would be the moment at which an actual network adversary would learn (in
particular) the dstR srcX value. Actually, this is the one of the main reasons why we set
out F rtprop to internally run an instance of � rtprop , to be able to deduce a correct ordering
of information leaks. Although this is not necessaryper se, because this ordering could
be explicitly enforced in the code ofF rtprop , this approach makes the code easier to write
and read.

Finally, note that, in the UC framework, an ideal functional ity is usually devoid of
cryptographic material and operations. However, because this ideal functionality is going
to be used as subroutine by the bigger protocol �, which needsthe encryptions of one
acquired by route proposals (in particular to encrypt payload messages), there is no
choice but to makeF rtprop output it.

5.5.2. � rtprop UC-realises F rtprop

Below is formulated the theorem de�ning the security of the route proposal part of the
protocol. Because � rtprop usesF link and F reg as subroutines, it stated as standingin
the (F link ; F reg)-hybrid model, in accordance with the UC framework terminology. This
underlines the fact that those two ideal functionalities are indeed assumptions on the
system model (in particular, F link is the assumption that network observer can not
distinguish dummy messages from real ones). Figure5.7 shows the relations between
A , Sim, � rtprop , and F rtprop in the real and ideal executions. As it is standard in UC
proofs [Can+02], Sim internally runs an copy of A 6.

E

A

� rtprop

F linkF reg

E

A

� rtprop F link

F link

F rtprop

Sim

F reg

Figure 5.7. � Setup for Real (left) and Ideal (right) Executi ons

Theorem 2 (� rtprop uc-realizes F rtprop). Assuming the IND-CPA, IK-CPA, and USS
properties of the Elgamal scheme, the protocol� rtprop UC-realises F rtprop in the (F reg;

6More speci�cally, there are several standards for the proof setups, and Sim does not necessarily runs
a copy of A . See Appendix B.2 for a discussion on this matter.

112

5.5. Security of the Route Proposal Mechanism

F link)-hybrid model, in the presence of semi-honest static adversaries. That is, there
exists Sim such that for all A :

n
Exec Real

� rtprop ;A ;E(z)
o

8z2f 0;1g�

c
�

n
Exec Ideal

F rtprop ;Sim;E(z)
o

8z2f 0;1g�

Proof Sketch 2 (Proof Sketch of Theorem2). The full proof is given in Appendix B.3,
where all the simulation cases are detailed (depending on the corruption state of the
proposer, proposee, end-receiver, and relay nodes).

The system setup for the proof is as follows.Sim internally runs a copy of A , relays
the communications betweenE and A honestly. Sim also honestly relaysA 's queries to
F reg for corrupted nodes' keys. AlthoughSim does see the key pairs of corrupted nodes
in this process, it does not need this knowledge to perform the simulation: F reg is here
only for convenience. Note that, the proof lies in theF link -hybrid model. Thus, corrupted
nodes (played byA) and honest nodes (simulated bySim) exchange messagesvia F link

(which Sim internally runs as well). But more importantly, the F link -hybrid model means
that Sim does not need to simulate messages exchanged between honestnodes (since it is
assumed that the adversary can not even observe them).

Sim is not allowed to queryF reg for the honest nodes' key. However, by the IK-CPA
property (and because (public) keys are never revealed),Sim can safely replace them by
random keys that it generates. The key pair of nodeX is denoted (pkSim(X) ; skSim(X)).
Then, a crucial point behind the proof is that, becauseSim gets to see all the inputs thatE
gives to corrupted nodes (as per the way the UC framework functions), Sim can perfectly
know all the routes and links constructed between corruptednodes. This knowledge allows
Sim to infer information on the end-receivers of speci�c route proposals, and to be sure
that when it sends a message with somecid to a speci�c corrupted node, this message
will deterministically follow a known and expected route.

Then, the construction of Sim is mainly driven by the proposer inputs from A to
E, the proposeeoutputs from A to E, and the rtprop and subpathsleaks from F rtprop .
These inputs, outputs, and leaks contain all the necessary information to simulate honest
nodes. Another crucial idea in the construction of the simulator is that every single
rtprop or subpath leak can be simulated completely independently. Even, for instance,
the two rtprop leaks in the (III) leaking case can be simulated independently,i.e. Sim
can simulate them without knowing that they relate to the same route proposal. More
generally, (almost) every portion of route made of corrupted nodes framed by two honest
node can be simulated independently,i.e. Sim does not need to know that these sub-paths
belong to the same route to correctly simulate them.

As an example, the case(III) is simulated roughly as follows. The simulatorSim

receives the �rst leak, (rtprop; sid; X
cidX -Y ���! Y ! ?) when, in the internally ran instance

of � rtprop within F rtprop) the node X receives the �rst rtprop message. From this leak,
Sim knows that it must simulate the honest nodeY making a route proposal, but does
not however know whether it is self-proposing, and who the end-receiver is. Anyhow,
Sim begins by simulating the sending of thertprop message thatY would send to the

113

5. Security and Privacy Proofs

corrupted nodeX in a route proposal: it sends
D

rtprop kcidX -Y ; cprop := Enc(pkSim(Y) ; r); cone := Enc(pkSim(Y) ; 1)
E

(5.5)

At some point, the adversaryA , on behalf ofX , answers back (as it would do in a real
execution) with ciphertextsEnc(pkSim(Y) ; r srcX) and Enc(pkSim(Y) ; pktmp

X). The simulator
Sim can decrypt these ciphertexts, in particular to getpktmp

X . Then, the simulator waits
for the dummy party X in F rtprop to output (proposee; sid; PSX ! R ; coneX ! R ; (Y; cidX -Y))
(this output is given by F rtprop directly to Sim, according to the way the UC framework
works). At this point, Sim can simulate the sending byY of the �nal rtprop message,
in particular by encrypting PSX ! R learned in the proposeeoutputs with pktmp

X .
This terminates the simulation of the �rst leak of case(III) . The second leak,(rtprop;

sid; X $? ! (Z j
cid j +1
�! : : : cidn�! Zn) ! R; dstR

srcX), is sent byF rtprop to Sim whenR in the
internal � rtprop receives thertproprelay message. This second leak, although it pertains
to the same route proposal as the �rst leak, is simulated totally independently (i.e. no
data from the simulation of the �rst leak is necessary here). Here, Sim must simulate
the honest nodeZ j sending artproprelay to the corrupted nodeZ j +1 , and towards the
corrupted end-receiverR. By construction of the simulation (which we do not detail here),
the simulator Sim is sure to have an encryption of one under the keypkZ j +1 � pkZ j +1 � � � � �
pkR , noted coneZ j ! R . Consequently,Sim crafts ciphertexts Encnopk(coneZ j ! R � ; dstR �

srcX �)
and Encnopk(coneZ j ! R � ; pktmp 0). Here, dstR �

srcX � comes from the leak, andpktmp 0 is a
fresh key generated bySim. The simulator sends these ciphertexts in artproprelay
message toZ j +1 , which is controlled byA . Then, becauseA is semi-honest, and by the
way routes are built in the simulation (as in a real execution), the message is ensured
to reach R. However, since from Z j +1 to R, all nodes are corrupted, this is done byA
herself (Sim only needs to properly simulate the passing of messages through F link). At
some point, the adversary will send back, on behalf ofZ j +1 , a rtproprelay message,
meant to Z j . Sim receives that message on behalf of the honest nodeZ j , and simply
discards it. This concludes the second leak of case(III) .

Constructing the simulator is only half of the proof. It remains to show that the
simulation is indistinguishable from a real execution, from the point of view of A and E.
First, note that, because the simulator is constructed to follow the order of leaks made by
F rtprop (and of the inputs and outputs to and fromE), and becauseF rtprop itself is designed
to make these leaks according to the ordering of events in a real execution (by running
an internal instance of � rtprop), Sim is sure to simulate all events in the adequate order
for A . Furthermore, cryptographically speaking, it can be formally shown that if there
exists an adversary distinguishing between this simulation and a real execution with a
non-negligible advantage, then it can be used to construct an adversary breaking the IND-
CPA, IK-CPA or the USS property of the Elgamal PKE scheme with a non-negligible
advantage. In particular, remark that, if an adversary is capable of distinguishing the
simulation from a real execution based on the fact that thertprop message (5.5) (shown
in the above paragraph) encrypts a random group elementr instead of dstR , then it is
possible to construct an adversary that breaks the IND-CPA property of the Elgamal
scheme. Likewise, if the adversary can distinguish based onthe fact that ciphertexts seen

114

5.5. Security of the Route Proposal Mechanism

by the corrupted nodeX are completely independent from those seen by the corrupted
node R, then it is possible to construct an adversary that breaks the USS property of the
scheme (intuitively, this holds because in a real execution, nodes on the route re-encrypt
ciphertexts).

5.5.3. Analysis of F rtprop

Because the protocol is complex, in particular compared to small cryptographic protocols,
the functionality F rtprop , in itself does not directly make the properties of the route
proposal mechanism appear. After some general remarks, this section studies the four
desired properties of route proposals based on the leaks made by F rtprop : route proposal
homogeneity, route proposal indistinguishability, propagation untraceability, and return
trip untraceability. Beforehand, however, the custom security de�nition used to do so is
introduced.

5.5.3.a) General Remarks

It is clear, by inspection of F rtprop , that if no node is corrupted, no information is given to
the adversary (i.e. observers of the network learn nothing about route proposals and the
created routes). As a result all four security properties ofthe route proposal mechanism
hold perfectly against external adversaries.

In the presence of corrupted nodes, the adversary gets leaksmostly under the form
of corrupted sub-paths, that are chains of corrupted nodes. Then, due to the way
pseudonyms are computed in the protocol (as described by Fig. 4.5 in Chapter 4), during
a route proposal with a corrupted end-receiver, the valuedstRsrcX is leaked. Also, the
�rst leaking case (I) is of particular interest, since it highlights an inherent limitation of
the protocol: when the proposerY , the end-receiverR and all relay nodes in between are
corrupted, the adversary unavoidably learns the identity of the proposeeX . Other leak-
ing cases show, however, that if there is at least one honest node between the corrupted
Y and the corrupted R, then the two halves of routes are leakedindependently. As it
appears clearly in the proof, if there is no concurrency among route proposals,A can
trivially link these two halves together. However, in the general case, it is unclear what is
the probability that the adversary makes this link: it depen ds at least on the tra�c load
(and the concurrency among route proposal), and the location in the topology graph of
the nodes involved in each route proposal.

5.5.3.b) Formalisms to De�ne Route Proposal Security

For reasons described in the introductory section (Section5.1.2), the properties of route
proposals are proven (based onF rtprop) using a custom security de�nition. This security
de�nition is presented here. Recall that this de�nition sho uld allow: (i) to de�ne chal-
lenge in which the same intermediary corrupted sub-paths are solicited, (ii) to de�ne
challenges onportions of route (rather e.g. than on a full return trip), and (ii) to issue
challenges about one particular route proposalout of the dynamics of the network.

115

5. Security and Privacy Proofs

An other element to take into account when designing this security de�nition, is that
F rtprop is not meant to be run by itself: it must be used in accordance to the route
proposal policy. In particular, it is not possible to provid e F rtprop with a proposerinput
for X , for a route that the latter does not known. Said otherwise, aproposerinput can
only be given to F rtprop if the latter made a proposeeoutput for the corresponding route.
Furthermore, it is not allowed to e.g. supply twice the sameproposerinput. This is a
speci�city of analysing a functionality like F rtprop , that, in contrast with the analysis of a
functionality that takes as input a sendcommand instructing to start a communication
session: while communication sessions can be arbitrarily launched by the adversary,
route proposals must be made in a speci�c order. Consequently, we introduce a wrapper
to the functionality F rtprop , denoted W . The resulting functionality W (F rtprop) takes
input values of the following form:

I W =
�
graph; RtP ropPolicy; f (setup; sid; srcZ ; dstZ) gZ 2

�

That is, it takes as input a topology graph, a speci�c route proposal policy, and a
setup input for each node. From that, W drives the topology dissemination phase, by
iteratively producing all the proposerinputs for F rtprop .

With this wrapper, we propose a custom security de�nitions based onviews, where
the view of the adversary in the execution of the functionality W (F rtprop)(I W) consists
of all the leaks made byF rtprop . More precisely, we consider thatW (F rtprop)(I W) (for
some input I W) corresponds to: (i) the set of all proposerinputs that W provided to
F rtprop for corrupted nodes, (ii) the set of all proposeeoutputs that F rtprop made for
corrupted nodes, and (iii) the set of all information that is leaked by F rtprop during the
execution. Then, to be able to de�ne the security propertieswithout taking the dynamics
of the network into account, we denoteW (F rtprop)(I W)[RP(X $ Y ! R)] the information
output by W (F rtprop)(I W), restricted to the information directly related to route p roposal
RP(X $ Y ! R).

With this formalism, the de�nition of e.g. route proposal indistinguishability roughly
corresponds to the impossibility of distinguishing between W (F rtprop)(I W)[RP(X $ Y ! R0)]
and W (F rtprop)(I W)[RP(X $ Y ! R1)], for honest end-receiversR0 and R1, and corrupted
nodesX and Y . Here, RP(X $ Y ! R0) and RP(X $ Y ! R1) are called the challenge route
proposals. However, this notion of security is trivial: without any co ntext at all, given
one of these two views, there is just no element whatsoever for the adversary to reason
about the challenge. Therefore, wemanually provide some context, namely by augment-
ing the views with encryptions of ones and pseudonyms. For instance, for route proposal
indistinguishability, where X and Y are the corrupted nodes that arechallenged nodes
(since, in a real-world scenario, those are the node which must not distinguish between
route proposals towards di�erent end-receivers), the viewW (F rtprop)(I W)[RP(X $ Y ! Rb)]
(for b 2 f 0; 1g) is augmented with the pseudonym and encryption of one ofX and Y to-
wards end-receiverRb. More generally, we de�ne the adversary's view concerning route

116

5.5. Security of the Route Proposal Mechanism

proposal RP(X $ Y ! Rb), for an input i 2 I W , and for challenged nodes in the setN as:

ViewN
RP(X $ Y ! Rb)(i) := f o;f Z; PSZ ! R ; coneZ ! Rb j Z 2 nodes(o) \
 cg

j o 2 W (F rtprop)(i)[RP(X $ Y ! Rb)];

nodes(o) \ (
 c n N) = ;g

That is, the view contains all outputs o of W (F rtprop)(i)[RP(X $ Y ! R)] that contain
the challenged nodes (andonly those nodes), and for all the corrupted nodesZ appearing
in these outputs, the view providesPSZ ! Rb and coneZ ! Rb.

However, this is still not enough to yield a meaningful security de�nition. Actually,
much more context can be provided to the adversary, while still being able to prove the
properties. To better re�ect a real-world scenario, where the adversary may have other
corrupted nodes in the network than the challenged ones, we further introduce a set
Context that speci�es the pseudonyms and encryptions of one of othercorrupted nodes
in the network (according to a speci�c input i 2 I W). It is de�ned as follows, with N
the set of challenged nodes, andR0 and R1 the two potential receivers:

ContextNR0 ;R1
(i) := f (Z; srcZ ; dstZ ; (pkZ ; skZ)) j Z 2
 cg

[
�
(Z; R0; PSZ ! R0; coneZ ! R0; cidZ ! R0)

j Z 2
 c; R0 2
 n f R0; R1 g
	

[f (Z; (Ra; PSZ ! Ra ; coneZ ! Ra ; cidZ ! Ra))
j Z 2
 c n N ; a 2 f 0; 1gg

This set contains, for all corrupted nodesZ 2
 c, and for all end-receiver R0 other
than R0 and R1, the de-anonymisedpseudonym and encryption of one ofZ towards R0.
It also contains, for all Z 2
 c, and the de-anonymisedpseudonym and encryption of
one of Z towards R0 and R1. We say that those elements arede-anonymised, because
they are explicitly accompanied with the identity of the end-receiver they are associated
to. Adding the information in Context to the security de�nition aims at modeling a
scenario where all corrupted nodes have de-anonymised all end-receivers, except the
challenged nodes inN that did not de-anonymised R0 and R1. Indeed, in Context, all
corrupted nodes but the challenged ones get all the de-anonymised information about
end-receivers, and in theView, the challenged nodes get the (anonymised) information
for either R0 or R1 (plus all outputs from W (F rtprop)). This thus represents a very
constraining scenario. Note however, that all the context we add to the adversarial
views are of cryptographic nature. It does not put the challenge route proposals in the
dynamic of the network, nor does it contain information on other route proposals than
the challenge one (such as the intermediary corrupted sub-paths leaked during other
route proposals). This e�ectively means that the proposed security de�nition, contrarily
to the AnoA framework (in particular) does not take the dynam ic of the network into
account. It does, however try to manually account for the information the adversary
may have obtained in past interactions, by providing de-anonymisedpseudonyms and
encryptions of one.

117

5. Security and Privacy Proofs

5.5.3.c) De�nition and Proof of Route Proposal Security

With the proposed formalism, De�nition 25 describes the four security properties of
route proposals. In order to restrict the challenge scenario, we de�ne each property on a
subsetI PROP

W � I W of inputs. In particular, we restrict challenges to honest end-receivers,
and to challenges that solicit the same intermediary corrupted sub-paths in both cases.
For instance, route proposal indistinguishability is de�n ed only over inputs i 2 I RP I

W
that yield executions in which the return trips of both chall enge route proposals go
through the exact same set of corrupted nodes. Our security results thus hold only for
such executions, and security for route proposals soliciting di�erent corrupted nodes in
their return trip is not studied. Finally, in what follows, w e sometimes denote corrupted
sub-paths that make up a route asZ k = f Zk;1; : : : ; Zk;n k g, for k 2 [1; K], where K 2 N,
nk � lmax for all k. In each Z k , all nodes are corrupted, except one or both of theend
nodes.

De�nition 25 (Route Proposal Security). The route proposal mechanism is said to
be secureif 8i 2 I PROP

W ,
f view0(i) gi 2 I W

c
� f view1(i) gi 2 I W

holds, with viewb and I PROP
W de�ned as follows for each of the four propertiesPROP2

f RPH; RP I; PU; RT U g:

Route Proposal Homogeneity (RPH): For distinct nodesX , R0 = Y , R1 = R,

viewb(i) :=
�
X; Y; R; Contextf X g

Y;R (i); Viewf X g
RP(X $ Y ! Rb)(i)

�

Where I RP H
W is the set of input values forW (F rtprop) that yield an execution for

which X 2
 , and Y; R 2
 h, and in which both RP(X $ Y ! Y) and RP(X $ Y ! R)
occur, and the latter requires a return trip that does not solicit any corrupted
node.

Route Proposal Indistinguishability (RPI): For distinct nodes X , Y , R0, R1,
and any relay nodes inZ1; : : : ; ZK , let N := f X; Y g [Z 1 [� � � [Z K . De�ne
viewb(i) as follows:

viewb(i) :=
�
X; Y; R0; R1; ContextNR0 ;R1

(i); ViewN
RP(X $ Y ! Rb) (i)

�

Where I RP I
W is the set of input values forW (F rtprop) that yield an execution for

which X; Y 2
 , R0; R1 2
 h, all Zk;i k are corrupted exceptZ1;nk , Zk6=1 ;1 and
Zk6=1 ;nk , and where bothRP(X $ Y ! R0) and RP(X $ Y ! R1) occur, and both re-
quire a return trip soliciting the exact same corrupted sub-paths Z1; : : : ; ZK .

Propagation Untraceability (PU): For distinct nodesX , Y , X 0, Y 0, R0, R1, and
any relay nodes inZ1; : : : ; ZK and Z 0

1; : : : ; Z 0
K 0, let N := f X; Y g [Z 1 [� � � [Z K ,

N 0 := f X 0; Y 0g [Z 0
1 [� � � [Z 0

K 0. De�ne viewb(i) as follows:

viewb(i) :=
�
X; X 0; Y; Y0; R0; R1; ContextN [N 0

R0 ;R1
(i);

ViewN
RP(X $ Y ! R0) (i); ViewN 0

RP(X 0$ Y 0! Rb) (i)
�

118

5.5. Security of the Route Proposal Mechanism

Where I P U
W is the set of input values for W (F rtprop) that yields an execution

in which X; Y; X 0; Y 0 2
 , R0; R1 2
 h, all Zk;i k are corrupted exceptZ1;nk ,
Zk6=1 ;1 and Zk6=1 ;nk (and likewise for all nodesZ 0

k0;i k 0
), and where RP(X $ Y ! R0),

RP(X 0$ Y 0! R0) and RP(X 0$ Y 0! R1) all occur, and the two latter ones requirea
return trip soliciting the exact same intermediary corrupt ed sub-paths Z 0

1; : : : ;
Z 0

K .

Return Trip Untraceability (RTU): For nodes R0, R1, for any distinct nodes
X 0, Y0, X 1, Y1, and any relay nodes inZ1; : : : ; ZK and Z 0

1; : : : ; Z 0
K 0, let N :=

f X 0; Y0g [Z 1 [� � � [Z K , N 0 := f X 1; Y1g [Z 0
1 [� � � [Z 0

K 0. De�ne viewb(i) as
follows:

viewb(i) :=
�
X 0; X 1; Y0; Y1; R0; R1; ContextN [N 0

R0 ;R1
(i);

View
N n(Z k 1 [���[Z k 2)
RP(X 0$ Y0 ! R0) (i); View

Z 0
k 0

1
[���[Z 0

k 0
2

RP(X b$ Yb! Rb) (i)

!

Where I RT U
W is the set of input values forW (F rtprop) that yields an execution for

which: (i) X 0; Y0; X 1; Y1 2
 , and either R0; R1 2
 h or R0 = R1 2
 c; (ii) all
Zk;i k are corrupted exceptZ1;nk , Zk6=1 ;1 and Zk6=1 ;nk (and likewise for all nodes
Z 0

k0;i k 0
); (iii) both RP(X 0$ Y0! R0), RP(X 1$ Y1! R0) occur and respectively solicit

intermediate sub-pathsZ1; : : : ; ZK and Z 0
1; : : : ; Z 0

K 0 ; and (iv) return trips of these
two proposal have one (or more) intermediate sub-path(s) incommon. That is,
9k1; k2 2 [0; K � 1], 9k0

1; k0
2 2 [0; K 0 � 1] s.t. (Z k1 ; Z k1+1 ; : : : ; Z k2) = (Z 0

k0
1
; Z 0

k0
1+1 ;

: : : ; Z 0
k0

2
).

Note that route proposal homogeneity and indistinguishability are simply de�ned as
the indistinguishability between two views. However, for propagation and return trip
untraceability, the adversary gets acommit view (the same whetherb = 0 or b = 1), and
a challenge view(that depends on the value ofb). Indeed, in propagation untraceability
models the impossibility to link together two route proposal towards the same end-
receiver. Thus, there must be a �rst view provided which commits to one end-receiver
R0, and a second view that either relates to a route proposal towards the same end-
receiver R0, or towards a di�erent one R1. The same reasoning applies to return trip
untraceability. Secondly, note that, in the de�nition of ea ch property, the challenge
view is mainly focused on the end-receiver. This means that amechanism secure by
De�nition 25 does not provide anonymity guarantees for proposers and proposees. That
being said, in the context of the protocol, it is not a concern, since several (possibly
many) proposees (that will later becomeend-senders) share the same route.

Theorem 3. Assuming the indistinguishability of pseudonyms, and the IK-CPA prop-
erty of the Elgamal scheme, the route proposal mechanism is secure w.r.t De�nition 25.
Namely, the adversarial advantage, for each property, is atmost lmax � Advik-cpa(�) +
lmax � Advps� ind(�), for lmax the maximum route length.

119

5. Security and Privacy Proofs

Proof Sketch 3 (Proof Sketch of Theorem3). The full proof is given in Appendix B.4.
By making the views of each property explicit (see the same Appendix), it appears clearly
that, for each property, the only elements di�ering betweenview0(i) and view1(i) are
pseudonyms, encryptions of one, andcid values. By construction, these are not spec-
i�ed in the context (i.e. the end-receiver associated to them is not speci�ed). Thecid
values are completely independent from the route (proposal) and from the end-receiver
they designate. Hence, they do not give an advantage to the adversary. The advantage
given by each pseudonym and encryption of one depend respectively on Advps� ind(�) and
Advik-cpa(�), which are assumed negligible. In addition, the number of such pseudonyms
and encryptions of one that di�er is bounded by the number of relay nodes involved in the
challenge, which is itself bounded by the maximum route length lmax . Therefore, through
two hybrid game sequences, the theorem is easily proved, with the same methodology for
all four properties.

5.6. Security of the Protocol as a Whole

Building upon the results on the route proposal mechanism, this section studies the
security of the protocol as a whole. It follows the same outline. The protocol's pseudo-
code � is �rst given. It is then modeled in an ideal functional ity F , and F is shown to
UC-realise �. Finally, F is analysed to prove the SA, RA, and SU properties with the
AnoA framework, and MU with the custom security de�nition.

5.6.1. Modeling � into an Ideal Functionality F

The protocol � is given in Fig. 5.9 (spanning over two pages,122 and 123). It follows
the same form as � rtprop : it is written in the message-state paradigm, from the point
of view of one nodeX . We �rst describe the other ideal functionalities that � use s as
subroutines, and then comment the code itself.

The protocol � uses the following ideal functionalities as subroutines: F link , Fo�ine ,
F rtprop , and F reg. The former, F link , is used in the exact same way as �rtprop (with
implicit calls in the code whenever a message is sent/received). The second one,Fo�ine ,
is featured in Fig. 5.8. It models the o�ine exchange between an end-sender Alice and
an end-receiver Bob, which is necessary prior to engaging inoriented communications.
In essence, it is actually very similar toF link , since it aims at modeling the fact that an
external adversary can not observe the data exchanged during this interaction. Indeed,
this exchange is supposed to happen outside of the network. The main di�erence with
F link is however that, in Fo�ine , Alice stays anonymous even w.r.t Bob, since its identity
is not output to Bob.

The third ideal functionality used by nodes in � is F rtprop . That is, instead of actually
carrying out route proposals, nodes passproposersubroutine inputs to F rtprop and get
proposeesubroutine outputs. Note that the same unique instance is used by all the ITIs
of honest nodes, and byA as well. When it initialises (line 1 of �'s code), node X sends a
setupinput to F rtprop , and then self-proposes, by giving oneproposerinput for each of its
neighbors (line 5). Note that, by the way F rtprop is constructed, whenX self-proposes

120

5.6. Security of the Protocol as a Whole

1 : Fo�ine models the o�ine exchange between Alice and Bob, prior to an oriented commu-
nication.

2 : upon input (get; sid; B; ocomid; coneA ! I ; k) from party A:

3 : Output a copy of that input to B , and store (sid; ocomid; A; B)

4 : upon input (got; sid; ocomid; sh1; c) from B :

5 : if 9 a stored (sid; ocomid; A; B) then Output a copy of this got input to A

Figure 5.8. � The Ideal Functionality Fo�ine

to its neighbor Yi by submitting a proposerinput to F rtprop , the latter automatically
makes a proposeeoutput to Yi with the adequate pseudonym and encryption of one
(see the entry point at line 6). Then, as already mentioned in previous sections,F rtprop

does not include the route proposal policy: it does not include the decision to accept
or refuse a route, and does not re-propose a route when one is learned. Therefore, in
�, when node X learns a new route (i.e. gets aproposeeoutput from F rtprop , at line 6),
it runs RtP ropPolicy , a function e�ectively abstracting the route proposal poli cy. This
function returns two booleans, one stating whetherX must accept the route, and the
second stating if it should relay it. If X accepts a route, it creates an entry in its
routing table RT . If it must relay the proposal, X gives an adequateproposerinput
to F rtprop . Route proposals propagate in the network in this way. Note that corrupted
nodes, controlled by A , are assumed to behave in this way as well:A , on behalf of a
corrupted X , interacts with F rtprop to make route proposals.

Finally, � makes uses F reg. Similarly to � rtprop (and F rtprop), nodes request their
public keys to F reg (line 2). Here, the actual reason to be ofF reg appears: its function is
to ensure that the encryptions of one output by F rtprop are indeed usable by nodes in �.
Indeed, if the key pairs used internally by F rtprop did not match the keys used by nodes
in �, then the latter would encrypt payload messages with encryptions of one under
(products of) public keys that they do not control, yielding payload messages impossible
to decrypt. Note that generating keys in � and passing them as input to F rtprop is not
an option, since that would mean that, in the proof from Section 5.5.2 showing that
� rtprop UC-realisesF rtprop , it is the UC environment that would have to provide the key
pairs in input to the nodes. Since most of the security relieson the secrecy of these
keys, the proof could not carry out. Secondly, note thatF reg is set to only answers to
the parties owning the key pair. More exactly, in the real execution, F reg answers only
to honest node X from � or to F rtprop , and in an ideal execution it only answers to
F . In both executions, the adversary (A and Sim respectively) is allowed to query the
keys of corrupted nodes (but not of honest ones). Thisnon-standard modeling of key
distributions seems unavoidable in order to split the protocol into � rtprop and �, and to
be able to propose a modular approach to the analysis of the full protocol. Its impact
on the proof is however minimal, since it seems that a proof ofthe full protocol in one
go (without dividing it into � rtprop and �) would be possible without F reg, by simply
having nodes generate their key pairs locally.

121

	Introduction

