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A mio nonno,
ingegnere d’altri tempi

"How many roads must a man walk down
Before they can call him a man ?

How many seas must a white dove sail
Before she sleeps in the sand ?

How many times must the cannon balls fly
Before they’re forever banned ?

The answer, my friend, is blowin’ in the wind
The answer is blowin’ in the wind"

Bob Dylan – 1962
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Résumé de la Thèse en Français

Durant la dernière décennie, l’énergie éolienne, en tant que moyen innovant
de génération d’électricité, a eu un fort développement dans le monde et a

atteint ainsi un haut niveau de capacité installée. La Chine représentait 42.8% de
cette capacité en 2016. En particulier, l’évolution croissante de cette capacité au
cours des années, mise en avant par le Global Wind Energy Council (GWEC),
a atteint 468,8 GW en 2016, dont 153,7 GW installés dans l’Union Européenne.
De plus, selon WindEurope, l’énergie éolienne représente aujourd’hui le deuxième
moyen de production d’énergie en termes de puissance installée, en ayant dépassé la
génération à base de carbone en 2016.
Il est aussi important de mentionner que dans plusieurs pays, la consommation
d’énergie est aujourd’hui couverte en grande partie par celle de l’éolien. Le Danemark
par exemple, selon le GWEC, affichait en 2016 une pénétration de puissance éolienne
qui a atteint un taux de 37,6% de la consommation annuelle totale. De plus, le
gouvernement Danois vise un taux de 50% d’ici 2020.
Ces tendances de croissance du marché de l’éolien peuvent être trouvées de manière
similaire aussi dans d’autres pays européens, car elles reflètent l’intérêt de suivre les
objectifs posés par la COP21. Ce dernier point est confirmé par exemple par le fait
qu’en 2016, selon le GWEC, l’utilisation de l’électricité de nature éolienne a permis
d’éviter l’émission de plus de 637 millions de tonnes de CO2 dans le monde entier.

Contexte de la thèse

La forte croissance du marché de production d’énergie éolienne, comme mentionnée
ci-dessus, génère en parallèle la croissance de l’innovation technologique nécessaire
pour soutenir un haut niveau d’exploitation de la ressource du vent. Cela fait en
même temps avancer les travaux de recherche consacrés aux systèmes d’énergie éo-
lienne. Dans cette thèse les fermes éoliennes représentent les systèmes à étudier.
Ces dernières peuvent être de différentes tailles et capacités selon le lieu d’instal-
lation et les besoins de génération d’énergie. Les fermes éoliennes «offshore» sont
typiquement composées d’un nombre élevé de turbines éoliennes, et elles ont des
hauts niveaux de capacité installée. On peut par exemple citer le cas de la ferme
éolienne «London Array» en Angleterre, qui est composée de 175 éoliennes et qui a
une capacité correspondante de 630 MW.
Dans ces travaux de thèse nous avons fait le choix de ne pas focaliser a priori l’at-
tention sur des cas spécifiques de puissance installée, qui définiraient le cahier des
charges et les objectifs principaux. En revanche, nous préférons atteindre un plus
haut niveau d’abstraction en considérant les problématiques d’intérêt concernant le
pilotage des fermes éoliennes de manière générale, pour ensuite les appliquer le cas
échéant sur une ferme particulière. La conversion d’énergie dans les fermes éoliennes
concerne deux étapes principales :
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• la conversion de la puissance du vent en puissance mécanique ;

• la conversion de la puissance mécanique en puissance électrique.

La première étape est obtenue par le système mécanique des turbines éoliennes.
Nous considérerons dans ces travaux la technologie à axe horizontal, [Burton 2011].
D’autre types de technologie, comme celle à axe vertical, sont typiquement employées
dans le cas de production d’énergie de basse capacité et notamment à l’échelle du
consommateur, [Bhutta 2012].
Le rotor est la partie mécanique fondamentale des éoliennes car il capture l’énergie
cinétique du vent. Si auparavant, la technologie du rotor était à vitesse fixe, aujour-
d’hui la plus récente et sans doute la plus utilisée est à vitesse variable. Le rotor
peut varier sa vitesse dans une plage de valeurs données, [Carlin 2003]. C’est grâce
à cette variation que l’on peut adapter le fonctionnement des éoliennes selon la va-
riabilité du vent pour accomplir des nouveaux objectifs pour les fermes éoliennes,
ce qui constitue l’objet de ces travaux.
La conversion de la puissance mécanique en puissance électrique est obtenue par un
générateur électrique. Pour la technologie à vitesse variable du rotor, cela repose
sur deux solutions possibles. Ce sont soit le générateur d’induction à double alimen-
tation (DFIG), soit le générateur à aimants permanents (PMSG). Dans le premier
cas, le bobinage du stator est directement couplé avec le réseau électrique, alors que
le bobinage du rotor du générateur est connecté par un convertisseur d’électronique
de puissance. Cela permet au rotor de l’éolienne de varier sa vitesse jusqu’à environ
30% de sa valeur nominale. L’avantage principal de cette solution est que le conver-
tisseur de puissance doit être dimensionné par rapport à la seule puissance nominale
qui afflue par le bobinage du rotor, et cela réduit les coûts.
Dans le cas des éoliennes fondées sur une machine PMSG, la puissance afflue par
le bobinage du stator qui est connecté au réseau par un convertisseur de puissance.
Si d’un côté cela augmente le coût du convertisseur lui-même, de l’autre cela per-
met la variation complète de la vitesse du rotor de l’éolienne, (voir par exemple
[Baroudi 2007, Liserre 2011]).
Le pilotage d’une ferme éolienne est typiquement implémenté à travers une structure
hiérarchisée fondée sur deux niveaux principaux, (voir par exemple [Hansen 2006]).
Au bas niveau de la structure du contrôle-commande, les éoliennes sont typiquement
exploitées afin d’extraire le maximum de puissance disponible du vent et d’en limiter
l’extraction lorsque la puissance du vent atteint des valeurs plus grandes que celle de
la puissance nominale des turbines. Les modes de fonctionnement cités représentent
l’état de l’art de la technologie implémentée dans le pilotage des éoliennes et ils
peuvent être considérés comme les conditions d’exploitation classiques.
Le pilotage de haut niveau d’une ferme éolienne est réalisé de manière centrali-
sée par des systèmes de type SCADA (Supervisory Control and Data Acquisition),
[Crabtree 2014]. Un ordinateur central exploite les données reçues des éoliennes de la
ferme afin d’assurer la supervision. Par exemple, les données historiques et en temps
réel peuvent être analysées pour la gestion de l’aménagement, etc. Les objectifs du
contrôle-commande de haut niveau concernent plutôt la gestion du démarrage et de
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l’arrêt des éoliennes.
Plus récemment, la proportion de la production d’énergie renouvelable dans le ré-
seau électrique a fortement changé le rôle que les parcs éoliens doivent avoir par
rapport à la satisfaction des contraintes du réseau ainsi qu’à l’équilibre entre pro-
duction et consommation. S’il leur était précédemment demandé de simplement
injecter le maximum de puissance extractible du vent dans le réseau électrique, on
attend aujourd’hui d’eux qu’ils participent activement aux opérations du réseau.
Celles-ci sont liées à la capacité du système électrique de garder son fonctionnement
nominal en présence de perturbations. Précisément cela concerne l’exploitation du
réseau électrique tout en garantissant une fréquence du système constante ainsi que
des valeurs de tension acceptables autour de la valeur nominale. Les perturbations
du réseau peuvent être de différente nature, par exemple pertes de production de
puissance, changement des charges, etc.
Il est bien connu que la fréquence du réseau électrique est directement liée à l’équi-
libre entre la puissance active produite et celle consommée, et que toute perturbation
de cet équilibre se reflète à travers une variation de fréquence. D’autre part, le ré-
glage de puissance réactive est strictement lié à la stabilité de tension et aux pertes
de puissance dans les lignes de transmission, [Kundur 2004]. C’est pour cela qu’afin
de garantir une exploitation correcte du système, les centrales électriques classiques
doivent participer à la régulation de tension et de fréquence en agissant sur les va-
leurs de puissance active et réactive injectées dans le réseau.
Dans le passé, les fermes éoliennes n’étaient pas sujettes à respecter ces conditions.
De plus, il leur était imposé de se déconnecter du réseau pendant les conditions de
fonctionnement anormales. Dans le contexte actuel où l’on voit une forte croissance
de la pénétration d’énergie de nature éolienne dans le réseau, les fermes éoliennes
doivent respecter les conditions définies par un code du réseau adapté. Les problé-
matiques principales concernant le branchement des fermes éoliennes au réseau sont
la régulation de fréquence, de tension et de puissance réactive, et la capacité à rester
connectées pendant les défauts du système électrique, [de Alegría 2007].
Dans ces travaux, nous focalisons l’attention sur la régulation de puissance active.
C’est pour cela que dans la suite nous allons rappeler pourquoi la participation des
fermes éoliennes au réglage de fréquence est important dans le cas de haut niveau de
pénétration dans le réseau. Tout d’abord il faut noter que dans le système électrique
classique, où les générateurs synchrones sont directement couplés au réseau, l’inertie
globale du système est élevée et cela permet de maintenir des valeurs de déviation
de fréquence limitées face à un déséquilibre entre production et consommation de
puissance. Autrement dit, dans ce cas, les générateurs contribuent naturellement
à l’inertie du système, [Ulbig 2015]. Si, au contraire, un pourcentage significatif de
puissance est injecté par les fermes éoliennes, l’inertie globale du système diminue car
ces dernières sont découplées du réseau par les convertisseurs de puissance. Cela pose
un premier problème intéressant de pilotage concernant le réglage de fréquence par
les fermes éoliennes. En particulier, l’inertie du réseau pourrait être produite artifi-
ciellement par des techniques de contrôle-commande, [Morren 2006, Mauricio 2009].
Si d’un côté l’inertie du système doit être émulée en permanence par des moyens de
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réglage, d’un autre côté, si des perturbations de fréquence plus graves se produisent,
alors les fermes éoliennes peuvent être amenées à fournir de la réserve primaire de
puissance pour participer aussi à ce réglage primaire de fréquence. Plus précisément,
elles doivent pouvoir moduler la valeur de puissance injectée dans le réseau selon les
variations de fréquence. Cela implique a priori la nécessité d’avoir de la réserve de
puissance à la fois à la baisse et à la hausse.
De manière générale, la participation au réglage de fréquence à la hausse peut en-
core être considérée économiquement désavantageuse car cela nécessite de gaspiller
en permanence une portion de la puissance disponible du vent. C’est pour cela que
dans la suite de nos travaux nous ne nous intéressons qu’au réglage de fréquence à
la baisse.
Les problématiques liées à la connexion des fermes éoliennes au réseau, que nous
avons brièvement exposées, alimentent les travaux de recherche à mener sur ce su-
jet. En même temps, l’effort de recherche consacré aux systèmes d’énergie éolienne
permet en retour de mieux comprendre le fonctionnement de ces systèmes, et cela
peut amener à de nouvelles opportunités. C’est le cas de l’effet de sillage parmi les
éoliennes qui entraîne leur couplage aérodynamique. Ce phénomène peut être décrit
par le fait qu’une turbine, extrayant de l’énergie cinétique du vent, induit une ré-
duction de la vitesse du vent dans le sillage en aval. Par conséquent, toute éolienne
placée dans le sillage d’une turbine perçoit une réduction de la puissance disponible
du vent, [Park 2015a]. Puisque les conditions de vent de toutes les turbines sont in-
fluencées par les turbines situées en amont, le fonctionnement d’une ferme éolienne
ne peut pas être décrit comme une simple composition d’unités indépendantes. Cela
pose de nouveaux défis pour le problème du pilotage des fermes éoliennes afin de ga-
rantir l’exploitation optimale de la ressource de vent. En effet, quand l’effet de sillage
n’est pas négligeable, sa prise en considération dans le problème d’optimisation de la
ferme éolienne peut amener à des gains intéressants en termes de puissance extraite
du vent par rapport au cas où la ferme est exploitée dans le mode plus classique où
le couplage entre les turbines n’est pas pris en compte.
Les défis à relever se déclinent donc sur deux axes principaux. L’un concerne la mo-
délisation du phénomène d’effet de sillage, qui est par nature assez complexe, l’autre
regarde la méthode et l’architecture de pilotage à choisir pour faire fonctionner la
ferme éolienne de manière optimale en considérant ce phénomène.

Contributions

Nous avons indiqué quelques problématiques et défis d’intérêt central pour le dé-
veloppement des systèmes d’énergie éolienne dans un futur proche. D’une part, les
fermes éoliennes doivent être en mesure de respecter les contraintes imposées par un
nouveau code du réseau. D’autre part, le développement avancé des techniques de
contrôle-commande et d’optimisation pour ce type de système pousse les objectifs
du pilotage des fermes éoliennes vers une exploitation améliorée de la ressource de
vent.
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Du point de vue du pilotage d’une ferme éolienne, ces objectifs et opportunités
peuvent être traités comme étant des contraintes et des spécifications concernant la
puissance active et réactive injectées dans le réseau. En outre, comme les éoliennes
sont typiquement basées sur la technologie PMSG ou DFIG, elles sont découplées
du réseau électrique, et le réglage de puissance active et réactive peut-être mené par
des contrôleurs indépendants, [Arifujjaman 2010]. Le pilotage de la puissance réac-
tive est effectué en agissant sur les convertisseurs de puissance, alors que le pilotage
de puissance active concerne à la fois le système électrique et le système mécanique
des éoliennes. Dans la suite nous faisons le choix de focaliser l’attention sur le seul
pilotage de puissance active. De plus, nous consacrons une attention particulière aux
étapes de conversion de puissance qui concernent les phénomènes aérodynamiques
et mécaniques. Cela est validé par le fait que, typiquement, les pilotages des sys-
tèmes mécaniques et électrique agissent sur des échelles temporelles différentes et ils
peuvent être considérés comme découplés, [Boukhezzar 2006a]. Pour ce qui concerne
la conception du pilotage des fermes éoliennes, dans ces travaux de thèse, nous allons
considérer des spécifications assez générales sur la puissance active injectée dans le
réseau et sur la puissance extraite du vent. Cela nous permet d’atteindre un niveau
d’abstraction nécessaire pour traiter de manière générale plusieurs problématiques
liées au pilotage de ces systèmes.
Comme déjà mentionné, nous allons nous focaliser sur le contrôle de la seule puis-
sance active des fermes éoliennes. Nous pouvons donc dresser la liste des applications
principales qui la concernent. Celles-ci sont :

• le réglage de fréquence ;

• la maximisation de puissance extraite du vent ;

• l’effacement de puissance injectée dans le réseau.

On peut noter que nous avons ajouté l’effacement de puissance à la liste des objectifs
déjà abordés. Cela représente une condition que les fermes éoliennes doivent être en
mesure de satisfaire pour être raccordées au réseau. En particulier cela consiste à
limiter la puissance maximale qui peut être injectée dans le réseau pour certaines
périodes de temps. Cela est typiquement imposé par le gestionnaire de réseau pour
résoudre des problèmes de congestion, [Delille 2013].
L’architecture de contrôle-commande choisie est fondée sur une structure hiérarchi-
sée à deux niveaux. D’une façon générale, le niveau de contrôle plus élevé fournit
les références de puissance à suivre par chaque éolienne, lesquelles sont logiquement
placées au bas niveau de la structure hiérarchisée. Nous adressons tout d’abord le
problème de pilotage des turbines éoliennes, où nous décrivons notre première contri-
bution. De plus, nous focalisons l’attention sur des techniques de contrôle-commande
de type non linéaire car, comme montré par [Boukhezzar 2010], celles-ci permettent
d’atteindre de meilleures performances comparativement aux contrôleurs de type
linéaire, tout particulièrement quand le profil du vent est très turbulent.
Pour qu’une turbine puisse satisfaire les objectifs au niveau du parc, l’éolienne doit
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pouvoir fonctionner en mode de production réduite. Autrement dit, l’éolienne doit
suivre des signaux de référence de puissance autres que ceux d’extraction maxi-
male du vent. Néanmoins, la plupart des contrôleurs non linéaires proposés en
littérature sont conçus pour des zones de fonctionnement bien définies, plus pré-
cisément soit à vent faible pour l’extraction maximale de puissance (par exemple
[Boukhezzar 2006b]), soit à vent fort pour la limitation à la valeur nominale de la
puissance extraite de l’éolienne (par exemple [Boukhezzar 2005, Boukhezzar 2007]).
Nous proposons une nouvelle approche de contrôle-commande, d’abord pour l’ap-
plication au cas d’une éolienne, permettant le suivi d’une trajectoire de puissance
réduite et générale en agissant à la fois sur la vitesse angulaire du rotor et sur l’angle
de calage de la turbine. De plus le contrôleur n’est pas confiné à l’utilisation dans
une zone de contrôle spécifique. Au contraire il est actif pour toute condition de
fonctionnement.
Parmi les techniques disponibles en littérature, (par exemple [Yingcheng 2011]), sur
les traces des travaux de [Zertek 2012b] nous considérons une approche qui permet
de faire fonctionner une éolienne en mode de production réduite tout en maximi-
sant l’énergie cinétique stockée dans ses masses tournantes. Une fois la synthèse du
contrôleur de l’éolienne déterminé, il est intégré au niveau de la ferme. Nous nous
intéressons alors à la conception du contrôleur au plus haut niveau de la structure de
contrôle-commande hiérarchisée de la ferme. Ceci permet le respect des contraintes
de connexion de la ferme au réseau tout en optimisant son fonctionnement en inté-
grant la connaissance de l’effet de sillage. Nous choisissons d’analyser le problème
du contrôle au niveau de la ferme dans le contexte des systèmes multi agents, dans
le but d’atteindre une architecture évolutive, modulaire et résiliente, et qui permet
une exploitation en temps réel. Ceci nous conduit à envisager une architecture dis-
tribuée.
Dans ces travaux de recherche, les objectifs de pilotage d’une ferme sont refor-
mulés sous la forme d’un problème d’optimisation non convexe. Ce genre de pro-
blèmes peut être traité avec une structure distribuée et nous focalisons ainsi notre
recherche sur des versions distribuées de techniques bien connues d’optimisation
méta-heuristique. L’utilisation de ces méthodes d’optimisation dans le contexte de
systèmes multi agents représente une nouveauté par rapport aux travaux disponibles
en littérature et cela mérite une attention toute particulière. Dans les travaux de
[Wakasa 2015a, Wakasa 2015b] par exemple, même si les agents coopèrent afin de
résoudre un problème commun, ceux-ci ne partagent pas la même variable d’opti-
misation. Cela exclut donc leur utilisation pour le cas du problème d’optimisation
de la ferme éolienne où les agents, c.-à-d. ici les éoliennes, sont couplés par l’ef-
fet de sillage. Dans d’autres travaux, comme ceux de [Gazi 2014, Navarro 2015] par
exemple, l’algorithme d’optimisation méta-heuristique est distribué parmi les agents
qui, à tour de rôle, partagent une variable d’optimisation commune. Malheureuse-
ment ces derniers algorithmes sont conçus pour des problèmes très spécifiques et
ils ne peuvent pas être directement appliqués au cas de la ferme éolienne. C’est ce
qui nous a motivé pour introduire deux nouveaux algorithmes d’optimisation dis-
tribuée, avant de traiter le problème de la ferme. De plus, nous les présentons dans
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une formulation générale qui permet leur utilisation pour une classe de problèmes
d’optimisation distribuée plus large.
Dans une première étape, à titre d’exemple, nous les appliquons à la résolution
du problème du flux optimal de puissance qui est un autre problème bien connu
d’optimisation non convexe dans le domaine de l’ingénierie électrique. Dans la lit-
térature, les approches distribuées proposées à ce sujet sont typiquement fondées
soit sur l’approximation du problème pour être traité par des techniques basées sur
le calcul du gradient (par exemple [Sun 2013, Magnússon 2015]), soit par des mé-
thodes de relaxation convexe exacte pour l’application au cas de réseaux définis par
des topologies particulières, (par exemple [Peng 2014, Dall’Anese 2013]). Les deux
algorithmes proposés permettent en revanche de traiter le problème du flux optimal
sans la nécessité de considérer des hypothèses trop contraignantes.
Dans une deuxième étape nous adressons le problème spécifique de la ferme éo-
lienne. En particulier, nous considérons la maximisation de la puissance extraite du
vent sous les contraintes de puissance injectée dans le réseau électrique. Dans la
littérature, ce problème d’optimisation est typiquement traité soit dans le contexte
distribué par des approches sans modèle (par exemple [Gebraad 2016, Marden 2013,
Park 2016]), soit dans le contexte centralisé par des méthodes qui exploitent la
connaissance a priori du modèle de l’effet de sillage, (par exemple [Park 2015a,
Herp 2015]). Néanmoins, les approches sans modèle reposent sur l’apprentissage en
temps réel sur la base des données du système ce qui typiquement augmente le
temps de convergence des algorithmes. Grâce aux algorithmes d’optimisation méta-
heuristique proposés nous sommes en mesure de considérer à la fois le modèle de
l’effet de sillage et une architecture distribuée, ce qui nous permet d’atteindre des
bonnes propriétés de convergence des algorithmes.
Enfin, l’architecture globale de pilotage de la ferme est évaluée. Cela nous permet de
faire le lien entre les deux niveaux de contrôle considérés, en même temps qu’estimer
le gain de puissance obtenu quand la dynamique du système est prise en compte. En
effet, hormis quelques exceptions (par exemple [Heer 2014]), peu de travaux de la lit-
térature existante ont traité l’évaluation du système de pilotage dans sa totalité, car
il est souvent supposé que les contrôleurs au niveau des éoliennes stabilisent parfaite-
ment les turbines pour toute consigne de puissance donnée, [Marden 2013]. Jusqu’ici,
l’architecture de pilotage considérée est décentralisée pour les contrôleurs locaux des
éoliennes car leur rôle est de permettre le suivi des trajectoires de puissance impo-
sées par l’optimisation de haut niveau. Dans la troisième partie de ces travaux, nous
proposons d’ajouter une dernière étape de coopération parmi les éoliennes car cela
peut, dans certains cas, améliorer les performances du système global. De manière
générale, nous montrons que par des moyens du contrôle par consensus, on peut
améliorer le respect des consignes de puissance calculées par l’étape d’optimisation
en dépit des dynamiques du système et des perturbations du vent. Cela est obtenu
par la formulation du problème de contrôle en termes de partage de puissance dispo-
nible du vent parmi les éoliennes, sur lequel ces dernières doivent trouver un accord.
Dans la littérature, il existe des problèmes similaires de partage de puissance dans le
contexte des fermes éoliennes, (par exemple [Biegel 2013, Spudić 2015, Baros 2017]),
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mais à la fois la problématique spécifique adressée dans ces travaux de recherche et
la technique de contrôle-commande proposée représentent une nouvelle contribution.

Organisation de la thèse

Le manuscrit est composé de trois parties. Chaque partie est consacrée à un pro-
blème spécifique de pilotage des fermes éoliennes et est divisée en deux chapitres.
Le premier introduit les outils mathématiques utilisés dans le deuxième chapitre, où
les problématiques de l’application au cas des fermes éoliennes sont traitées. Par le
choix de cette organisation de thèse nous avons aussi le but de créer un document
autoporteur. Les résultats qui s’avèrent plus classiques sont quant à eux reportés
en annexe. L’état de l’art relatif à tout argument traité est analysé dans le détail
chaque fois que nous proposons une nouvelle contribution.

Partie I

Cette partie est consacrée au problème du contrôle-commande d’une éolienne, et elle
comporte les Chapitres 1 et 2. Les problématiques principales traitent du pilotage
d’une turbine dans les zones de fonctionnement classiques et du suivi de trajec-
toires de puissance réduite. L’approche considérée est basée sur la combinaison de
deux techniques de contrôle bien connues : la linéarisation par feedback (FL) et la
commande prédictive par modèle (MPC). Dans le Chapitre 1, nous rappelons les
éléments théoriques de cette commande référencée FL+MPC, et nous analysons des
problématiques complémentaires qui portent sur le traitement de points singuliers
et les contraintes non convexes du système. Par souci de clarté pour le lecteur, les
détails sur les techniques de FL et MPC sont reportées en Annexe A.
Dans le Chapitre 2, le modèle dynamique et le contrôleur d’une turbine sont présen-
tés. Nous focalisons l’attention sur le système mécanique de l’éolienne car il a un rôle
central dans la synthèse du contrôleur. Les modes de fonctionnement de l’éolienne y
sont décrits. Ceux-ci concernent à la fois l’extraction maximale de puissance du vent
et le suivi de trajectoires générales de puissance réduite selon la nécessité au niveau
du parc. De plus, quand l’éolienne fonctionne en mode de production réduite, le
schéma de pilotage proposé permet de maximiser le stockage de l’énergie cinétique
dans les masses tournantes de la turbine. Le contrôleur est complété par l’utilisation
d’un filtre de Kalman pour l’estimation du vent. Les performances sont évaluées en
simulation en utilisant les paramètres de l’éolienne CART.

Partie II

La deuxième partie est composé des Chapitres 3 et 4. Nous analysons les objec-
tifs de pilotage au niveau du parc éolien. Comme il a été anticipé, le problème de
contrôle de haut niveau est formulé par un problème d’optimisation qui est résolu
de manière distribuée parmi les éoliennes. Ainsi, dans le Chapitre 3, nous proposons
deux nouveaux algorithmes d’optimisation distribuée qui peuvent être utilisés dans
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le cas d’application de parcs. Ceux-ci sont basés sur l’algorithme d’optimisation par
essaims particulaires, dont les caractéristiques principales sont rappelées. Comme
décrit dans la littérature en ce qui concerne l’optimisation distribuée, nous fondons
le premier algorithme sur l’utilisation de techniques de contrôle par consensus. En
particulier, nous nous appuyons sur la technique de consensus moyen en temps fini
proposé par [Dung 2013]. Les deux algorithmes sont présentés de manière générale
et ils peuvent être utilisés dans le cas d’application d’une classe de problèmes d’op-
timisation distribuée. Par exemple, nous montrons l’application de ces algorithmes
au cas du problème bien connu de flux de puissance optimal.
Dans le Chapitre 4, la structure hiérarchisée du pilotage de la ferme est présen-
tée. Elle est fondée sur le contrôleur analysé au Chapitre 1 et sur un contrôleur
distribué de plus haut niveau qui coordonne les éoliennes de la ferme sur la base
de la solution d’un problème d’optimisation. Ainsi, une partie importante de ce
chapitre est consacrée à la définition et à la solution du problème d’optimisation
d’une ferme éolienne. Le modèle de l’effet de sillage et les contraintes de puissance
à injecter dans le réseau sont pris en considération. Tout d’abord, nous présen-
tons un modèle de sillage disponible dans la littérature et fondé sur les travaux
de [Park 2015a, Gebraad 2016]. Ensuite nous posons le problème d’optimisation.
Celui-ci appartient à la classe de problèmes qui peuvent être résolus par les deux
algorithmes proposés au Chapitre 3. Leurs performances sont donc évaluées et com-
parées sur plusieurs exemples de fermes éoliennes. Si d’un côté les deux algorithmes
montrent de bonnes performances pour le cas de l’optimisation sans contraintes, de
l’autre, le deuxième algorithme est plus performant en termes d’optimalité de la
solution dans les cas de contraintes actives. De plus, il peut facilement s’adapter
aux différentes tailles de fermes éoliennes considérées, et aussi préserver de bonnes
propriétés de vitesse de convergence.
L’étape d’optimisation se base sur des hypothèses de pilotage parfait de la ferme
éolienne. En particulier, la dynamique du système est négligée. C’est pour cela que,
comme dernière étape, nous proposons d’évaluer l’architecture globale de pilotage
de la ferme en considérant les dynamiques contrôlées des éoliennes. Les simulations
montrent la présence d’un écart entre les gains en puissance atteignables par l’archi-
tecture proposée et ceux donnés par la seule solution du problème d’optimisation.
Néanmoins, ces gains peuvent être significatifs et cela confirme l’intérêt pour les
méthodes de pilotage coopératif des fermes éoliennes quand l’effet de sillage n’est
pas négligeable.

Partie III

Cette dernière partie est composée des Chapitres 5 and 6, et elle est consacrée à
l’introduction d’un autre niveau de contrôle dans la structure hiérarchisée du Cha-
pitre 4. L’idée principale est celle de permettre une communication complémentaire
entre les éoliennes au niveau des contrôleurs locaux. Cela définit un problème de
contrôle distribué qui est résolu par l’utilisation de techniques de consensus. Ainsi,
au Chapitre 5, nous introduisons une nouvelle technique de contrôle-commande par
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consensus fondée sur une structure PID, et qui peut être appliquée aux systèmes
dynamiques LTI MIMO en temps discret. De plus elle peut être utilisée à la fois
pour des problèmes sans leader et dans le contexte «leader-follower».
Les outils cités auparavant sont ensuite appliqués au cas spécifique du pilotage dis-
tribué d’une ferme éolienne. Néanmoins, puisqu’ils sont conçus pour les systèmes
linéaires, au Chapitre 6 nous procédons tout d’abord à la synthèse d’un contrôleur
local pour l’éolienne basée sur la technique de poursuite asymptotique de sortie.
Cela permet par ailleurs de linéariser par feedback la dynamique de l’éolienne. Les
résultats concernant le pilotage d’une turbine introduits au Chapitre 2 ne sont pas
utilisés ici, car la structure de FL+MPC ne simplifierait pas la synthèse d’un contrô-
leur par consensus à cause de l’étape de MPC.
En somme, le contrôle par consensus permet de modifier les références de puissance
à suivre, données par l’étape d’optimisation, pour prendre en considération les dyna-
miques du système et les perturbations du vent afin de garantir des meilleures perfor-
mances. En particulier, d’une part, la technique de consensus sans leader permet de
réduire l’effet de perturbations à moyenne nulle sur le partage optimal de puissance
du vent parmi les turbines. D’autre part, le consensus par «leader-follower» a le rôle
de restaurer ce partage optimal dans le cas d’erreurs dans les références de puissance.

Le manuscrit se termine par une conclusion générale et des perspectives, ainsi que
des annexes et une bibliographie.
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General Introduction





In recent years wind energy as an innovative electricity generation mean has had
a fast-growing worldwide development, and reached high levels of installed ca-

pacity, led by China holding 42.8% of global wind power capacity in 2016. This
growing trend is evidenced in Fig. 1 showing the evolution of wind power capacity
per year, whose total amount reached 486.8 GW in 2016, 153.7 GW of which be-
ing installed in EU. Moreover, according to WindEurope in the EU, as shown in
Fig. 2, wind energy represents today one of the leading means of energy generation,
as it overtook coal-based energy generation becoming the second largest form of in-
stalled power capacity. It is worth mentioning that in many countries the electricity
consumption is covered by wind energy in important percentage. An example is
given by the case of Denmark where, according to the Global Wind Energy Council
(GWEC), in 2016 the wind power penetration reached 37.6% of the total annual
consumption. Moreover, the Danish government aims to get 50% of its electricity
from wind source by 2020. Similar trends are followed by other European countries
in order to meet the wind energy scenario objectives posed by Europe2020. Finally,
wind energy exploitation falls in with the objectives recently set by the COP21.
Indeed, according to GWEC, in 2016 wind power allowed avoiding over 637 million
tons of CO2 emissions globally.

Thesis Context

The aforementioned trends in the energy market push forward the development
of adequate and innovative wind generation systems. This comes along with an
extensive research work devoted to wind energy systems. In this work, wind farms
(WFs) are the systems under analysis. According to the location and the electricity
generation needs, wind farms can be systems of different sizes and corresponding
capacity. For instance, offshore wind farms are usually composed of a high number
of wind turbines (WTs), and they usually reach high levels of installed capacity. As
an example, London Array wind farm in the United Kingdom is composed by 175

WTs with a corresponding total capacity of 630 MW. In this work we make the
choice not to restrict our attention to a particular installed capacity, which would
define the main system specifications and objectives. We rather proceed conversely,
i.e. we aim at generality by sweeping the major issues concerning wind farms, which
in turns can apply or not according to the specific case. Generally speaking, in a
wind farm, two main stages of wind power conversion need to be considered. These
are

• Wind to mechanical power conversion.
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Figure 1: Worldwide cumulative installed wind capacity through the years. Source:
GWEC.
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Figure 2: Shared installed power capacity in EU in 2005 and 2016. Source:
WindEurope.

• Mechanical to electric power conversion.

Power conversion from wind to mechanical one is obtained via the WTs mechanical
system. This is based on horizontal axis technology, [Burton 2011], while other WT
types, such as vertical axis ones, are usually employed for small wind energy pro-
duction at the consumer scale, [Bhutta 2012]. The rotor is the WT mechanical part
responsible for capturing the wind kinetic energy. While there still exist wind farms
based on fixed-speed WTs, the most recent and by far the most employed tech-
nology is concerned with variable-speed WTs, where the rotor can assume angular
speed values within a given range, [Carlin 2003]. While allowing a much better wind
source exploitation, more in general this leads to better versatility in accomplishing
interesting new WT objectives which are the purpose of this work.
Mechanical to electric power conversion is obtained via the use of an electric gener-
ator. For the case of variable-speed technology, this is usually based on two solutions,
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namely either on permanent magnets synchronous generators (PMSG) or doubly fed
induction generators (DFIG), and this fully characterizes the mechanical to electric
power conversion. In the DFIG-based WTs, the stator winding is directly connected
to the grid, while the rotor ones are connected via a full power electronic converter.
This solution allows a variation of the turbine rotor angular speed up to ∼ 30% of
its nominal value. Its main advantage is that the power converter only needs to be
sized according to the nominal power flowing through the rotor winding and this
reduces the costs. In the PMSG-based WTs, the power flows through the stator
winding, which is connected to the electric grid via a full power electronic converter.
While raising the cost of the power converter, this solution allows a full rotor angular
speed variation, (e.g. [Baroudi 2007, Liserre 2011]).
At the wind farm level, its control is usually implemented on a two-layer hierarchical
structure, e.g. [Hansen 2006]. At the lower level, wind turbine controllers are typic-
ally employed to let the WTs extract the maximum power available from the wind,
and to switch to power limiting control whenever the latter exceeds the WT nominal
one. The mentioned operating modes represent the state-of-the-art of implemented
technology, and we will refer to them as classic operating mode throughout the
whole work. Control at the higher level is implemented via SCADA (Supervisory
Control and Data Acquisition) system, in a centralized fashion, [Crabtree 2014]. A
central computer can communicate and receive information from the WF wind tur-
bines. Data from all connected turbines are mainly employed for supervision duties.
In particular, historical and real-time data can be used for data analytics, main-
tenance management, etc. Control duties are mainly concerned with starting and
stopping selected WTs.
If in the past years, the wind farms were only required to inject the maximum power
they could extract from the wind into the grid, nowadays the strong penetration of
wind energy production has changed the role they have in taking into account power
system stability issues. Power system stability refers to the ability of the electric grid
to maintain nominal operating conditions under disturbances. In particular, stabil-
ity is preserved by ensuring the balance between power production and demand,
as well as maintaining a constant system frequency and voltage within acceptable
limits. Disturbances can be of several nature, e.g. losses of power production, load
changes, etc. It is well-known that the frequency of the electric grid is dependent on
the active power balance and that a change in active power demand or production
is reflected throughout the system by a change of frequency. It is also known how
the control of reactive power is strongly related to the voltage stability and power
losses minimization in transmission networks, (see e.g. [Kundur 2004]). Thus, for
a correct and optimized power system operation, classic power plants connected to
the grid are required to participate to voltage and frequency regulation by acting
on the injected active power and on the injected or absorbed reactive power.
In the past years, these requirements were not expected to be fulfilled by wind en-
ergy plants. Moreover, they were required to disconnect under abnormal operating
conditions. It is thus clear that under the new previously described context in which
wind power penetration is reaching high percentage level of the electricity consump-
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tion, in many countries wind farms have nowadays to meet new grid connection
requirements defined in an adapted grid code. The main technical issues concerning
wind farms connection to the grid are frequency control, voltage and reactive power
control, and fault ride-through capabilities, [de Alegría 2007]. As in this work we are
interested in drawing attention to the active power control, in the following we shall
stress why frequency control is important in the case of high penetration of wind
energy grid. First of all notice that in a system composed of synchronous generators
directly connected to the grid, the cumulative system stiffness is high, and differ-
ences between produced and consumed active power generally have a small impact
in the frequency deviation. In this case we say that the generators naturally con-
tribute to the system inertia, [Ulbig 2015]. This is no longer the case if significant
percentage of active power is provided by WFs, as they are electrically decoupled
from the grid via power converters. This sets a first interesting new problem con-
cerning frequency control in WFs. In particular, system inertia could be artificially
produced by means of control, (e.g. [Morren 2006, Mauricio 2009]).
While system inertia effect should be continuously provided to the power system, if
more severe frequency disturbances occur, then WFs may be required to also par-
ticipate to primary control for frequency regulation. This involves the capability of
WFs to either limit the active power injection when grid frequency is greater than
its nominal value or, vice versa, to increase it when grid frequency is lower than its
nominal value. Moreover such operation should be guaranteed for a lapse of time
of 30 s. While downward frequency regulation, i.e. limiting the power injection,
is generally always possible, upward frequency regulation requires additional power
reserve. Thus, if WFs are required to fully participate to primary control, i.e. both
downward and upward frequency regulation, then the WTs should be operated in
full-time deloaded mode. In general, this is economically disadvantageous as it would
require to permanently waste a portion of renewable power which could be instead
delivered to the grid. As a result, typically upward frequency regulation is assigned
to more classic power plants, and only downward frequency regulation is considered
of interest for WFs. Thus, if required, WFs have to respect an active power injection
limiting curve of the form of Fig. 3.
While the new grid code is pushing extensive research work in the WF control

framework, this in turns lets a better understanding of the functioning of these sys-
tems, and it opens up to new interesting opportunities. This is the case of the wake
effect causing the aerodynamic coupling among the WTs of a large WF or, more
simply, groups of relatively closed WTs. The wake interaction can be described as
the fact that when extracting kinetic energy from the wind, a WT causes a reduc-
tion of the wind speed in the downstream wake. As a result a turbine, standing
in the wake of an upstream one, experiences a reduction of available wind power,
[Park 2015a]. Since the functioning of a WT is affected by the one of the upstream
turbines, in such situation a WF should no longer be considered as a simple com-
position of independent units. This sets interesting new challenges in WF control
for a better exploitation of the wind source. As a matter of fact, when the wake
effect is not negligible, considering it in the power maximization problem can lead
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Figure 3: Downward frequency regulation, where fn is the nominal grid frequency.
WFs may be required to deload active power P injection for frequency regulation.

to important power gains with respect to the case in which each WT is operated in
classic maximum power extraction mode. The main challenges are thus concerned
with modeling the wake effect, which happens to be a non-trivial task due to its
complexity, and to exploit this knowledge in efficient ways for optimized wind farm
operations.

Contribution

In the previous discussion we mentioned some of the major issues and challenges
concerning wind generation that are, and will be, of central interest in the next
years. On the one hand, the new grid code sets wind farm control objectives that
have to be fulfilled in order to ensure proper power system operations. On the other
hand, the development of advanced control and optimization techniques has pushed
the WF control targets further ahead towards a better exploitation of the renewable
source.
From a WF control perspective the aforesaid objectives and opportunities can be
treated as constraints and control specifications on the active and reactive power
injected into the grid. Moreover, because PMSG and DFIG-based WT connec-
tion to the grid is obtained via power converters, under mild assumptions WTs are
decoupled from the grid and, active and reactive power control can be performed
independently one from the other, [Arifujjaman 2010]. While reactive power can
be controlled by acting on the WTs power converters, active power control involves
both the mechanical and electrical WT system. We make the choice to focus our
research interest on what concerns the only active power control. Moreover, under
the commonly employed assumption that the WT mechanical and electrical system
can be treated by two decoupled loops of control, as they act on different time
scales (e.g. [Boukhezzar 2006a]), we further target the WF mechanical system with
a particular stress on the aerodynamics involved in the wind-to-mechanical power
conversion. Throughout the whole work the considered approach is the one of trans-
lating specific control objectives in more general control specifications on the active
power injection and wind power extraction. This is done in order to reach some
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abstraction from the final application, and to provide general control techniques
which could be applied to the addressed problem according to the situation. Hav-
ing restricted the attention on the active power control, we can list the main WF
applications in which the tools developed in this work ca be used. These are

• Frequency control.

• Power maximization.

• Power curtailment.

Notice that we added power curtailment to the list of discussed WF objectives. This
represents another important feature that WFs are more and more required to ful-
fill. In particular it falls within the connection requirement duties, and it consists
in limiting the maximum power injection into the grid during limited lapses of time.
Such constraint is usually imposed by the grid system operator in order to solve
problems such as congestion, [Delille 2013].
The chosen WF control architecture has a two-layer hierarchical structure. Roughly
speaking the higher control step is responsible for providing power references to the
local WT controllers, which hold position at the lower control step. We tackle the
WF control problem by firstly analyzing its single units, i.e. the wind turbines, and
this is where we propose our first contribution. Moreover, we focus on nonlinear
control techniques since, as evidenced by [Boukhezzar 2010], they outperform linear
controllers, especially for high-turbulence wind profiles. Bearing in mind the control
objectives at the WF level, in order to be accomplished, a WT needs to be able to
operate in deloaded mode. This basically means that, whenever required, a WT
has to track different power references from the classic one of maximum extractable
power from the wind. However, most of the available nonlinear control approaches
for wind turbine are conceived for either extracting the maximum power from the
wind at low wind speed, (e.g. [Boukhezzar 2006b]), or for power limiting at high
wind speed, (e.g. [Boukhezzar 2005, Boukhezzar 2007]). Moreover, with a few ex-
ceptions (e.g. [Burkart 2011]), the controllers are usually designed to work in a
specific region of functioning defined by wind speed ranges. This is why we consider
a particular control approach, which to the author’s knowledge was never applied
for WT control purposes, and that enables a WT to track a general deloaded power
reference by means of both rotor angular speed and pitch angle control. Moreover
it allows the WT to work in its whole operating envelope, i.e. it is not confined to
specific WT zones of functioning. When the WT deloading mode has to be per-
formed, among the available approaches (e.g. [Yingcheng 2011]), inspired by the
work of [Zertek 2012b], our proposed control scheme allows to carry out a deloading
technique which lets an optimized kinetic storage in the rotating masses.
Once performed the WT control design, the tools developed at the WT level have
to be integrated in the more general framework of WF control. Thus we proceed
by designing the higher control level of the considered hierarchical structure. Far
from playing a mere supervisory role, this is responsible for letting an optimized
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system operation as well as for the satisfaction of the considered grid connection
requirements. Because a WF can easily reach a high number of units, and the high
control level has to be reliable while being possibly required to work in near to
real-time operations, we decide to analyze the control problem from a multi-agent
system perspective. By doing so we aim at a distributed architecture thus enabling
important features such as system scalability and modularity, as well as achieving a
reduced communication and computational burden.
In this work, the WF control objectives are reformulated as a nonconvex optimiza-
tion problem. Thus, in order to achieve the mentioned distributed characteristics,
as well as to treat nonconvex optimization problems, we capitalize on distributed
versions of well-known metaheuristic optimization techniques. The use of such op-
timization methods in the framework of multi-agent systems represents a fairly new
application, and it has not been yet treated extensively. For instance, in the works
of [Wakasa 2015a, Wakasa 2015b], even if the agents cooperate to solve a common
optimization problem, these do not share a common optimization variable. As a
consequence they cannot be applied to the WF optimization problem, in which
the agents, i.e. the WTs, are coupled via the wake effect. Other works, such as
[Gazi 2014, Navarro 2015], are concerned with distributed metaheuristic optimiza-
tion techniques where the agents do share a common optimization variable, but they
are designed for the specific problem addressed. Thus, before treating the WF prob-
lem, we first introduce two novel distributed optimization algorithms. Moreover, we
present them in a general formulation allowing their application to a class of optimiz-
ation problems. Indeed, as a supporting example, these are shown to be applicable
to solve another interesting well-known nonconvex optimization problem, namely
the optimal power flow one. In the literature, the main distributed approaches
to solve it are either based on approximations to treat it via gradient-based tech-
niques, as in [Sun 2013, Magnússon 2015], or on exact convex relaxation methods,
as in [Peng 2014, Dall’Anese 2013], in which case their application is restricted to
particular network topologies. By employing the proposed algorithms, the optimal
power flow problem can be treated without the need for any restrictive assumption.
Once discussed the considered optimization approach, we tackle the high level WF
optimization problem. Here, we focus on the specific problem of maximizing the
wind energy production, while respecting grid constraints on the injected active
power in the grid. When it comes to maximize the WF power under wake effect in
a distributed way, the works in the available literature capitalize on model-free ap-
proaches, such as [Gebraad 2016, Marden 2013, Park 2016], while model-based ones
are usually treated via centralized methods, as in [Park 2015a, Herp 2015]. How-
ever, data-driven approaches may suffer from low speed of convergence as at each
algorithm iteration the effect of the chosen point of functioning has to be tested on
the real plant in order to be evaluated. Being interested in a distributed approach,
as well as in speeding up the algorithm convergence to a solution, by using the de-
veloped optimization tools we are able to consider the wake effect within the WF
model, and reach good convergence properties. Finally, the overall WF architecture
is evaluated based on the developed tools for the WT level control. This allows
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us to define a first important connection between the two layers of control, as well
as showing the WF power gain obtained when the system dynamics is considered.
Indeed, despite some exceptions, as in [Heer 2014], few works have evaluated the
WF power gains by considering the whole WF control architecture, as it is often
assumed that there exist local WT controllers capable of stabilizing the WT around
any optimal set point, [Marden 2013].
The WF control architecture described so far is decentralized in the local WT
controllers. Indeed their role is to, as their role is to let the WTs track the ref-
erences provided by the higher control level, without any additional information
exchange. In the last part of this report we claim that allowing additional cooper-
ation at the WT level can lead to interesting benefits. Generally speaking we show
that by means of consensus control techniques we can enhance the respect of the
imposed higher level power gains despite the system dynamics and wind disturb-
ances. This can be done by formulating the WF control problem as a power sharing
one among the WTs, and on which they have to reach an agreement. Although
similar power sharing problems in the WF framework have been proposed, as in
[Biegel 2013, Spudić 2015, Baros 2017], both the problem addressed in this work
and the control techniques to tackle it are fairly new, and to the author’s knowledge
they do not have an equivalent research work in the literature.

Thesis Organization

The document is divided into three parts. Each of these addresses a specific prob-
lem in the WF control framework and it is in turns divided in two chapters. The
first chapter in each part is always related to the mathematical tools employed or
developed in order to tackle the WF problem analyzed in the second chapter. By
choosing this structure we also aim at providing a self-contained document as much
as possible. This is why, especially in the mathematical tools chapters, for the reader
convenience we sometimes recall well-known control and optimization techniques.
More classic results are instead reported in the according appendix. The literature
review is presented in details, locally, any time a new contribution is proposed.

Part I

This part is devoted to the wind turbine control problem, and it is composed of
Chapters 1 and 2. The main issues addressed are the one of letting a WT operate
in classic zones of functioning as well as track general deloaded power references.
The considered control approach is based on a combined action of the well-known
techniques of feedback linearization (FL) and model predictive control (MPC). Thus
in Chapter 1 we recall some theoretical elements concerning the combined FL and
MPC control technique, sometimes indicated as FL+MPC, while analyzing some
additional issues concerning the treatment of system singular points, and nonconvex
hard constraints. For the reader convenience, classic results concerning FL and MPC
are reported in Appendix A.
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In Chapter 2, the WT dynamic model and its controller are presented. Particular
attention is devoted to its mechanical dynamics, being of central interest for the
controller design. Both the classic and deloading modes of functioning are described.
These are concerned with letting the WT extract the maximum available power as
well as track more general power references according to the WF control problem.
Moreover, when the WT has to be deloaded, the proposed control scheme enables
a maximized kinetic energy storage in the WT rotating masses. In order to face
well-known problems of wind estimation, we additionally make use of a Kalman
filter. Results are presented on simulations based on NREL’s CART1 wind turbine
parameters, and they show a good behavior in robustness and performance. The
considered controller also proves to outperform a more classic WT control scheme.

Part II

In this second part, composed of Chapters 3 and 4, we analyze the control object-
ives at the WF level. As previously anticipated, the high level WF control problem
is formulated as an optimization problem, which is chosen to be solved in a dis-
tributed way among the WTs. In Chapter 3 we thus aim at proposing two novel
distributed optimization algorithms, which can be in turns used for the WF op-
timization problem. Both are based on the well-known particle swarm optimization
(PSO) algorithm, whose main features are thus reported. As it often happens in
the framework of distributed optimization, where the algorithms are usually coupled
with consensus control techniques, the first of the two proposed algorithms is based
on an existing finite time average consensus technique, proposed by [Dung 2013],
whose main technical background is reported for the reader’s convenience. The two
introduced distributed PSO algorithms are described in a general way and they can
be addressed to solve a class of optimization problems. Many engineering problems
fall within the latter. As an example, we show that the proposed algorithms can be
applied to the well-known nonconvex optimization problem of optimal power flow,
without the need for particular problem approximations or simplifications.
In Chapter 4, the WF hierarchical control structure is presented. This is based
on the WT control discussed in Chapter 1, and on a higher distributed controller
coordinating the WF operations based on the solution of an optimization problem.
Thus an important part of this chapter is dedicated to the definition and solution of
the WF optimization problem. This is based on taking into account the wake effect
into the WF model in order to aim at improved power gains, while satisfying grid
constraints on injected active power. First, an existing wake model is presented,
based on the work of [Park 2015a, Gebraad 2016], allowing to pose the optimization
problem. As a matter of fact this belongs to the class of optimization problems which
can be solved via the two proposed optimization algorithms of Chapter 3. Their per-
formance is thus evaluated and compared on different wind farms examples. While
both algorithms perform well in the unconstrained WF optimization problem, the

1CART (Controls Advanced Research Turbine) is located at NREL National Wind Technology
Center in Colorado, USA, and it is used for state-of-the-art test bed for controls research.
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second proposed algorithm outperforms the first one in optimality of the solution for
the constrained case. Moreover it presents good scalability properties when applied
to large size WFs, while maintaining a competitive speed of convergence.
The optimization step is based on some simplified assumptions of perfect WF con-
trol operation, and in particular, the system dynamics are neglected. This is why,
as a final step, we propose to evaluate the overall WF control performance by taking
into account the WTs controlled dynamics. Simulations show that there exist a gap
between the attainable power gains via the overall proposed WF architecture and
the theoretical ones set by the only solution of the WF optimization problem. How-
ever still the obtained power gains can be significant and this confirms the interest
for cooperative methods in controlling a WF when the wake effect is not negligible.

Part III

This last part is composed of Chapters 5 and 6, and it is dedicated to the intro-
duction of a new control level in the hierarchical structure of Chapter 4 between
the WF optimization and the WTs controllers. The main idea is to let further co-
operation among the WT local controllers by letting them exchange information
on a communication graph, which, for instance, can be set as the one used by the
distributed optimization algorithms described in Chapter 4. Such control is based
on the employment of consensus techniques. Thus, in Chapter 5 we introduce a new
proportional-integral-derivative (PID)-like consensus control for multi-input-multi-
output (MIMO) linear-time-invariant (LTI) agents. This is presented in a general
formulation and can be applied for both leaderless and leader-follower consensus
problems.
These tools are meant to be applied for the specific case of the WF distributed con-
trol problem in Chapter 6. However, since they are conceived for the linear dynamic
systems framework, in Chapter 6 we first proceed by proposing an asymptotic output
tracking (AOT)-based control scheme to let a WT track a general deloaded power
reference, and make the WT closed-loop system linear. Thus the results concerning
the WT control of Chapter 2 are not considered here, as the FL+MPC scheme would
not allow an easy introduction of the controlled WT in the chosen WF consensus
control framework, because of the presence of the MPC control step. Differently
from the FL+MPC approach, the AOT WT controller allows a simpler deloading
technique, which though does not let an optimized kinetic energy storage in the
WT rotating masses. All in all, the proposed distributed controller can modify the
high level optimal power references in order to take into account system dynamics
and possible wind disturbances, and to enhance the overall system performance. In
particular, on the one hand, via a leaderless approach the consensus controller scope
is to even out zero-mean wind disturbances on the optimal WF power sharing. On
the other hand, a leader-follower consensus controller enables to restore the optimal
WF power sharing in the presence of power reference errors.

The document ends with some general conclusions and further perspectives, as well
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as appendices and referenced bibliography.

Collaboration

This PhD work was carried out in collaboration with EDF (Electricité de France)
R&D, and it was co-founded by CentraleSupélec and EDF.
It was prepared in a joint doctoral between the Laboratoire des Signaux et Systèmes
(L2S) in CentraleSupélec, for the doctoral degree in Sciences et Technologies de
l’Information et de la Communication (STIC), and the Dipartimento di ingegneria
Informatica Automatica e Gestionale Antonio Ruberti (DIAG) in La Sapienza, Uni-
versità di Roma, for the doctoral degree in Automatica, Bioingegneria e Ricerca
Operativa (ABRO).
The EDF R&D departments involved in this research work are PRISME (Perform-
ance, Risque Industriel, Surveillance pour la Maintenance et l’Exploitation) and
EFESE (Economie Fonctionnement Etudes des Systèmes Energétiques). Moreover,
the PhD work is attached to the EDF project ’Eolienne terrestre’.
The PhD ascribes to the RISEGrid Institute (Research Institute for Smarter Electric
Grids) which was launched jointly by CentraleSupélec and EDF in December 2012
and is dedicated to the study, modelling and simulation of smart electric distribution
grids and their interactions with the whole electric power system.





Part I

Wind Turbine Control





Chapter 1

Combined Feedback Linearization
and MPC

Contents
1.1 Constrained Feedback-linearizable Systems . . . . . . . . 18

1.1.1 Exact-linearizable Systems . . . . . . . . . . . . . . . . . 18
1.1.2 Input-output Linearizable Systems . . . . . . . . . . . . . 19

1.2 Avoiding Singular Points . . . . . . . . . . . . . . . . . . . 20
1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The aim of this chapter is to present the control approach that will be applied
for the sake of WT control in Chapter 2. This is concerned with combining

two well-known control techniques in cascade, namely feedback linearization, and
model predictive control. For the reader’s convenience we report the basic concepts
and notions concerning FL, and MPC in Appendices A.4 and A.6 respectively. In
the following we focus on two control problems that can be addressed by their com-
bined action, namely the control of feedback linearizable systems with state and
input constraints, and the control of feedback linearizable systems whose relative
degree is only well-defined in subsets of the state space.
Generally speaking, the combination of FL and MPC is motivated by the following.
When a nonlinear system presents state or input constraints, employment of the
only FL technique cannot guarantee their satisfaction. This is why, thanks of its
capability to handle system constraints, MPC can present a natural choice for a
controller in cascade with the feedback linearizing one. In the same way, if MPC
is employed to control a nonlinear system, then, in general, nonlinear optimization
techniques should be considered in order to solve the receding horizon optimiza-
tion problem, and this commonly leads to a substantial increase in the computation
burden, [Nevistic 1995]. Thus FL enables solving a simplified, possibly convex op-
timization problem.

Remark 1.1 In this work the considered FL step is conceived to control continuous-
time dynamic systems. The feedback linearized system is then discretized in order to
apply MPC technique. Another possible approach can be represented by conceiving
the whole control design in the discrete-time framework. For a generalized definition
of zero dynamics and the application of FL techniques to sampled-data systems, one
may refer to the work of [Monaco 1988].
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1.1 Constrained Feedback-linearizable Systems

The following notes are based on [Nevistic 1995], who firstly proposed the FL+MPC
control scheme. For the sake of simplicity, let us consider a feedback-linearizable
SISO system affine in the input, i.e. of the form{

ẋ = f(x) + g(x)u

y = h(x)
(1.1)

where x ∈ X ⊆ Rn, f is a smooth vector field, and g, h smooth functions. Results
hold true for the MIMO case too. Moreover the system input has to satisfy the hard
constraint

umin ≤ u ≤ umax

1.1.1 Exact-linearizable Systems

Let us first consider the system to have relative degree r = n, i.e. there is no
zero dynamics. Thus, employing results of FL, in a neighborhood of a given point
x0, there exists a local diffeomorphism z = Φ(x) (see Appendix A.3), and a static
feedback control law

u =
1

a(z)
(−b(z) + v)

where a(z), b(z) are defined in Appendix A.4, yielding closed-loop system (1.1) in
the new coordinates {

ż = Az +Bv

y = Cz
(1.2)

Let us consider x0 to be an equilibrium point for system (1.1) and, without loss of
generality h(x0) = 0, and z = 0 at x0. Thus, stabilizing (1.2) in the origin implies
the original coordinates system stabilization in x0. Instead of controlling (1.2) with
a classic pole-placement controller, we employ MPC. For this purpose, system (1.2)
is firstly discretized, yielding {

z+ = Adz +Bdv

y = Cdz
(1.3)

where z , z(i) is the new coordinates state at step i, v , v(i), y , y(i) the input and
output at current step i respectively, z+ , z(i+ i), and Ad, Bd, Cd the discretized
matrices of system (1.2). The optimization problem PN (z) that MPC has to solve
at each step i is thus of the form

min
v

N−1∑
k=0

l(z(k), v(k)) + Vf (z(N)) (1.4)

subject to z+ = Adz +Bdv{
a(z)umin + b(z) ≤ v ≤ a(z)umax + b(z) if a(z) > 0

a(z)umax + b(z) ≤ v ≤ a(z)umin + b(z) if a(z) < 0

(1.5)



1.1. Constrained Feedback-linearizable Systems 19

where v , {v(0), . . . , v(N − 1)}. As shown in Appendix A.6, PN (z) is a problem of
parametric optimization, where z is the parameter. By choosing l to be quadratic,
then PN (z) generally describes an optimization problem with a quadratic cost func-
tion and a constraint that is nonlinear due to (1.5), which constitutes a nonlinear
state dependent constraint. This is why in order to solve (1.4), (1.5), one would
need nonlinear programming tools, while one of the motivations for considering the
FL+MPC scheme in first place is to simplify the optimization problem, possibly
avoiding the use of nonlinear optimization techniques. Moreover, if the functions
appearing in (1.5) are nonconvex, then the optimization problem is generally non-
convex too. Nonetheless, it has to be stressed that problem PN (z) substantially
differs from the one that should be solved if MPC was applied to the original non-
linear control problem. Indeed, thanks to the FL stage, nonlinearities are moved
from the cost function to the hard constraints of the optimization problem. In order
to overcome the need for nonlinear programming though, authors of [Nevistic 1995]
identify different implementation possibilities. These are grouped in iterative pro-
cedures, and approximation procedures. The former are concerned with dealing with
nonlinear constraints exactly, and they are typically too computationally demand-
ing. As far as the latter are concerned, in this work we only consider procedures
of constraint function approximations. In particular we focus on linear approxim-
ations as, by consequence, the resulting receding horizon optimization problem is
quadratic, and it can be solved with high computational performance.

Remark 1.2 Note that if nonlinear constraints (1.5) are linearized at each time
step, then the optimization problem is time-varying. Thus it is not straightforward
to apply stability results of MPC, shown in Appendix A.6, to this particular case.

Remark 1.3 A first extension to the addressed problem is the case of systems with
state constraints. If these are of polytopic form then, in the new coordinates, they
are mapped into nonlinear, generally nonconvex constraints, via the employed dif-
feomorphism. As a result, they can be treated via approximation procedures as for
the input state dependent ones.

1.1.2 Input-output Linearizable Systems

When the system is only input-output linearizable, i.e. r < n, and the zero dynamics
is stable, constraints (1.5) become more difficult to handle. This is due to the fact
that in this case, system (1.1) is only partially feedback linearizable, yielding a
system of the form (see Appendix A.4)

ξ̇ = Aξ +Bv

η̇ = q(ξ, η) +
p(ξ, η)

a(ξ, η)
(−b(ξ, η) + v)

y = Cξ

(1.6)
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Thus functions a, and b depend on both ξ, and η variables, and the input constraints
are {

a(ξ, η)umin + b(ξ, η) ≤ v ≤ a(ξ, η)umax + b(ξ, η) if a(ξ, η) > 0

a(ξ, η)umax + b(ξ, η) ≤ v ≤ a(ξ, η)umin + b(ξ, η) if a(ξ, η) < 0
(1.7)

where η evolves according to its nonlinear differential equation in (1.7). This can
be discretized in order to be treated in the MPC framework, yielding a difference
equation of the form

η+ = fη(ξ, η, v) (1.8)

where η+ , η(i + 1). As usual, in order to satisfy the constraints in the receding
horizon, the system trajectories have to be predicted via the model equations, i.e.
at each time step k, the state can be expressed as a function of the input sequence
v = {v(0), . . . , v(k − 1)} and the initial state, via φ(k, (ξ, η),v)), where (ξ, η) is
the initial state for problem (1.4), (1.7), and where φ(k, (ξ, η),v)) is the system
solution at time step k, given the initial condition (ξ, η) and the input sequence v.
In this case though, this involves nonlinear dynamics. Constraints as a function of
the only input sequence v are obtained via composition of the constraint functions
with nonlinear functions φ(k, (z, η),v)), k = 1, . . . , N . The overall constraints can
be again handled via approximation procedures. Eventually, another possible way
to approximate the optimization problem constraints is to linearize (1.8) in order
to make the prediction φ(k, (z, η),v)) linear in the input sequence, thus enabling
less computation burden. Similar conclusions can be drawn for the case of state
constraints.

1.2 Avoiding Singular Points

In this subsection, we propose to use the FL+MPC control scheme to treat those sys-
tems whose relative degree is not well-defined in the whole state space. Moreover,
differently from the previous subsection, the systems under analysis are here as-
sumed to be unconstrainted. As it is known, the relative degree of a system is
defined locally, in a neighborhood of a given point x0. In particular, if the relative
degree at x0 is r, then LgL

r−1
f h(x) 6= 0 in a neighborhood of this point, where

we made use of Lie derivative, defined in Appendix A.2. However, there might
be points of the state space in which such condition is lost. In such points the
relative degree is not well-defined and classic FL cannot be applied, [Zhang 2006].
These are the singular points. While in literature there exists approaches based on
system approximation and switching to control a system near its singularities (e.g.
[Tomlin 1998], [Zhang 2006]), in this subsection, by means of the combined FL and
MPC technique, we aim at confining the system trajectories in the subspace where
the relative degree is well-defined. This approach can be particularly useful when
the functions appearing in the feedback linearizing law are too complex to be treated
analytically in order to find a suitable system approximation.
We again address SISO systems for the sake of simplicity. Results hold true for the



1.2. Avoiding Singular Points 21

MIMO case. Before getting insight into the proposed solution, it is useful to provide
the following proposition.

Proposition 1.1 Consider a SISO system of the form{
ẋ = f(x) + g(x)u, x(0) = x0

y = h(x)
(1.9)

where x ∈ X ⊆ Rn. Then LgLr−1
f h(x(t)) 6= 0 ∀t ≥ 0, i.e. the state trajectory does

not pass through singularities, if and only if the following conditions are verified.

(i) The system relative degree in x0 is well-defined and equal to r ≤ n.

(ii) sign(LgL
r−1
f h(x(t))) = sign(LgL

r−1
f h(x0)) ∀t ≥ 0.

Proof: (Necessity) If for some t∗ > 0, sign(LgL
r−1
f h(x(t∗))) 6= sign(LgL

r−1
f h(x0)),

then ∃t∗∗ : 0 < t∗∗ ≤ t∗ such that LgLr−1
f h(x(t∗∗)) = 0, i.e. x(t∗∗) is a singular

point. (Sufficiency) If for some t∗ > 0, LgLr−1
f h(x(t∗))) = 0 then, by condition (ii),

LgL
r−1
f h(x0) = 0 and this contradicts condition (i).
Note that if the system trajectory is the solution of the closed-loop system where

u is chosen as the FL control, i.e. u = (LgL
r−1
f h(x))−1(−Lrfh(x) + v) (see Ap-

pendix A.4), then, if the conditions of Proposition 1.1 are verified, u is finite. Pro-
position 1.1 gives simple conditions under which a given trajectory of the state does
not pass through singular points. A natural question is under which conditions such
trajectory exists. In particular we are interested in finding a trajectory connecting
two given points while satisfying the conditions of Proposition 1.1.

Proposition 1.2 Consider system (1.9), where x0 respects condition (i) of Propos-
ition 1.1. Consider a given output ye and a corresponding equilibrium pair (xe, ue),
i.e. such that 0 = f(xe) + g(xe)ue, h(xe) = ye. If the following conditions are
verified

(i) The system relative degree in xe is well-defined.

(ii) sign(LgL
r−1
f h(xe)) = sign(LgL

r−1
f h(x0)).

(iii) x0, xe belong to a connected subset of Λ: Λc, where Λ is defined as the set
Λ , {x ∈ X : sign(LgL

r−1
f h(x)) = sign(LgL

r−1
f h(x0))}.

Then, by definition of connected set, it always exists a curve γ such that x0, xe ∈ γ
and γ ∈ Λc, which implies LgLr−1

f h(x) 6= 0 ∀x ∈ γ.

Proposition 1.2 states that, under particular conditions, among all the possible
curves connecting two given points, there always exists one which does not pass
through singular points. Note that the conditions of Proposition 1.2 are necessary
for the existence of a trajectory connecting two given points while avoiding singular
points, i.e. a curve satisfying the conditions of Proposition 1.2 and system equa-
tions (1.9).
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In the sequel, we provide stability results for the restricted case of output regula-
tion of exactly linearizable systems, i.e. r = n. Thus, in the new coordinates, the
discretized system is described by (1.3). Given an equilibrium pair (xe, ue) for sys-
tem (1.9) corresponding to a given constant output ye, without loss of generality, we
consider that the equilibrium pair in the new coordinates satisfies (ze, ve) = (0, 0)

at (xe, ue). Thus the problem of regulating the output at ye = Cze can be handled
in the framework of the stabilization problem. In the more general case, the control
input v of (1.3) is of the form

v = ve + vmpc

i.e. composed by the feedforward constant value ve, which can be different from
0, corresponding to the steady state of the linearized system, and by the feedback
control vmpc stabilizing error z − ze, and which in this framework is given by an
MPC controller. Such practice is common in the output regulation problem, (see
[Rawlings 2009]). By employing classic results of MPC stability, (see Appendix A.6),
we can state the overall stability result in the following.

Theorem 1.1 Given a system of the form of (1.9) with relative degree r = n;
given an output target ye, and an initial condition x0 satisfying condition of Pro-
position 1.2; given the feedback linearizing change of coordinate z = Φ(x), such that
ze = Φ(xe) = 0, z0 = Φ(x0); if the following conditions are satisfied

(i) It exists a convex set Λ̃con ⊆ Λ̃c, where Λ̃c is a connected subset of

Λ̃ , {z ∈ Rn|sign(a(z)) = sign(a(0))}

where a(z) = LgL
n−1
f h(Φ−1(z)), and z0, ze ∈ Λ̃con.

(ii) Λ̃con is compact.

(iii) The diffeomorphism Φ : Rn → Rn is defined in a region including Λ̃con.

(iv) l : Rn ×R→ R is chosen to be a convex definite positive continuous function,
and l(z, u) ≥ α1(|z|), where α1 is a function of class K∞.

(v) It exists a set Zf ⊆ Λ̃con such that

min
v
{Vf (Adz +Bdv)) + l(z, u)|Adz +Bdv ∈ Zf} ≤ Vf (z) ∀z ∈ Zf

where Vf (z) , z>Pz, and where P � 0 is the unique solution to the discrete
time Lyapunov equation A>d PAd −Ad = −Q, for a chosen Q � 0.

Then, the implicit control law vmpc , κN (z) , vompc(0, z), where vompc(0, z) is the first
value of the optimal sequence vompc(z) =

{
vompc(0, z), . . . , v

o
mpc(N − 1, z(N − 1))

}
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solving the optimization problem PN (z)

V o
N (z) = min

v

N−1∑
k=0

l(z(k), v(k)) + Vf (z(N))

subject to z+ = Adz +Bdv

z(k) ∈ Λ̃con, k = 0, . . . , N − 1

z(N) ∈ Zf

(1.10)

stabilizes system (1.3), if z0 ∈ ZN , where ZN is the set of states z such that (z,v)

belongs to ZN ,
{

(z,v)|φ(k, z,v) ∈ Λ̃con, k = 0, . . . , N − 1, φ(N, z,v) ∈ Zf
}
. Thus,

u =
1

LgL
n−1
f h(x)

(−Lnfh(x) + κN (Φ(x))) (1.11)

stabilizes system (1.9) in xe.

Proof: The proof is based on nominal MPC stability results, thus only the
main sketches are presented. First of all the system is feedback linearized yielding
discretized linear system (1.3). Under conditions (ii), (iv), (v), this is stabilized
via the receding horizon control obtained by solving (1.10). This can be shown by
employing V o

N (z) as a Lyapunov function for the closed-loop system z+ = Adz +

Bdvmpc, and prove Lyapunov conditions (A.20) of Theorem A.1 in Appendix A.5. In
particular, as far as condition (i) of the Theorem A.1 is concerned, this is attained
via condition (ii). Concerning condition (ii) of Theorem A.1, Vf (z) ≤ λ̄(P )|z|2,
∀z ∈ Rn, where λ̄(P ) is the greatest eigenvalue of P . Because of condition (ii),
then it exists a function α2 of class K∞ such that Vf (z) ≤ α2(|z|), ∀z ∈ ZN ,
[Rawlings 2009]. Finally, condition (v) implies the descent property of V o

N (z). If
z0 ∈ ZN , then, for Weierstrass theorem, problem PN (z0) is solvable, and since Zf is
control invariant, the problem is recursively feasible. Moreover, since the underlying
dynamic system is linear, and both the constraints and the cost function are convex,
then the sequence vompc(z) is globally optimal.
The overall control input is recovered in the original coordinates by composing the
MPC control with the feedback linearizing one, thus yielding (1.11). Since the
trajectories are confined in Λ̃con, thanks to the MPC control and conditions of
Proposition 1.2, for all time they belong to the subspace where the relative degree
is well-defined. Eventually condition (iii) is required to have a well-defined change
of coordinates in the region of interest.

Under the conditions of Theorem 1.1, it exists a control able to bring the system
state from x0 to xe, and whose trajectories avoid the singular points. Moreover the
theorem provides a feasible control law to solve the control problem. Note that, as
far as the terminal cost function is concerned, matrix P in Vf does not have to be
necessarily chosen as the solution of the Lyapunov discrete time equation. Often, P
is chosen as the solution of the Riccati equation associated to the infinite horizon
linear quadratic regulator (LQR) problem to control system (1.3).
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Remark 1.4 It has to be noted that if l is quadratic and, Λ̃con and Zf of The-
orem 1.1 are polytopic, then (1.10) is a convex quadratic optimization problem.
Thus, efficient quadratic programming algorithms can be employed to solve it with
low computation burden.

Remark 1.5 The main idea of Theorem 1.1 is the one of finding a time-invariant
convex set that allows classic MPC results to be employed to conclude on the closed-
loop system stability. Indeed, as stated in Remark 1.2, if the nonlinear constraints
are linearized at each time step, then the optimization problem is time-varying. This
is why the key point of the theorem lies in the ability of constructing the convex set
Λ̃con. However such task is typically difficult, and there is no general method to
perform it. Nonetheless, there are cases, especially when the system dimension is
low, for which Λ̃con can be found. This is shown in the following example.

Example 1.1 Consider the system
ẋ1 = f1(x)

ẋ2 = f2(x) + g(x)u

y = x1

(1.12)

where f1(x) , 3 sinx1 + x2, f2(x) , x1x
2
2, and

g(x) ,
(

3(1− x1)2e−(x21+(1+x2)2) − 10
(x1

5
− x3

1 − x5
2

)
e−(x21+x22)

)
Let us consider the problem of regulating the output at ye = 1, starting from
x0 = col(1/2,−5). System (1.12) has relative degree r = 2, thus it can be exactly
linearized by employing the global diffeomorphism

z = Φ(x) =

(
x1

3 sinx1 + x2

)
, x = Φ−1(z) =

(
z1

z2 − 3 sin z1

)
The system in new coordinates is given by

ż1 = z2

ż2 = 3z2 cos z1 + z1(z2 − 3 sin z1)2 + g(Φ−1(z))u

y = z1

Thus the feedback linearizing input is

u =
1

g(Φ−1(z))

(
−3z2 cos z1 − z1(z2 − 3 sin z1)2 + v

)
where v is left as the control to be set by the MPC controller.
The equilibrium pair (xe, ue) corresponding to ye = 1 is xe = col(ye,−3 sin ye), ue =

−f2(xe)/g(xe), where g(xe) < 0. Moreover g(x0) < 0, thus xe, x0 satisfy conditions (i),
(ii) of Proposition 1.2, and we can define Λ ,

{
x ∈ R2|g(x) < 0

}
, which is shown in
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(a) Λ set: white region. Λc set: white region
containing xe, x0.

(b) Λ̃ set: white region. Λ̃c set: white region
containing ze, z0.

Figure 1.1: State space region where relative degree of system (1.12) is well-defined,
in both original and new coordinates.

(a) Λ̃con ⊂ Λ̃c is the area
inside the dashed line. Zf
translated around ze is the
grey area inside the solid line.

(b) State trajectory in the ori-
ginal x coordinates, starting
from x0, and reaching xe. It
remains within Λc, where rel-
ative degree is well-defined.

(c) State trajectory in the new
z coordinates, starting from
z0, and reaching ze. It re-
mains within Λ̃c, where relat-
ive degree is well-defined.

Figure 1.2: Convex sets for MPC control, and closed-loop trajectory in both the
original and new coordinates.

Fig. 1.1a. Here we are also able to see that xe, x0 belong to a connected set Λc ⊂ Λ,
thus satisfying condition (iii) of Proposition 1.2 too. In the new coordinates z, the
set Λ is transformed in Λ̃ ,

{
z ∈ R2|g̃(z) < 0

}
, where g̃(z) , g(Φ−1(z)). Similar

transformation holds for Λc, which is named Λ̃c in the z coordinates. Λ̃, Λ̃c together
with ze = Φ(xe), and z0 = Φ(x0) are shown in Fig. 1.1b. From Λ̃c we construct
a polytope Λ̃con ⊂ Λ̃c, and such that ze, z0 ∈ Λ̃con. The feedback linearized system
is discretized via Euler method using a sampling time Ts = 10 ms. The system is
thus governed by the linear difference equations z+ = Adz + Bdv, y = Cz, where
Ad = I2+TsA, Bd = TsB, being I2 the identity matrix of dimension 2, A, B matrices
in the continuous-time canonical form of controllability, and Cd = [1 0]. The
equilibrium pair (ze, ve) of such system, corresponding to ye = 1, is ze = col(ye, 0),
and ve = 0. Thus, by defining the change of coordinates z̃ , z−ze, and ṽ , v−ve, we
can treat the output regulation problem in the stabilization framework. Concerning
the receding horizon optimization problem yielding the MPC implicit control law,
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we choose l(z̃, ṽ) = z̃>Qz̃ + ṽ>Rṽ, where Q = 10I2, and R = 1, the terminal cost
function Vf (z̃) = z̃>P z̃, where P is the solution of the Riccati equation associated to
the infinite horizon LQR problem, and Zf is computed, using the toolbox provided
in [Herceg 2013]1, as the maximum control invariant set in Λ̃con. The prediction
horizon is set as N = 5. Zf translated around ze, and Λ̃con are shown in Fig. 1.2a.
The controlled trajectory using the described FL+MPC technique is shown in the
original coordinate in Fig. 1.2b, and in the z variables in Fig. 1.2c. We are thus able
to verify that it stays within Λc, (Λ̃c) for all time.

1.3 Conclusion

We presented a brief introduction to the control technique that we aim to apply in
the WT control framework. In particular we recalled how, on the one hand FL can
be useful to treat nonlinear systems in the LTI framework and, on the other hand,
how MPC technique can be employed to treat system constraints as well as system
singular points. These two latter issues have been stressed as they appear in the
WT application, object of Chapter 2.
Results of Theorem 1.1 have been presented mainly to make the reader aware of
the particular singular points problem and to suggest MPC as a possible technique
to handle it. In fact, these results are pretty conservative and may not find easy
application to general real world control problems, as it will be shown in Chapter 2.
However, in the author’s opinion, in future research work less restrictive results
could be obtained by using rapidly-exploring random tree (RRT) algorithms, see
e.g. [Weiss 2017]. Indeed the two major limits of Theorem 1.1 are concerned with
the existence of a convex set, in which the relative degree is well-defined, to which
the system initial state x0 and final state xe belong, and on the computation of such
set. If, more in general, x0, and xe belong to a connected nonconvex set, then RTT-
based algorithms can be used to compute a sequence of convex sets connecting x0 to
xe, rather than requiring the existence of one convex set. The additional theoretical
development concerning FL+MPC technique is considered beyond the scope of this
work and will not be treated further.

1Multi-Parametric Toolbox 3 (MPT3) is an open source, Matlab-based toolbox for parametric
optimization, computational geometry and model predictive control.
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2.1 Introduction

2.1.1 Wind Turbine Control Objectives

In the field of control of wind turbines, two main regions corresponding to differ-
ent classic operating modes are distinguished (see for instance [Ackermann 2005,

Abdullah 2012]). The first one, at low wind speed, consists in the maximum power
point tracking (MPPT) algorithm, while the second one, at high wind speed, is
concerned with stabilizing the power at its nominal value. Generally speaking,
the mentioned wind turbine control aims at converting the maximum extractable
power from the upstream wind in electric power whenever the latter does not reach
the WT nominal one, in which case the WT control is switched to power limiting
mode. However, the strong penetration of wind energy production in the distribu-
tion and transmission electric grid has recently changed the role that wind farms
have in taking into account the grid constraints as well as in ensuring the bal-
ance between production and demand. As a result, an adapted grid code for wind
power generation establishes a set of grid connection technical requirements that
wind farms have to meet. These are typically related to the voltage and reactive
power control, frequency control, and fault ride-through capabilities (one may see
[de Alegría 2007, ENTSO-E 2013]). If in the past years, wind turbines were not
expected to actively participate to the grid operations, they are nowadays required
to be able to work in nonconventional operating modes. On the one hand, this
implies certain restrictions on the maximum power delivered to the grid, on the
other hand, it opens a range of new possible services to which wind farms can par-
ticipate, bringing an economical gain at the collectivity scale. This is evidenced by
[Minaud 2013], and [Delille 2013], who, for instance, consider the economic advant-
age of power curtailment as a possible alternative solution to the grid reinforcement
for the integration of renewable energies. Thus, it follows a growing interest in em-
ploying new technologies, such as energy storage, and new methods of control in
order to allow the wind turbines to function out of the classic MPPT mode of oper-
ation when needed. From a technical point of view the aforementioned requirements
can be expressed as constraints on active and reactive power that wind turbines have
to respect while maximizing the energy production. Furthermore, recently, research
studies on the aerodynamics involved in wind farms have shown that the optimal
power reference for a wind turbine does not necessarily coincide with the MPPT one
if coupling effects between turbines cannot be neglected. In particular, WTs would in
general track deloaded power references with respect to MPPT in order to maximize
the WF power production. This is treated in details in Part II, and Part III. Since
a great deal of applications, especially concerning frequency response, active power
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constraints, and power optimization, can be in practice treated as a general problem
of active power control, we decided to focus the work of this part on the control of
the aerodynamic power extraction of variable-speed variable-pitch turbines, i.e. the
problem of tracking a desired power reference signal. Their technology is typically
based either on doubly-fed induction generators or permanent magnet synchronous
generators, and this characterizes the main electrical parameters of the considered
WTs. Thanks to the power electronic converters employed in the connection of DFIG
and PMSG WTs to the grid, the choice of focusing on the only active power control
is validated by the possibility to control active and reactive power independently
(see for instance [Poller 2003, Arifujjaman 2010, Perdana 2008, Hamon 2010]).

2.1.2 Related Works

The WT mechanical system is a nonlinear dynamic systems, mainly due to the
aerodynamic relation describing the conversion from wind to mechanical power.
For such system to be controlled in the classic operating mode, i.e. MPPT and
power limiting, several linear control techniques have been proposed in the liter-
ature. However, as pointed out by [Boukhezzar 2010], nonlinear controllers can
outperform linear ones, especially for high-turbulence wind speed. One can cite
[Thomsen 2006, Boukhezzar 2005, Boukhezzar 2007, Boukhezzar 2011]. They all
propose feedback linearization and asymptotic output tracking techniques to con-
trol a WT that differ one from another according to the tackled control problem.
Authors of [Thomsen 2006] additionally provide a sliding mode application to WT
control. In [Boukhezzar 2005], AOT is first used for monovariable control of a WT
with fixed pitch angle, then, in [Boukhezzar 2007], the technique is coupled with a
separate proportional controller to control the pitch angle and reach better perform-
ance. In both the latter references, the control is only applied at high wind speed
values. In [Boukhezzar 2011], the authors capitalize on AOT with wind estimation
to perform MPPT, in which case the pitch angle is fixed to its optimal constant
value. The extension of these nonlinear control techniques to the more general act-
ive power control framework is not a trivial task. Moreover, these approaches are
conceived for well-defined modus operandi, again either MPPT at low wind speed
or power limiting at high wind speed. Few works have treated the problem of non-
linear control for the entire operating envelope. Authors of [Burkart 2011] present
an approach based on switched linear systems and FL which enables the turbine to
be controlled in all the regions of interest. Nevertheless, when operating at low wind
speed, the pitch angle is kept constant to its optimal value. This basically limits
its employment for different power references than the MPPT one. In [Gros 2013],
the author employs an economic nonlinear model predictive control techniques to
let the WT extract the maximum power from the wind without providing any pre-
computed optimal steady state reference, and while satisfying the WT constraints,
among which there is the rated power one. Thus, the controller can be applied in
all classic operating modes. However, it was validated on only constant wind speed
signals.
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When controlling a WT in the classic mode of operation, typically, references for
the turbine rotor angular speed and for the pitch angle need to be provided to
the local controller. For a given wind speed value, these are usually obtained via
the static aerodynamic relation between the mentioned variables and the aerody-
namic power. When the desired aerodynamic power is lower than its maximum
value, different set points for the rotor angular speed and the pitch angle must be
provided. Even though different strategies have been proposed in the literature for
the choice of these set points (e.g. [Yingcheng 2011, Žertek 2012a]), in the most
cases the control architecture is based on standard linear controllers such as PID
(e.g. [Loukarakis 2009, Ramtharan 2007, Tarnowski 2009]) and gain scheduling ap-
proaches (e.g. [Wang 2014, Khezami 2010, Camblong 2012]). Eventually, authors of
[Penarrocha 2014] propose a nonlinear control to treat the specific problem of tran-
sient power increase with respect to the maximum aerodynamic power by means of
machine deceleration to sustain the grid. The solution though applies for the case
of low wind speed and fixed pitch angle.

2.1.3 Contribution

The problem of WT control is typically divided in two cascaded control loops. The
first inner one is concerned with the WT electrical components, while the second
outer one with the mechanical part of a WT. As they act on different time scales,
their design can be performed independently [Boukhezzar 2010]. Thus, without loss
of generality, in the sequel, we only address the problem of controlling the WT
mechanical system. It follows that the results are applicable to both DFIG-based
and PMSG-based WTs with variable pitch. As far as the electrical part control is
concerned, for instance, conventional design for DFIG-based WTs is performed via
rotor current vector control. The reader may refer to [Li 2009] for a comparative
study of stator-voltage and stator-flux oriented control for DFIG-based WTs. In
the following we present a nonlinear control for active power tracking which is not
confined to work in a particular region of interest, i.e. no assumptions are made
concerning the wind speed. Thus, it enables the WT to be controlled in its whole
operating envelope. The employed control approach is based on a combination of
FL and MPC, [Gionfra 2016b]. While MPC allows dealing with state and inputs
constraints explicitly, FL enables solving an optimal control problem with nonlinear
constraints and whose underlying dynamic system is made linear by the FL itself.
In addition, as seen in the previous chapter, under some approximations, the op-
timal problem can be made convex, or even quadratic (see [Nevistic 1995]). This
control approach applies to all the deloading techniques proposed by the references
mentioned in the previous subsection. In order to guarantee the satisfaction of
the chosen one, both pitch angle and rotor angular speed control is active in every
operating zone to attain general power references. For this reason, the addressed
problem falls within the framework of nonlinear MIMO systems. Eventually, we
apply some of the results proposed in Chapter 1 to treat the singular points in the
FL framework. As discussed, a singular point is a state of the system in which the
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Figure 2.1: Wind turbine main components.

relative degree is not well-defined. If FL technique is employed for, say, a tracking
problem, and the system presents singular points, then the classic formulation of
FL may not be applied. While in the literature, approximate FL techniques, based
on the work of [Hauser 1992], exist to overcome this problem, we propose to treat
the wind turbine control problem via the approach based on avoiding the singular
points rather than performing an approximate FL.

2.2 Wind Turbine Model

In this section we derive the mathematical model of a wind turbine, describing the
conversion from wind power to electric power. We restrict our attention to variable-
speed variable-pitch WTs, as nowadays they represent by far the most employed
technology. In particular, as mentioned in the previous section, variable-speed tur-
bines are based on electrical connection to the grid via either DFIG or PMSG. A
WT is mainly composed by

• a rotor, in turns composed by a rotor hub, and rotor blades with their blade
pitch actuator.

• a nacelle, in turns composed by a mechanical transmission, generally equipped
with a gear box, by a generator responsible for the mechanical to electrical
power conversion, and typically by an anemometer for wind measurement.

• a tower on which the nacelle is placed. Variable-yaw WTs are also equipped
with a yaw drive.

The overall WT components scheme is shown in Fig. 2.1. The WT model can be
expressed as the cascade of three main modules, each of which describing

• the aerodynamics, i.e. the conversion from wind power to mechanical power.

• the mechanics, i.e. the transmission and adaptation of the mechanical power
to be converted in electrical one.
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Figure 2.2: CART power coefficient.

• the electrical conversion of the mechanical power.

2.2.1 Wind Turbine Aerodynamics

The wind kinetic energy captured by the turbine is turned into mechanical energy
of the turbine rotor, turning at an angular speed ωr and subject to a torque Tr.
In order to model the power extracted from the wind, it has been shown that
considering the wind speed component in the only longitudinal (axial) direction
guarantees sufficient model reliability. Moreover, from the actual wind speed w, the
equivalent wind speed v representing the wind field impact on the turbine can be
obtained by filtering the time series of wind data w as described by [Petru 2002].
The extracted power can be described by the nonlinear function

Pr = ωrTr =
1

2
ρπR2v3Cp (λ, ϑ) (2.1)

where ρ is the air density, R is the radius of the rotor blades, ϑ is the pitch angle,
λ is the tip speed ratio given by

λ =
ωrR

v
Cp is named power coefficient, and it describes the ratio between the extracted and
the available wind power as a function of the tip speed ratio and pitch angle. This
is typically provided in the turbine specifications as a lookup table. As far as the
turbine parameters are concerned, in this work we make use of the CART power
coefficient, shown in Fig. 2.2. However, often Cp is approximated by an analytic
function in order to be treated for control synthesis purpose. Typically it can be
described either by a polynomial function of the form

Cp(λ, ϑ) '
nc,1∑
i=0

nc,2∑
j=0

aijλ
iϑj
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Figure 2.3: Wind flow and wind speed at rotor disc vr = v(1− α).

where nc,1 +nc,2 is the polynomial degree, and aij its coefficients, or by the following
(see [Heier 2014])

Cp(λ, ϑ) ' 0.5
(

116
λi
− 0.4ϑ− 5

)
e

(
−21
λi

)
+ 0.0068λ

1
λi

= 1
λ+0.08ϑ −

0.035
ϑ3+1

(2.2)

Moreover, Cp can be differently described by employing Betz theory. In particular,
we first define the axial induction factor α as

α ,
v − vr
v

where v is the free stream wind blowing in front of the WT, and vr the wind speed
at the rotor plane, see Fig. 2.3. Thus α is the fractional decrease in wind velocity
between the free stream and the wind turbine, and it is an index of the amount of
kinetic energy captured by the WT. It can be proved (see e.g. [Burton 2011]) that
theoretically

Cp = 4α(1− α)2 (2.3)

From (2.3), it is clear that the maximum power coefficient has a theoretical limit
equal to 16/27 = maxαCp(α), attained at α = 1/3, which we rename here αbetz.

2.2.2 Wind Turbine Mechanics

2.2.2.1 Two-mass Model

A drive train turns the slow rotor speed into high speed on the generator side, ωg.
Because of its huge dimension with respect to the other components, the rotor can
be model as one mass, [Boukhezzar 2006a]. As a result, the drive train can be
naturally described by a two-mass model approximation (e.g. [Boukhezzar 2006a,
Thomsen 2006, Boukhezzar 2011, Burkart 2011]). This is shown in Fig. 2.4, where
the rotor, the gear box, and the slow speed shaft inertia are integrated in Jr. The
high speed shaft inertia associated to the generator is represented by Jg. All the
flexible modes of the WT can be considered to be localized in the low speed shaft,
[Boukhezzar 2006a]. Thus, the twisting of the rotor, gear box, and low speed shaft
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Figure 2.4: Two-mass model of the wind turbine mechanics.

are integrated in the spring constant Ks, while Ds is the associated damping coeffi-
cient. The gear box ratio is ng. Eventually the two masses frictions are considered
via coefficients Kr, and Kg.
The rotor dynamics is given by

Jrω̇r = Tr − Tls −Krωr (2.4)

where the expression for Tr can be easily obtained from (2.1). The friction and
twisting effects caused by the difference between the rotor angular position ϑr, and
the low speed shaft one ϑg/ng, and between the corresponding angular speed ωr, and
ωg/ng, result in the low speed shaft torque Tls. Thus, by naming δ , ϑr − ϑg/ng, Tls
is given by

Tls = Ksδ +Dsδ̇

The corresponding high speed shaft torque is obtained via ng as

Ths =
Tls
ng

(2.5)

As a result, the generator side dynamics is given by

Jgω̇g = Ths −Kgωg − Tg (2.6)

where Tg is the electromagnetic torque of the generator. The overall WT dynamics
is given by 

Jrω̇r = Tr −Ds

(
ωr − ωg

ng

)
−Krωr −Ksδ

Jgω̇g =
Ds

ng

(
ωr − ωg

ng

)
−Kgωg +

Ks

ng
δ − Tg

δ̇ = ωr − ωg
ng

Pg = Tgωg

(2.7)

where Pg is the electric power delivered to the grid, if the electrical components losses
are neglected. WT equations (2.7) describe a MIMO system, which can be controlled
by acting on its inputs, namely the electromagnetic torque Tg, and the pitch angle
ϑ, which appears in the expression of Tr via (2.1). Eventually, as mentioned, in
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Table 2.1: CART Turbine Parameters
Parameter Value Units
R 21.65 m

ng 43.165 −
Ks 269.1 kN ·m/rad

Ds 9500 N ·m/rad/s

Ks 269.1 kN ·m/rad

Kr 27.36 kN ·m/rad

Kg 0.2 kN ·m/rad

Jr 3.25 · 105 kg ·m2

Jg 34.4 kg ·m2

ωr,n 4.3982 rad/s

ωr,max 5.5501 rad/s

ϑmax 30 deg

ϑmin −5 deg

|ϑ̇|max 19 deg/s

Tr,max 162 kN ·m
Pe,n 600 kW

this chapter we make use of CART turbine parameters. This turbine has a nominal
power Pe,n equal to 600 kW. The other turbine parameters are reported in Table 2.1,
[Boukhezzar 2006a].

2.2.2.2 One-mass Model

When modeling wind turbines of big size, the low speed shaft of the drive train can
be considered as perfectly rigid, i.e. its flexible modes can be neglected, yielding
ωr = ωg/ng, [Boukhezzar 2006a]. In this case, the WT dynamics can be described
via a one-mass model. Indeed, we can rewrite the two-mass dynamics from (2.4)
and (2.6) as

Jrω̇r = Tr − ngThs −Krωr (2.8)

ngJgω̇r = Ths − ngKgωr − Tg (2.9)

where we employed (2.5) in (2.8). If we now multiply (2.9) by ng, and sum (2.8)
and (2.9), we obtain the one-mass model{

Jtω̇r = Tr −Ktωr − Tem
Pg = Temωr

where Jt , Jr + n2
gJg

Kt , Kr + n2
gKg

Tem , ngTg

(2.10)
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Figure 2.5: DFIG-based wind turbine.

System (2.10) describes WT dynamics whose variables and parameters are brought
on the low speed shaft side. Similar computation has to be carried out if the system
dynamics is to be considered on the high speed shaft side.

2.2.3 Wind Turbine Electrical Conversion

The main purpose of this subsection is to provide some basic notions regarding the
electrical power conversion of a wind turbine. We limit our analysis to the only
DFIG-based WTs, as the CART turbine considered in this work belongs to this
WT technology. The following notes are based on [Poller 2003, Arifujjaman 2010,
Hamon 2010].
DFIG is based on asynchronous electric machine. In the DFIG configuration, the
stator windings are directly connected to the grid, which thus imposes its currents
frequency fs, while the rotor ones are connected through two power electronic con-
verters, namely the rotor-side, and grid-side converter. A schematic of the above
description is given in Fig. 2.5. The stator currents create a rotating magnetic field
in the air gap between the stator and the rotor. Being an asynchronous machine,
according to Faraday’s law, in order to induce currents in the rotor windings, it
is required to have an electrical angular speed ωeg different from ωs = 2πfs. ωeg
is linked to the generator mechanical one ωg via the machine number of poles p,
ωeg = pωg. By defining the slip s as

s =
ωs − ωeg

ωs

the DFIG operating modes can be divided in two, namely the sub-synchronous
mode, for positive s values, and the super-synchronous one, for negative s values.
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(a) Sub-synchronous operating mode.

Pstator PePairgap

(b) Super-synchronous operating mode.

Figure 2.6: Sub-synchronous and super-synchronous modes of a DFIG. Pmec rep-
resents the mechanical power available at the generator. Pe is the electric power
delivered to the grid. If DFIG losses are neglected, then Pe = Pg.

When the slip is negative, an asynchronous machine works as a generator, and as a
motor when the slip is positive. In the DFIG configuration, to enable generation also
when s is positive, power has to be injected in the rotor via the power converters.
Such power is collected from the grid and re-introduced in the stator through the
air gap, thus creating a closed-loop power flow between the stator and the rotor.
Sub-synchronous and super-synchronous modes are illustrated in Fig. 2.6. All in
all the electric power Pe delivered to the grid is given by Pe = Pstator + Protor, i.e.
the sum of the power flowing through the stator windings, Pstator, and through the
rotor one, Protor. As a matter of fact this can also expressed as

Pe = (1− s)Pstator

This means that the transferred power portion flowing through the rotor can be
expressed as function of the stator one via Protor = −sPstator, and thus, it can be
controlled acting on s. For the reader’s convenience we show this fact, together
with the differential equations and the electrical variables involved in the DFIG-
based electric machine in Appendix B.2.
In this work we only address the problem of controlling the WT active power, under
the assumption that active and reactive power control can be performed independ-
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(a) Power-wind characteristic and defin-
ition of classic zones of functioning.

(b) Power coefficient as a function of λ,
when ϑ = ϑo.

Figure 2.7: Wind turbine zones of functioning and power coefficient function.

ently, [Arifujjaman 2010]. For the reader’s convenience some notes supporting this
assumption are reported in Appendix B.3. Moreover, in general, active and reactive
control is performed via inner control loops that are fast with respect to the mech-
anic system dynamics. Being interested in the active power control, and focusing on
the only WT mechanical system, in the sequel we consider a first order system to
model the DFIG system, actuating the electromagnetic torque Tg of system (2.7).
This takes the form

τT Ṫg = Tg + Tg,r (2.11)

where the time constant τT depicts the speed of the inner control loop, (see e.g.
[Boukhezzar 2009]).

2.3 Classic Mode of Operation

2.3.1 Zones of Functioning

In classic WT control, wind turbines are conceived to work in two main zones of
functioning. These can be described as a function of wind speed v blowing in the
axial direction of the WT. At low wind speed and above a minimum value vcutin ,
a WT is operated in MPPT mode, i.e. it is required to track the maximum power
extractable from the wind

P o(v) =
1

2
ρπR2v3Cop

where Cop is the maximum value of the Cp function shown in Fig. 2.2, and for
which, as mentioned, there exists a theoretical limit equal to 16/27. MPPT typically
occurs in the range of wind speed values ∼ [5, 12] m/s. At high wind speed and
below a safe maximum wind speed value vcutout , when the extractable wind power
is above the WT rated one, Pe,n, a WT is operated in power limiting mode, i.e. the
extracted power is regulated at Pe,n. vcutout has a typical value equal to ∼ 22 m/s.
The described zones of functioning are depicted in Fig. 2.7a, where it is shown the
extracted power as a function of the wind speed. In the sequel we show some classic
control schemes associated to the MPPT and power limiting mode.
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2.3.2 MPPT Control

In the literature there exist several classic control schemes to perform MPPT control,
(see e.g. [Barakati 2009, Abdullah 2012]). A first well-known technique is the Tip
Speed Ratio (TSR) control, and its main concept is described as follows. The wind
turbine power coefficient Cp(λ, ϑ) has its maximum at constant ϑ for any value of
λ. This optimal pitch value ϑo is typically equal to 0◦. In Fig. 2.7b the Cp function
of λ when ϑ = ϑo is illustrated. From this, it is easy to identify

λo = arg max
λ

Cp(λ, ϑ
o)

Thus, MPPT mode is concerned with controlling the WT at constant tip speed ratio
equal to λo. In order to do so, a local control could be conceived to let the WT
track the rotor angular speed, function of v

ωor(v) =
λo

R
v (2.12)

while keeping the pitch angle at its constant optimal value ϑo. Because (2.12)
requires knowledge of the wind speed, and because it is often preferable to have
direct control on the power injected into the grid, typically other control schemes
are considered. Among these, a well-known technique is the Power Signal Feedback
(PSF) control method. This is based on direct employment of a lookup table relating
the MPPT power P o with ωor in order to generate a power reference for a local
controller. Such lookup table is obtained via (2.1), and the expression of Cp. Indeed,
for each value of wind speed, it is possible to trace a curve of the extracted wind
power as function of the rotor angular speed via (2.1), for ϑ = ϑo. Connecting the
maximum points of such curves yields the optimal power as function of ωor . This
is shown in Fig. 2.8. The MPPT control loop is thus obtained as illustrated in
Fig. 2.9a. From the measure of ωr, an optimal power reference P o is obtained via
the aforementioned lookup table. Then, a controller, typically PI-based, is used to
control the power error P o − Pg to zero, by acting on the system input Tg,r. Recall
that Tg,r has been introduced in the previous section to model the DFIG inner
control response. Thus, in this control configuration, the electromagnetic torque
is used to control the power, while in the TSR scheme, the torque is devoted to
the rotor angular speed control. Sometimes, a similar MPPT control is employed
by defining a lookup table relating the optimal torque with ωr, i.e. the torque
guaranteeing the maximum power extraction from the wind. As a result, in a similar
way to what is shown above, a torque reference is provided to a local controller.

Remark 2.1 MPPT modus operandi corresponds to a specific optimal choice con-
cerning the rotor angular speed and the pitch angle, namely ωor and ϑo. However,
it can be sometimes convenient to define MPPT with respect to the axial induction
factor variable α. Since the value αbetz, defined in Section 2.2, corresponds to the
maximum value of Cp, controlling the WT axial induction factor at αbetz implies
performing the MPPT mode of functioning. This definition turns out to be useful
when treating the WF control problem, and it will be shown in Part II.
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Figure 2.8: Power-rotor speed MPPT characteristic.
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+P o Tg,r

−
Pg
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(a) PSF PI-based control for MPPT mode of functioning.

PI ϑ actuator
−ωr,n ϑ
+

ωr

(b) PSF PI-based control for power limiting mode of functioning.

Figure 2.9: A PI-based classic control loop for MPPT/power limiting.

2.3.3 Power Limiting Control

When the extractable wind power reaches the WT nominal one, the wind turbine is
controlled in power limiting mode. This is achieved by enabling the pitch control.
Typically, if in the MPPT control scheme the torque is employed to regulate the
power, then pitch control is used to keep the rotor angular speed at its nominal value
ωr,n, [Venne 2009]. This is the case of PSF control, for which power limiting at high
wind speed is usually obtained by activating a PI-based control scheme as shown
in Fig. 2.9b, while torque control continues to regulate the power at its nominal
value. Vice versa, if MPPT is performed by regulating the rotor angular speed via
electromagnetic torque, then at high wind speed the pitch angle is used to regulate
the power at its nominal value.

Remark 2.2 Although the WT is a MIMO system, classic WT control is concerned
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with two separate control loops. Moreover, during MPPT mode, the system is treated
as a SISO system, as the pitch angle is kept constant. Only when the power has to
be limited, the additional pitch control is activated. As it is shown in next sections,
this control approach may be no longer applied for a more general power tracking
problem.

2.4 Deloaded Mode of Operation

2.4.1 Motivations for Deloading a Wind Turbine

The main objective of MPPT and power limiting is to let a WT extract the maximum
available power from the wind while satisfying the nominal WT power constraint.
There exist though some important scenarios for which it would be either prefer-
able or even compulsory to track other power references than the classic ones, and
for which control approaches of Section 2.2 cannot be considered. The scenarios
contemplated in this work can be grouped in two main control objectives

• Wind farm power maximization.

• Satisfaction of grid objectives.

2.4.1.1 Wind Farm Power Maximization

When power maximization concerns a wind farm whose WTs are aerodynamically
coupled, the optimal power production is no longer obtained via the MPPT al-
gorithm. Instead, optimal set points need to be computed in a cooperative manner.
This problem is exhaustively treated in Part II, and III, and we do not provide here
further details. However, at WT level, this results in the need for making the WTs
track general deloaded power references.

2.4.1.2 Grid Objectives

As anticipated in the General Introduction, WFs can be demanded to meet new grid
code specifications. Some of these result in particular requirements concerning the
active power injected into the grid. Among these, one can list the following

• Power curtailment and power smoothness requirements.

• Frequency support requirements.

Power Curtailment and Power Smoothness

By power curtailment we identify a general power constraint to be satisfied by a
wind farm, or wind turbine. This is considered imposed by the system operator to
solve a grid constraint (e.g. congestion). Such constraint generally takes the form of
a maximum power deliverable to the grid for a given lapse of time. However, more in
general, it can be considered as a set of constraints concerning other characteristics
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of the power generated by the WTs, such as the smoothness of the power curve.
When these power specifications are operational, an interesting additional objective
can be considered. Indeed, at wind farm level, particular set points could be imposed
to the WTs in order to reduce the mechanical stress of the whole system structure
by fairly distribute the power production among the WTs, (e.g. [Baros 2017]).

Frequency Support

In classic power plants, the system frequency inertia is naturally provided to the grid
by the synchronous generators directly connected to it, as they exhibit a dynamic
behavior that can be described by the following simplified swing equation

Jω̇s = Tm − Te (2.13)

where J represents the generator inertia, ωs = 2πfs, fs being the grid frequency, Tm,
and Te are respectively the mechanical and electrical torque. From (2.13) it is clear
that the frequency of the electric grid is dependent on the active power balance,
and that a change in active power demand or production is reflected throughout the
system by a change of frequency. However, if the cumulative inertial effect of the
synchronous generators connected to the grid is high, then the change of frequency
is limited. In Section 2.2, we mentioned how DFIG-based WTs are electrically
decoupled from the grid thanks to the power converters. This holds true for general
variable-speed WTs, basically due to their capability to vary the rotor angular speed
while being connected to the grid via the employment of power converters. Thus,
this is also the case of PMSG-based WTs. Following from the above discussion
on system inertia, this electrical decoupling prevents the WTs from providing any
natural contribution to the grid frequency stability, i.e. contributing to maintain
a constant system frequency within acceptable limits. This sets a first interesting
problem, namely the one of artificially producing the system inertia by means of
control. This is essentially done by adding an auxiliary power reference ∆Pref to
the one of the control scheme of Fig. 2.9a, which is generally a linear combination of
frequency deviation ∆f = fref − fs, where fref is the system frequency in normal

operation (fref = 50 Hz in Europe), and frequency deviation time derivative
d∆f

dt
,

(see e.g. [Morren 2006, Mauricio 2009, Zertek 2012b]), according to

∆Pref = −K1
d∆f

dt
−K2∆f (2.14)

where K1,K2 ∈ R+ are parameters to be tuned. The additional power refer-
ence (2.14) combines the attempt of producing an artificial inertial response, i.e.
first term on the right side, and the classic droop control, i.e. second term on
the right side, typically used for primary frequency control, (see [Kundur 2004]).
Since (2.14) is added to the classic power reference described in Section 2.3, which
is the maximum extractable from the wind, the defined inertial control can present
some shortcomings. First of all, at high wind speed, when the classic power refer-
ence is the WT nominal one, the WT can only support a downward additional power
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Figure 2.10: Power-rotor speed deloaded characteristic (solid-line) obtained via over-
speeding the MPPT one (dash-dotted line).

reference, i.e. ∆Pref ≤ 0. Secondly, when in MPPT mode of functioning, a positive
∆Pref makes the WT get additional power from the kinetic energy of the rotating
masses. This results in a deceleration of the rotor angular speed, thus making this
additional power reserve available only for short-term operations, [Yingcheng 2011].
A second important problem concerning the grid frequency support is represen-
ted by the primary frequency control. In order to provide a primary regulation
in both senses, i.e. downward when ∆Pref ≤ 0, and upward when ∆Pref ≥ 0, it
has been proposed to control WTs permanently in deloaded mode, so that a power
reserve is all time available. To do so, in the literature it is suggested to deload
the optimal power-rotor speed characteristic of Fig. 2.8 of a chosen percentage, (e.g.
[De Almeida 2007, Yingcheng 2011, Žertek 2012a, Zertek 2012b]). For any value of
wind speed, and constant ϑ = ϑo, this can be done by either under-speeding, i.e.
ωr < ωor , or by over-speeding the rotor angular speed, i.e. ωr > ωor . However, under-
speeding is disadvantageous because, in order to increase the electric power output
Pg, if ∆Pref ≥ 0, the kinetic energy of the WT must be increased first to bring ωr
back to ωor , [Loukarakis 2009]. Thus part of the wind power is first employed to
increase the kinetic energy of the rotating masses, and the mechanical power. If for
sake of simplicity we consider the wind turbine one-mass model of equation (2.10),
we can see that if ωr has to be increased, then a mechanical and electric power
imbalance needs to occur. In particular the electric power injected into the grid
needs to be firstly reduced to let ωr increase and this delays the required increase
in Pg. This is why over-speeding is preferred. The deloaded power-rotor speed
characteristic is shown in Fig. 2.10.

Remark 2.3 The described frequency support control is advantageous if one wants
to make little adjustments to the control scheme of Fig. 2.9, used in classic mode
of functioning. Indeed, these consist in simply changing the lookup table of Fig. 2.8
with the deloaded one of Fig. 2.10, and adding (2.14) to the power reference signal,
(e.g. [De Almeida 2007, Ramtharan 2007]). The modified control scheme is shown
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Figure 2.11: Modified classic control scheme for deloaded mode of operation.

Figure 2.12: Deloading strategy via pitch control.

in Fig. 2.11.

2.4.2 Deloaded Control Strategies

In the sequel, we focus on the problem of deloading a WT of a general quantity that
may also vary in time. This can be treated as the problem of making a WT track
a general deloaded power reference, i.e. satisfying

0 ≤ Pg(t) ≤ min(P o, Pe,n) ∀t ≥ 0 (2.15)

and it allows us to answer to both the control objectives of wind farm power maxim-
ization and grid support, seen in the previous subsection. Since according to power
equation (2.1), for a given P ?g ≤ min(P o, Pe,n), the choice of (ω?, ϑ?) that yields P ?g
is not unique, there exist different strategies to deload a WT. These are typically
based either on pitch control or speed control, [Yingcheng 2011]. The former consists
in keeping ωr at its optimal MPPT value ω0

r , and modifying the pitch angle to move
on other power-rotor speed curves. This principle is illustrated in Fig. 2.12 As far
as the latter is concerned, we saw its working principle in the previous subsection.
However, as mentioned in Remark 2.3, this is useful when a classic control scheme is
preserved, and where the pitch control is only activated at high wind speed. More
in general, the only speed control may not guarantee the required power deloading.
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This is why we capitalize on the deloading strategy proposed by [Zertek 2012b] that,
via a combined choice of both rotor speed and pitch angle, allows the WT to work
at an optimal operating point with respect to the amount of kinetic energy stored
in the rotating masses. In particular, when deloading needs to be performed the set
point (ω?, ϑ?) are computed using

(ω?r , ϑ
?) = arg maxωr

subject to

P ?g = Pr(ωr, ϑ, v)

ωr,min ≤ ωr ≤ ωr,n
ϑmin ≤ ϑ ≤ ϑmax

(2.16)

This approach seems to be preferable because, if the WT has to be deloaded, part
of the mechanical power Pr can be used to increase the rotor speed. As a result,
part of the undelivered energy to the grid is stored in the rotating masses, yielding a
surplus of stored kinetic energy ∆Wk with respect to pitch deloading control, given
by

∆Wk =
1

2
Jt(ω

?2

r − ωo
2

r ) (2.17)

where, for sake of simplicity, we used the one-mass model. This surplus of kinetic
energy could be in turns used for frequency control if required, as it represents a
spinning reserve.

2.5 Combined FL and MPC for Power Tracking

2.5.1 Control Problem Formulation

According to the motivations discussed in Section 2.4, we address the problem of
tracking a general power reference satisfying (2.15). The classic control architectures
of Fig. 2.9 and Fig. 2.11 fail to be adequate for such purpose because, generally, both
speed and pitch control have to be active in the whole WT operating envelope, i.e.
at both high and low wind speed.
Let us consider the WT two-mass model of (2.7), where we further neglect the
friction coefficients Kr, and Kg. As discussed, equation (2.11) describes the DFIG
system, whose controlled output is the torque Tg, while we model the pitch one via
the first order system

τϑϑ̇ = −ϑ+ ϑr (2.18)
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The overall WT model considered for the control design is described by
ω̇r
ω̇g
δ̇

ϑ̇

Ṫg

 =



1
Jr

Pr(ωr,ϑ,v)
ωr

− Ds
Jr
ωr + Ds

Jrng
ωg − Ks

Jr
δ

Ds
Jgng

ωr − Ds
Jgn2

g
ωg + Ks

Jgng
δ − 1

Jg
Tg

ωr − 1
ng
ωg

− 1
τϑ
ϑ+ 1

τϑ
ϑr

− 1
τT
Tg + 1

τT
Tg,r


Pg = Tgωg

(2.19)

The controlled input of the system is thus u , col(ϑr, Tg,r) and its state vector is
x , col(ωr, ωg, δ, ϑ, Tg). It is easy to see that the system is affine in the control, i.e.
of the form {

ẋ = f(x, v) + g(x)u

Pg = h(x)

where f(x, v), g(x), and h(x) can be identified from equation (2.19). Note that v acts
as a disturbance, and since it is a function of time, it makes the system time-varying.
Moreover, for the sake of control design, for which an analytic representation of
f(x, v) is needed, in this chapter we consider the power coefficient approximation
given by (2.2), and appearing in Pr according to (2.1). Let us consider system (2.19).
Given an effective wind speed signal v(t) and a time-varying reference trajectory of
power P ?g (t) verifying (2.15), and such that it is an admissible steady state target
for system (2.19), i.e. ∀t ≥ 0 it is such that it always exists an admissible solution
(xs(t), us(t)) to the following set of nonlinear equations{

0 = f(xs(t), v(t)) + g(xs(t))us(t)

P ?g (t) = h(xs(t))
(2.20)

We can define the control problem as that of finding the input vector u(t) that min-
imizes the distance between the system variables (x(t), u(t)) and the pair (xs(t), us(t)),
∀t ≥ 0. Note that (2.20) has to be solved employing the solution of (2.16), thus
yielding a unique solution. During the following discussion, the wind speed v and
state x are supposed to be known. However, in a second step, we will make use of an
observer to determine, among other relevant variables of the system, an estimation
of the effective wind speed v, namely v̂. This estimation is treated in details in
Section 2.6.
In order to solve the posed control problem we capitalize on the FL+MPC technique,
whose basic concepts are shown in Chapter 1.

2.5.2 Feedback Linearization Step

The first control design step is concerned with the FL technique. As proposed by
[Thomsen 2006], this is employed to directly target the system nonlinearities. These
concern the relation between the input ϑr, and the rotor speed ωr. Let us consider
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the coordinate transformation

ξ = Φξ(x) =


x1

Lfx1

x2

x3

x5

 =


x1

1
Jr

Pr(x1,x4,v)
x1

− Ds
Jr
x1 + Ds

Jrng
x2 − Ks

Jr
x3

x2

x3

x5

 (2.21)

Note that the above change of coordinates depends on v. Change of coordin-
ates (2.21) leads to an exactly feedback linearizable system. This is shown in the
following. The system in new coordinates has the form of

ξ̇ = Aξξ +Bξ(aξ(Φ
−1
ξ (ξ)) + bξ(Φ

−1
ξ (ξ))u) =

0 1 0 0 0

0 0 0 0 0
Ds

ngJg
0 − Ds

n2gJg

Ks

ngJg
− 1

Jg

1 0 − 1

ng
0 0

0 0 0 0 − 1

τT


ξ +


0 0

1 0

0 0

0 0

0
1

τT


([

L2
fξ1
0

]
+

[
LgLfξ1 0

0 1

]
u

)

(2.22)

where the pair (Aξ, Bξ) is controllable. Here, aξ is a 2-dimensional column vector
of functions, and bξ a matrix of functions of dimension 2× 2, and they can be easily
identify from (2.22). In other words, transformation (2.21) is an alternative change
of coordinates with respect to the one transforming the system in its normal form,
that still allows feedback linearization. This fact is reminded for the SISO case
in Appendix A.4. According to it, and as shown by [Thomsen 2006], this means
that the mapping Φξ is related to the classic coordinate transformation Φz leading
to a normal form, via a linear nonsingular transformation involving a matrix Mξz.
Indeed, if we consider y = col(x2, x3) as the output mapping for system (2.19), this
naturally defined the change of coordinates Φz as

z = Φz(x) =



x2

Lfx2

−−−
x3

Lfx3

L2
fx3


=



ωg
ω̇g
−−−
δ

δ̇

δ̈
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Thus, the relationship between Φξ and Φz is given by

Φξ = MξzΦz =



1

ng
0 0 1 0

0
1

ng
0 0 1

1 0 0 0 0

0 0 1 0 0

0 −Jg
Ks

ng

Ds

ng
0


Φz

It is important to notice that the relative degree vector of system (2.19) with respect
to the output y = col(x2, x3) is col(r1, r2) = col(2, 3), i.e. r1 + r2 = n, where n = 5

is system (2.19) dimension. As a consequence, system (2.19) can be exactly feedback
linearized via Φz, and via Φξ, since the transformation between Φz and Φξ is linear.
One of the advantages of considering Φξ over Φz is that, in the new coordinates
ξ, the former preserves a physical meaning, and this is helpful when designing a
controller in cascade with the FL one, such that the closed-loop system has desired
performance. In order to feedback linearize the system in the new coordinates (2.22),
notice that all the system nonlinearities are concentrated in its second row. In
particular, we can write it as

ξ̇2 = L2
fx1 + LgLfx1ϑr = α(ξ, ϑ, v, v̇) + a2ξ + β(ξ, ϑ, v)ϑr (2.23)

where a2 is a row vector such that a2ξ collects all the linearities in L2
fx1, α(ξ, ϑ, v, v̇)+

a2ξ = L2
fx1 and β(ξ, ϑ, v) = LgLfx1. Thus the feedback linearizing control law only

concerns input ϑr. Moreover, at this point, we make the choice to use FL to only
eliminate the nonlinearities appearing in (2.23). This is obtained via

ϑr,FL , ϑr =
1

β(ξ, ϑ, v)
(−α(ξ, ϑ, v, v̇) + vϑ) (2.24)

where vϑ is left as degree of freedom as in classic FL technique. The feedback
linearized system is then

ξ̇ = Aξ +B[vϑ Tg,r]
> =

0 1 0 0 0

a2,1 0 a2,3 a2,4 a2,5

Ds

ngJg
0 − Ds

n2
gJg

Ks

ngJg
− 1

Jg

1 0 − 1

ng
0 0

0 0 0 0 − 1

τT


ξ +


0 0

1 0

0 0

0 0

0
1

τT


[
vϑ
Tg,r

]
(2.25)

where the pair (A,B) is controllable. In addition, note that under the assumption
of known wind speed signal, system (2.25) no longer depends on v, thus it is made
time-invariant via FL.
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Figure 2.13: Λt ,
{

(λ, ϑ) ∈ R2|β(λ, ϑ) < 0
}
, white area, defines the set of points in

which the WT relative degree is well-defined.

Remark 2.4 The choice of (2.24) is motivated by two main reasons. The first is
that we want to reduce the number of exact cancellations as they are intrinsically
non robust, leaving them just to the nonlinear terms. Secondly, if the term a2ξ was
canceled by FL control, then variable ξ1, which is the rotor speed ωr in the original
coordinates, would be controlled only by vϑ. However, being ϑr limited in order to
limit ϑ (see Table 2.1), this in turns results in constraints on vϑ. Thus, if we let
a complete cancellation of a2ξ, we implicitly affect the controllability of the system.
Being a2 a nonzero row, we are able to keep a coupling between the input Tg,r and
the variable ξ1.

2.5.3 Singular Points Analysis

We saw that Φξ, defined in (2.21), leads to an exact feedback linearized system.
Another way to interpret Φξ is to consider x1, i.e. ωr, as system (2.19) output.
From this point of view, Φξ is obtained by computing the relative degree associated
to the output x1, which naturally defines the first two rows of mapping (2.21), and
by completing the change of coordinates with its last chosen three rows. As a matter
of fact, the relative degree of system (2.19) with respect to x1 is not global. Namely,
there exist points where β(ξ, ϑ, v) = 0. Nonetheless, by simulation, β appears to be
negative-valued in the points of functioning of interest, i.e. in the steady state values
of the state space satisfying (2.20). In addition, numerical analysis shows that the
domain in which β has negative value is connected, provided that ϑ > −1◦. Indeed
ϑ = −1◦ is a singularity for (2.2). For this reason, we further limit ϑ to the range
(−1◦, ϑmax]. Moreover β(ξ, ϑ, v) = β(ξ1, ϑ, v), i.e. it only depends on the variables
ξ1, ϑ, and v and it can be further represented as a function of (λ, ϑ), i.e. β(λ, ϑ).
This allows us to show that the couples (λ, ϑ) such that β < 0, in the domain
of interest, form a connected set. This, named Λt ,

{
(λ, ϑ) ∈ R2|β(λ, ϑ) < 0

}
, is

shown in Fig. 2.13. As a consequence, if the system initial condition x0 ∈ Λt, and
the steady state solution of (2.16), (2.20), is such that xs(t) ∈ Λt∀t ≥ 0, then,
conditions of Proposition 1.2, and condition (i) of Proposition 1.1 are satisfied. In
other words, the system relative degree is well-defined in x0 and xs(t)∀t ≥ 0, and
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they belong to a connected set verifying LgLfx1 6= 0, i.e. β < 0 in this case. Thus,
we aim at imposing condition (ii) of Proposition 1.1 by means of an MPC controller
in cascade with the FL one, i.e. by constraining the closed-loop system trajectory
to lie within Λt ∀t ≥ 0. This is object of the next subsection.

Remark 2.5 Unfortunately stability results of Theorem 1.1 cannot be applied in
this framework. This is due to several reasons. First of all, the problem here ad-
dressed is the one of output tracking, which, in the MPC framework, itself requires
other stability results than the ones holding for the problem of output regulation.
Secondly, the condition β < 0, defining the set Λt, is time-varying with respect to
the variables ξ1, and ϑ, because of the presence of v, whose exact time evolution can-
not be predicted. Eventually, linearized system (2.25) exhibits additional nonlinear,
possibly nonconvex constraints, due to the FL step. For such system, it is generally
not a trivial task to find a convex approximation for its constraints. These points
are shown in details in the next subsection.

2.5.4 Model Predictive Control Step

We now have to design the MPC controller for system (2.25). First of all this is
discretized, using a sampling time Ts, yielding the discrete-time system

ξ+ = Adξ +Bd[vϑ Tg,r]
> (2.26)

where Ad, and Bd are obtained using, for instance, Euler method. System variables
and signals are then considered at the sampling steps i ∈ N+. MPC is thus employed
to make the WT track the reference signals P ?g (i), ω?r (i), ∀i ≥ 0, obtained via (2.16).
In order to compute the system steady state target, note that ξ has a clear physical
meaning thanks to the choice of (2.21), and it is easy to find a steady state solution
(ξs, vϑ,s, Tg,r,s) corresponding to P ?g and ω?r . Indeed, instead of solving the system
of nonlinear equations (2.20), thanks to FL, one can use


Aξs +B[vϑ,s Tg,r,s]

> = 0

ξ3,sξ5,s = P ?g

ξ1,s = ω?r

(2.27)

It is easy to see that (2.27) is a system of linear equations leading to a unique
solution. We additionally name ū , col(vϑ, Tg,r), and ūs , col(vϑ,s, Tg,r,s). Having
introduced the steady state variables for MPC, we can define the error variables
ξ̃ , ξs − ξ, and ũ , ūs − ū, which will be used in the optimization problem. The
choice of MPC is mainly motivated by its capability to explicitly handle constraints.
These come either from the WT physical constraints, and from additional ones
introduced to let the system trajectories avoid the singular points. As a matter of
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fact system (2.26) is subject to the following physical constraints

ωr,min ≤ ξ1 ≤ ωr,max (2.28)

0 ≤ ξ3 (2.29)

0 ≤ ξ5 (2.30)

ξ3ξ5 ≤ 1.05Pe,n (2.31)

ϑmin ≤ ϑr,FL ≤ ϑmax (2.32)

where (2.28), (2.29), and (2.30) are WT linear constraints, (2.31) is the nonlin-
ear constraint describing the maximum allowed electric power during transients,
and (2.32) is used to limit the pitch angle. Notice that the ϑr,FL is a nonlinear
function of the system variables due to the FL step. A few words have to be spent
on this last inequality. Since the second component of (2.21) is a complex expression
of the system variables, it is not easy to derive an analytic relationship between ϑ
and the new coordinates ξ. This is the reason why we choose to limit ϑr in order to
respect the constraints on ϑ. Even though this solution is conservative, if the con-
straints on ϑr are satisfied, so they will be on ϑ via the pitch actuator model (2.18).
Provided that the system initial state satisfies (i) of Proposition 1.1 and belongs to
Λt, we only need to verify that the target state ξs belongs to Λt too at each time
step i, and to impose (ii)of the mentioned proposition. This is done by adding the
following constraint to the set of the WT physical ones in the MPC optimization
problem

β(ξ1, ϑ, v) + ε < 0, ε > 0 (2.33)

where we added ε to let some margin. If (2.33) is satisfied for all the possible values
of v in the prediction horizon, then the new state is guaranteed to lie in Λt, thus
letting the system avoiding the singular points.
We can now provide the MPC problem formulation that leads to an implicit control
law. The optimization problem PN (ξ̃(i)) that has to be solved at each time step i
is defined as follows.

min
{s,ũ}

N−1∑
k=0

(
ξ̃(k)>Qξ ξ̃(k) + ũ(k)>Rũ(k)

+rssl(k)2 + ze(k)>Qzze(k) + ∆ũ(k)>R∆∆ũ(k)
)

+ ξ̃(N)>P ξ̃(N) (2.34)

subject to

ξ̃+ = Adξ̃ +Bdũ, ξ̃(0) = ξ̃(i)

ωr,min ≤ ξ1 ≤ ωr,max
0 ≤ ξ3, ξ5

ξ3ξ5 ≤ 1.05 · Pe,n + sl, sl ≥ 0

ϑmin ≤ ϑr,FL ≤ ϑmax
β(ξ1, ϑ, v) + ε < 0, ε > 0
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where, during the prediction horizon, ξs, and ūs are considered constant and equal
to the current value ξs(i), and us(i). We further introduced variable ∆ũ(k) ,
ũ(k)− ũ(k − 1) to manage the input variation between two steps, and we enriched
the MPC problem with two integral actions on the errors ξ̃3, and ξ̃5 respectively,
and whose state variable is ze ∈ R2. This helps to keep the error on Pg bounded
in the presence of disturbances and model-plant mismatches. For instance, a source
of error is given by the mismatch between the analytic expression of Cp, i.e. (2.2),
used for the control design, and the CART Cp of Fig. 2.2. Qξ � 0, Qz, R, R∆ � 0

are the weight matrices, and P is the positive definite matrix solution of the Riccati
equation that solves the infinite-horizon LQR problem associated to system (2.26).
Note that by proper choice of Qξ we can keep variable ξ4, i.e. δ in the original
coordinates, small. This in turns lets reduction of stress on the drive train. In
addition we modified constraint (2.31) to help avoiding problem infeasibility by
introducing slack variable sl to the optimization problem and the corresponding
weight rs.
As mentioned in Remark 2.5, we cannot apply the results of Theorem 1.1 to conclude
on the closed-loop stability of the system. Moreover, even though the optimization
problem PN (ξ̃(i)) exhibits a quadratic cost function with an underlying LTI system,
because of constraints (2.32), (2.33), and the modified constraint of (2.31), we cannot
even conclude on the convexity of the problem. This is why, in this framework, we
decide to treat the nonlinear constraints of (2.34) via the approximation procedures,
object of the discussion of Section 1.1 in Chapter 1. In particular, we apply a linear
approximation of the constraints, updated at each time step i in the current state,
thus yielding constraints of the form

Fiξ̃ +Giũ ≤ bi (2.35)

where the matrices Fi, Gi, and bi represent the linear approximation at the current
time step i, i.e. valued in the current state. Equation (2.35) describes a time-varying
polytope, which is kept constant during the prediction horizon, and it makes the
optimization problem quadratic.
Let us carry on the discussion on the constraints approximation a little bit further.
In particular, we focus on constraints (2.32), and (2.33), where the former takes the
extended form of

α(ξ, ϑ, v, v̇) + β(ξ, ϑ, v)ϑmax ≤ vϑ ≤ α(ξ, ϑ, v, v̇) + β(ξ, ϑ, v)ϑmin

under the assumption of β(ξ, ϑ, v) < 0. Both constraints depend on variable ϑ.
However, as previously stated, it is difficult to have an analytic relationship between
ϑ and the system new coordinates ξ. Nonetheless, the dynamics of ϑ is known, and
its Euler approximation has the form of

ϑ+ =

(
1− Ts

τϑ

)
ϑ+

Ts
τϑ
ϑr,FL (2.36)

Thus (2.36) can be used to predict the behavior of ϑ in the prediction horizon
of PN (ξ̃(i)), and to satisfy the mentioned constraints. However, since (2.36) is
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nonlinear because of ϑr,FL, in order to have a linear approximation of the constraints,
the following steps are performed

I Linearization of (2.36) in the system variables value at the current step i.

II Linearization of constraints (2.32), and (2.33).

III Composition of the linearization of steps I and II, yielding a linear constraint
in the considered horizon.

Eventually, one last issue needs to be considered. Even though system (2.26) is
time-invariant, because the dependency on v has been eliminated via FL, this is not
the case for constraints (2.32), and (2.33). In fact, these depend on v and on its
time derivative v̇, thus, some additional steps have to be made in order to cancel
the perturbation v out of such constraints in the prediction horizon. We identify
two main possibilities

• Pre-assign a wind profile along the prediction horizon.

• Consider a worst case scenario to allow robust constraint satisfaction.

As far as the first is concerned, as done, for the target variables ξs, and ūs, one may
consider v constant along the prediction horizon, and equal to the current value v(i).
Another possibility is to let v̇ be constant, and equal to v̇(i). As a consequence v is
linearly increasing, or decreasing, along the prediction horizon, according to

v(k + 1) = v(k) + Tsv̇(i), v(0) = v(i)

These two approaches allow a simple MPC implementation when no information
on the wind prediction is available. In both cases, if Ts and N are small, then the
wind prediction error is relatively small too. However a proper tuning of parameter
ε in (2.33), and possibly the introduction of a similar one for (2.32), should be
considered in order to allow a safe constraint satisfaction under such bounded wind
prediction error.
Differently, one may consider a worst case scenario to eliminate the dependency of
the constraints on v. This is what concerns the second possibility. As an example,
let us consider (2.33). Similar results hold for (2.32). Its linearization at step i can
be expressed as

β(ξ1, ϑ, v) + ε ' β(ξ1(i), ϑ(i), v(i)) + ε+
∂β

∂ξ1

∣∣∣∣
(ξ1(i),ϑ(i),v(i))

(ξ1 − ξ1(i))

+
∂β

∂ϑ

∣∣∣∣
(ξ1(i),ϑ(i),v(i))

(ϑ− ϑ(i)) +
∂β

∂v

∣∣∣∣
(ξ1(i),ϑ(i),v(i))

(v − v(i)) (2.37)

By employing system dynamics (2.26), the linearization of ϑ dynamics, and the
following wind dynamics

v(k + 1) = v(k) + Tsv̇(k), v(0) = v(i)

|v̇(k)| ≤ |v̇|max k = 0, . . . , N
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where by v̇(k) we indicate the wind speed time derivative evaluated at time t = kTs,
and where we assume the value |v̇|max to be known, then (2.37) can be limited from
above by solving the following linear programming problem

max
v(k),k=0,...,N

(2.37)

subject to

v(i)− kTs|v̇|max ≤ v(k) ≤ v(i) + kTs|v̇|max

(2.38)

The solution of (2.38) is then used instead of (2.33). It has to be stressed that this
worst scenario is based on system dynamics and constraint function approximations,
thus, also in this case, a proper parameter ε tuning has to be performed. All in all,
if at a given step i, PN (ξ̃(i)) is feasible, then the next step state is guaranteed to
respect the system constraints, and to stay within Λt. This fact does not have
to be confused with the recursive feasibility property, i.e. feasibility of PN (ξ̃(i))

does not necessarily imply feasibility of PN (ξ̃(i + 1)). As a consequence, for real
implementation, some additional sub-routines should be considered to allow MPC
to recover feasibility whenever it is lost. This problem is not further developed in
this work.

2.6 Wind Estimation

So far the wind speed v has been considered as a known quantity. This assumption
fails to be realistic for practical control implementation. This is why, in this section,
we study a wind speed estimation technique. Such estimation needs to be accurate
since, as shown in the previous sections, the wind speed value is directly employed
several times in the control design. In particular, recall that v, with its first time
derivative, has been used to compute the WT set points, to feedback linearize the
system, and to allow satisfaction of system constraints in the MPC design step. One
first possibility to have an on-line estimation of v is to use a wind measurement, e.g.
the one provided by theWT anemometer, see Fig. 2.1, combined with known filtering
techniques that exploit the WT model. For instance, a widely used technique is
given by the Extended Kalman filter, see e.g. [Ma 1995]. As the wind speed value is
generally not directly available, and the anemometer measurement poorly reliable,
[Boukhezzar 2011], we capitalize on Kalman filtering technique for the sake of system
state and wind speed estimation without the use of wind measurement. This is done
in two steps. Firstly, an estimation of the aerodynamic torque Tr is obtained, based
on the work of [Østergaard 2007], and [Boukhezzar 2011]. Secondly, the wind speed
is deduced by employing the WT aerodynamic relation between the wind speed itself
and Tr, [Boukhezzar 2011].



2.6. Wind Estimation 55

2.6.1 Aerodynamic Torque Estimation via Kalman Filter

As far as the aerodynamic torque estimation is concerned, we augment the WT
state by introducing the following differential equation for Tr

Ṫr = wt

where wt is a white Gaussian noise, whose covariance is given by Q = E[w2
t ], where

E[·] is the expected value operator. In other words, for the only estimation problem
we do not exploit the model knowledge of the dynamics of Tr. Thus, using WT
model (2.19), the augmented one is given by

ẋag = Aagx+Bagu+Gwt =

−Ds

Jr
Ds

Jrng
−Ks

Jr
0 0

1

Jr
Ds

Jgng
− Ds

Jgn2
g

Ks

Jgng
0 − 1

Jg
0

1 − 1

ng
0 0 0 0

0 0 0 − 1
τϑ

0 0

0 0 0 0 − 1
τT

0

0 0 0 0 0 0




ωr
ωg
δ

ϑ

Tg
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+



0 0

0 0

0 0
1
τϑ

0

0
1

τT
0 0


u+


0

0

0

0

0

1

wt

(2.39)

The considered measured output is y = Cxag , col(ωr, ωg, ϑ, Tg), to which we
add a white Gaussian noise wm, whose covariance is R = E[wmw

>
m], yielding the

measurement equation
z = Cxag + wm (2.40)

One advantage of using the aforementioned system is that classic results of linear
Kalman filtering can be applied. In particular, the stable stationary Kalman filter
is given by

˙̂x = Aagx̂+Bagu+K(z − Cx̂) (2.41)

where x̂ is the estimated state, K = PCR−1, and where P is the solution of the
Riccati equation

AagP + PA>ag + PC>R−1CP +GQG> = 0

Thanks to the properties of the Kalman filter, the estimation x̂ is asymptotically
optimal with respect to the minimization of the covariance of the error E[(x−x̂)(x−
x̂)>].

2.6.2 Indirect Wind Estimation

Once x̂ = col(ω̂r, ω̂g, δ̂, ϑ̂, T̂g, T̂r) is obtained, v can be estimated by solving the
following equation

T̂rω̂r −
1

2
ρπR2v3Cp

(
ω̂rRv

−1, ϑ̂
)

= 0 (2.42)
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which is simply obtained from (2.1). In this work (2.42) is solved on-line, thus fast
available gradient-based optimization algorithms must be considered. However, for
such purpose, the power coefficient function is required to be analytic and differen-
tiable. In [Boukhezzar 2011], authors capitalize on a polynomial approximation of
Cp. This is simplified by the fact that, in their work, Cp is function of the only tip
speed ratio λ, since ϑ is constant and equal to its MPPT value. Here, we extend
their proposal to the case in which the power coefficient is a function of both λ, and
ϑ. In order to do so, by numerical simulation it appears that a general polynomial
approximation of Cp is not sufficient to guarantee a reliable wind estimation. This
is why, differently from [Boukhezzar 2011], at each time step we consider a new
local approximation of the power coefficient, around the last obtained wind estima-

tion v̂prev , v̂(i − 1). We indicate such approximation with Cpolp

(
ω̂rR

v
, ϑ̂

)
, where

v ∈ [v̂prev − 3σv, v̂prev + 3σv], and where, if we consider the simplified assumption of
v̂ being a Gaussian process, σ2

v identifies its variance, and the range ±3σv is selected
to have the 99% of probability to have v within it. In practice, σv can be considered
as a tunable parameter to choose the confidence interval of v̂, and it defines the
interval in which Cp is approximated yielding Cpolp . Eventually, a solution to (2.42)
is obtained solving the following nonlinear programming problem

min
v

(
T̂rω̂r −

1

2
ρπR2v3Cpolp

(
ω̂rRv

−1, ϑ̂
))2

subject to

v̂prev − 3σv ≤ v ≤ v̂prev + 3σv

(2.43)

Remark 2.6 Problem (2.43) can be seen as a maximum likelihood estimation if we
consider

T̂rω̂r =
1

2
ρπR2v3Cpolp

(
ω̂rRv

−1, ϑ̂
)

+ wp

as measurement equation, where T̂rω̂r is treated as the measure and wp is a Gaussian
white noise.

2.7 Simulation Results

The overall control scheme used in the following simulation results is shown in
Fig. 2.14. The WT model is given by (2.19). Although for control design pur-
poses the analytic approximation of Cp, i.e. equation (2.2), was considered, in
order to test the effectiveness of the proposed control approach, the CART lookup
table power coefficient of Fig. 2.2 is used in the numerical simulations. Thus, the
power coefficient represents a first model-plant mismatch. A noisy measure zm of
col(ωr, ωg, ϑ, Tg) is used to estimate the system state and wind speed. This is done
via (2.41), and (2.43). The wind estimation v̂ is used together with the desired
power output P ?g to compute the set points for the MPC control stage. This is done
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Set pointsP ?g MPC FL

Φξ(x)

Wind and state estimation
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Figure 2.14: FL+MPC control scheme.

via (2.16), and (2.27). The MPC controller additionally makes use of the estimated
state in the new coordinates ξ̂, obtained from x̂ and diffeomorphism Φξ(x). Tg,r
is directly applied to the WT model, while ϑr is recovered from vϑ via feedback
linearizing input (2.24). To show the control scheme performance, we propose three
simulation setups. First of all a comparison with a basic control scheme is provided
on a mixed MPPT/power limiting and deloaded mode of functioning scenario. Ro-
bustness is then tested via Montecarlo simulation on classic mode of functioning, i.e.
MPPT and power limiting. Eventually, the control approach is tested on some de-
loaded mode scenarios. For all the simulation setups the MPC prediction horizon is
chosen to be N = 3 and the sampling time Ts = 0.1 s. Optimization problem (2.34)
requires then a computational time of 4.9 ms1. Moreover, concerning the problem
of canceling the MPC constraints out of the wind signal v, we choose to pre-assign
a wind profile during the prediction horizon. In particular we choose a constant v̇
value equal to the last estimated one ˙̂v(i). By a proper selection of ε parameter of
constraint (2.33), the controller provides good performance while letting a simpler
control implementation with respect to the more robust possibility of worst case
scenario shown in Subsection 2.5.4.

2.7.1 PI Control Comparison

We compare the proposed FL+MPC controller with a PI. The latter is composed
of two separate feedback loops. The first one is concerned with the control of ωr by
acting on Tg,r, which is the output of a PI controller. The second one enables power
limiting through the use of the pitch angle. Thus ϑr is output of a PI controller
comparing the power reference and the actual mechanical power. This controller is

1Computations are carried on an IntelR©CoreTMi7-4790S, CPU @ 3.20 GHz, RAM of 16 Gb,
with MATLABR©R2015a.
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Figure 2.15: PI-based control for WT general power tracking.
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Figure 2.16: Effective wind speed.
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Figure 2.17: MPPT/power limiting and deloaded.

activated only when the wind extractable power is higher than the reference one.
ϑr is kept constant to its optimal MPPT value otherwise. The control scheme
describing the chosen PI structure is shown in Fig. 2.15.

Concerning the simulation, during a time interval of 600 s the turbine is excited
by the effective wind speed in the axial direction shown in Fig. 2.16. For such
simulation, we only aim at comparing the FL+MPC performance against the PI
one, thus we do not consider the wind estimation. In other words, the estimation
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Figure 2.18: FL+MPC vs PI controlled power.
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Figure 2.19: FL+MPC vs PI controlled rotor speed.
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Figure 2.20: FL+MPC vs PI system inputs.

block of Fig. 2.14 is eliminated for this simulation purpose. For the first 300 s the
turbine is controlled in the classic functioning of MPPT and power limiting, proving
the capability of the proposed controller to work in the entire operating envelope.
After 300 s the turbine is deloaded of a certain time-varying factor with respect to
the maximum extractable power, as shown in Fig. 2.17a, where the reference power
signal P ?g (blue solid line) drifts from the maximum power P o (red dash-dotted
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Table 2.2: Simulation on FL+MPC vs PI
Energy |errωr | |errPg |

FL+MPC 232.51 MJ 0.0434 rad/s 8.315 kW
PI 231.79 MJ 0.1420 rad/s 36.884 kW
(FL+MPC)/PI 1.0031 0.3059 0.2254

Figure 2.21: FL+MPC trajectories (blue dots) during the simulation. Thanks to
the MPC constraints, these stay within Λt.

line). The ωr reference corresponding to P ?g is computed via (2.16). As shown in
Fig. 2.17b, it reaches the nominal value ωr,n (red dash-dotted line), drifting from
ωor (blue solid line) which corresponds to the P o signal. FL+MPC (fm) and PI
(pi) responses are compared throughout the whole simulation time. In particular
the delivered power Pg is compared in Fig. 2.18, while the controlled rotor speed in
Fig. 2.19. The main results are reported in Table 2.2 where we indicate by |errωr |
and |errPg | the mean value of absolute rotor speed error and electric power error
respectively, and they show that even if the delivered electrical energy is comparable,
FL+MPC outperforms the PI in terms of precision, leading to smaller errors on the
desired power and rotor speed. Moreover Fig. 2.19a shows how FL+MPC enables
lower rotor speed oscillations during the deloaded mode of operation, thanks to a
proper combined action of the controlled inputs Tg, and ϑ. These are reported in
Fig. 2.20 for both FL+MPC and PI controller. Eventually, concerning the FL+MPC
control scheme, Fig. 2.21 shows how during the entire simulation, constraint (2.33)
is satisfied, i.e. system trajectories stay within Λt thus avoiding the system singular
points.

2.7.2 Montecarlo Simulation

We employ Montecarlo method to test the controller robustness with respect to
uncertainties in the model parameters Ds, Ks, Jr, and Jg. In particular we assign a
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(a) Percentage error on the power reference.

(b) Percentage error on the rotor speed reference.

Figure 2.22: Montecarlo simulation with respect to parameter uncertainties on the
error on power and rotor speed reference. These have 99% of probability to lie
within the grey area.

(a) Percentage error on power. (b) Percentage error on rotor speed.

Figure 2.23: Zoom on Montecarlo simulation.

uniform distribution to the latter, centered in their nominal value, and we let them
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Figure 2.24: Real and effective estimated wind speed.

span an interval of ±20% of their nominal value. 100 simulations are performed on
a 600 s time basis, and for each of them the system parameters are allowed to get
a value according to the prescribed probability density. Concerning the simulation
conditions, we let the turbine operate in classic MPPT/power limiting mode while
being excited by a wind speed whose effective value is given in Fig. 2.16. Differently
from the previous simulation setup, we do consider here the wind estimation. The
reference signals P ?g , and ω?r corresponding to the MPPT/power limiting operating
mode for the given wind signal are thus equal to the MPPT ones (blue solid line) of
Fig. 2.17. Fig. 2.22 shows that the error on the electric power Pg and on the rotor
speed ωr have approximately 99% of probability to lie within the grey area, i.e. an
interval of ±3 times the computed standard deviation around the computed mean
value. For the sake of clarity, the same figure are illustrated in a zoomed window in
Fig. 2.23. The error mean value (blue solid line) grows in respect to fast changes in
the desired references, while it stabilizes around zero when the reference varies more
slowly. Generally speaking though, the proposed control scheme is able to maintain
stability and performance with respect to parametric model-plant mismatch since
the errors remain within acceptable percentage ranges with respect to the reference
values.

2.7.3 Deloaded Mode Scenarios

In this simulation setup we aim at testing the FL+MPC control scheme capability to
let a WT track a deloaded power reference. In particular, we propose two possible
scenarios. Namely, we first require the WT to track a constant power reference.
Secondly, we choose a varying deloaded reference, obtained as a given percentage of
the maximum extractable power from the wind. For both of them, we consider the
wind speed signal perturbing the WT shown in Fig. 2.24, where the real wind speed
blowing towards the WT blades is presented in blue solid line. In red dash-dotted
line instead, we show, as an example, the effective estimated wind speed for one of
the two scenarios. As far as the first one is concerned, we select P ?g (t) = 26, 5%Pe,n
∀t ≥ 0, while, for the second one, we require the WT to track the 60% of the
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(b) Controlled power for a varying deloaded
power reference.

Figure 2.25: Power for constant and varying deloaded mode of functioning.
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stant deloaded power reference.
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(b) Controlled rotor angular speed for a vary-
ing deloaded power reference.

Figure 2.26: Rotor angular speed signals for constant and varying deloaded mode
of functioning.

maximum extractable power signal. Performance on the controlled Pg are shown in
Fig. 2.25, where the solid blue line identifies P ?g , and the red dash-dotted one Pg.
We additionally provide the MPPT/power limiting signal in yellow dotted line to
show the comparison with the classic mode of functioning reference. Similar results
are reported in Fig. 2.26 concerning performance on the controlled rotor speed ωr.
The corresponding controlled inputs Tg, and ϑ, for both scenarios are illustrated in
Fig. 2.27. As mentioned in Section 2.4, during the deloaded mode, thanks to the
chosen deloading strategy, the WT is able to store a surplus of kinetic energy ∆Wk

with respect to the classic mode of operation in the rotating masses. This could be
released to the grid, if needed, at any moment, by bringing the rotor speed back
to its MPPT value. The ∆Wk signals are shown in Fig. 2.28. These are similar
because, for the chosen P ?g , and wind speed signals, the controller finds ω?r (t) = ωr,n
∀t ≥ 0 via (2.16), for both scenarios. Eventually, Fig. 2.29 shows that the MPC
controller succeeds in keeping the system trajectories within Λt, thus letting the WT
avoid the singular points.
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Figure 2.27: Controlled system inputs for constant and varying deloaded mode of
functioning.
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Figure 2.28: Surplus of stored kinetic energy for constant and varying deloaded
mode of functioning.

2.8 Conclusion and Future Perspectives

2.8.1 Conclusion

A novel approach to control a wind turbine for the general problem of tracking a
given power reference was presented. Composing the two well-known techniques
of FL and MPC showed clear benefit when treating a nonlinear system subject to
physical constraints such as the wind turbine. The proposed controller lets the
accomplishment of two main tasks, namely to work in classic MPPT/power limiting
conditions for the entire operating envelope while allowing tracking of a general
power reference when needed. We showed how the former task is necessary for
important requirements as the satisfaction of grid constraints and the wind farm
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(a) System trajectories in Λt during a constant
deloaded power reference.

(b) System trajectories in Λt during a varying
deloaded power reference.

Figure 2.29: System trajectories (blue dots). Thanks to the MPC constraints, these
stay within Λt.

power maximization. As far as the former is concerned, we additionally saw that,
by the chosen deloading strategy, a WT is able to store additional kinetic energy in
the rotating masses. This happens to be useful to accomplish possibly required grid
services such as frequency support. The proposed control scheme exhibits better
performance when compared to the more classic approach of a PI-based controller.
Moreover, Montecarlo simulation showed a certain inherent degree of robustness
with respect to model-plant mismatches, as the one concerning the power coefficient,
and parameter uncertainties.
As it has been showed, the FL+MPC scheme used for the specific case of controlling
a WT is based on some approximations that lead to a convex quadratic problem to
be solved on-line, thus allowing faster computation with respect to general nonlinear
nonconvex programming problems.

2.8.2 Future Perspectives

In future work though, it would be interesting to consider additional problem ap-
proximations that could possibly allow to conclude on the mathematical stability of
the closed-loop system, and lead to important MPC features such as the recursive
feasibility of the optimization problem. For this last problem, a major issue is given
by the presence of nonconvex constraints. In this sense, a possible way to be ex-
plored can be the one of considering a scenario-based FL+MPC approach according
to the selected mode of functioning and the wind speed, possibly enabling a local
convex scenario-invariant approximation of such constraints. Eventually, the pro-
posed approach could be employed for a wider range of applications, e.g. for the
reduction of the mechanical stress of a WT. For instance, being the pitch control
active for all the operating points, the individual pitch control technique could be
considered for such purpose, (see e.g. [Lio 2017]).
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3.1 Finite-Time Average Consensus

The aim of this section is to provide a description of the distributed finite-time
average consensus algorithm as it is employed in the first distributed PSO,

proposed in Section 3.4. A more detailed introduction to the general problem of
consensus control is treated in Part III, as this is where consensus control techniques
will be extensively used for the sake of controlling a wind farm. Moreover, the reader
may refer to [Olfati-Saber 2007] for the basic important concepts of consensus al-
gorithms. For some basic notions and preliminaries about graph theory please refer
to Appendix C. The results of this section are mainly taken from [Dung 2013].

3.1.1 Problem Formulation

We consider a set of N agents each of which disposes of a personal piece of informa-
tion hi ∈ R, called state. The agents can communicate on an undirected connected
graph, and they are identified with the nodes of the communication graph G. In
the consensus problem we are interested in letting the agent agree on the state
variable, i.e. to reach consensus. In other words, by means of local interaction on
a given communication graph, and with no information relay, we aim at finding a
distributed protocol, which makes hi, i = 1, . . . , N converge to a value satisfying the
agreement condition hi = hj ∀i, j. Moreover, if the addressed problem is the average
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consensus one, then by means of a distributed protocol we want the agents state

to reach the value 1
N

N∑
i=1

hi,0, where we named hi,0 agent i state at the initial time

step k = 0. Among the possible distributed protocols letting the multi-agent system
achieve average consensus, we are interested in those guaranteeing convergence in a
minimum number of finite steps rather than asymptotic convergence. Thus, we re-
strict the attention on finite-time algorithms, i.e. those that make the system reach
consensus in a finite number of steps. The work in [Dung 2013] is thus concerned
with the design of such fast distributed protocol by means of self-configuration, i.e.
the design step is solved autonomously in a distributed way by the agents themselves
by exploiting the communication graph.
Let us pre-assign the following distributed law to the generic agent i of the system

hi(k) = wkiihi(k − 1) +
∑
j∈Ni

wkijhj(k − 1), hi(0) = hi,0 (3.1)

where wkii,
{
wkij |j ∈ Ni

}
∈ R, i = 1, . . . , N , ∀k > 0 are the weights at time step k

to be chosen, and where Ni is the set of agent i neighbors. Difference equation (3.1)
describes how hi is updated at each step, based on only its local information, i.e.
its neighbors state. The dynamics of the whole multi-agent system can be written
in matrix form as

h(k) = Wkh(k − 1), h(0) = h0

where we defined h , col(h1, . . . , hN ), and h0 the corresponding initial state.
Matrices Wk, which have to be tuned to solve the consensus problem, have a well-
defined structure imposed by the adjacency matrix A, (see Appendix C.1). Indeed
Wk belongs to set of matrices that can be factorized as Wk = Qk ◦ (IN +A), where
Qk ∈ RN×N is an arbitrary matrix at time step k, IN the identity matrix of dimen-
sion RN×N , and ◦ the Hadamard matrix product1. Thus, the design problem can be
reformulated as the one of finding a finite sequence of matrices Wk, {W1, . . . ,WD},
belonging to the mentioned set, such that the system state reaches average consensus
in a finite number of steps D, i.e.

h(D) = JNh0 ,
1

N
11>h0, ∀ h0 ∈ RN

where 1 ∈ RN is a column vector whose entries are all equal to 1. Since h(D) =∏1
k=DWkh0, then the problem is to solve the following factorization

1∏
k=D

Wk = JN (3.2)

The minimum number of steps D required to solve factorization (3.2) is known to
be d(G) ≤ D ≤ 2r(G), (see Appendix C.1). Intuitively, the lower bound is given by
the fact the diameter of the graph characterizes the necessary steps for a given piece
of information to reach all the agents in the network, and thus, it cannot be lower
than d(G). The upper bound is provided by [Hendrickx 2012].

1Given A = [ai,j ], B = [bi,j ] ∈ Rm×n, then A ◦B , [ai,jbi,j ] ∈ Rm×n.
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3.1.2 Self-configuration

Among the results in [Dung 2013], the authors provide a distributed solution to the
identified matrix factorization problem based on gradient backpropagation method.
This is based on solving an optimization problem by exploiting known input-output
learning sequences. Each agent i has Q couples of input-output values {hi,q(0), yi,q},

q = 1, . . . , Q, where yi,q = yq = 1
N

N∑
j=1

hj,q(0). In order to estimate the D matrices

Wk, k = 1, . . . , D, the factorization problem is reformulated as the minimization of
the following quadratic error

E(W1, . . . ,WD) ,
1

N

N∑
i=1

Q∑
q=1

(hi,q(D)− yq)2 (3.3)

where theWk matrices appear in hi,q(D) via (3.1). In order to see that (3.3) is equal
to the square of the Frobenius norm2 of the factorization error 1

2

(∏1
k=DWk − JN

)
,

first notice that

E(W1, . . . ,WD) =
1

2

∥∥∥∥∥
1∏

k=D

WkH(0)− Y

∥∥∥∥∥
2

F

(3.4)

where we defined H(0) ∈ RN×Q the matrix whose entries are hi,q(0), and Y ∈ RN×Q
the one whose entries are yi,q. The identity between (3.3) and (3.4) can be seen by
defining εq(W ) as

εq(W ) ,
1∏

k=D

Wkhq(0)− yq = hq(D)− yq

where W , (W1, . . . ,WD), hq(k) , col(h1,q(k), . . . , hN,q(k)), yq , yq1. Thus, we
have that

1

2

N∑
i=1

Q∑
q=1

(hi,q(D)− yq)2 =
1

2

Q∑
q=1

εq(W )>εq(W ) =
1

2

Q∑
q=1

tr
(
εq(W )εq(W )>

)
=

1

2
tr

 Q∑
q=1

(
εq(W )εq(W )>

) =
1

2
tr
(

(H(D)− Y )(H(D)− Y )>
)

Notice that Y = JNH(0), and that the input learning sequence can be chosen such
that H(0)H(0)> = IN , for instance by selecting the vectors of the canonical basis of

RN as inputs. Thus, E(W1, . . . ,WD) = 1
2

∥∥∥∏1
k=DWk − JN

∥∥∥2

F
, meaning that (3.4)

2Recall that the Frobenius norm of a real matrix A is defined as ‖A‖F ,
√
tr(AA>), where

tr(·) is the trace operator. The trace of a matrix B ∈ Rn×n is defined as tr(B) ,
n∑
i=1

bii, being bii

the diagonal entries of B.
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is equivalent with minimizing the square of the Frobenius norm of the factorization
error. All in all, the optimization problem to be solved in a distributed way is

min
{Wk,k=1,...,D}

1

2

Q∑
q=1

tr
(
εq(W )εq(W )>

)
(3.5)

By naming Eq(W ) , 1
2 tr
(
εq(W )εq(W )>

)
, problem (3.5) can be solved via a gradi-

ent descent method, where the generic matrix Wk is updated via

Wk(m+ 1) = Wk(m)− αc
Q∑
q=1

∂Eq(W )

∂Wk

where αc ∈]0, 1[ to guarantee convergence to a local minimum, and where m

stands for the m-th iteration of the optimization process. In [Dung 2013] though, a
stochastic gradient one is selected, i.e. the gradient of the cost function is approx-
imated by the gradient at a single input-output sequence, yielding

Wk(m+ 1) = Wk(m)− αc
∂Eq(W )

∂Wk
(3.6)

In the mentioned reference it is shown that the derivatives of Eq(W ) can be com-
puted via

∂Eq(W )

∂Wk
= δk,qh

>
q (k − 1), k = 1 . . . , D

where δD,q , hq(D)− yq, i.e. the difference between the actual output hq(D), and
the desired one yq, and where δk−1,q = W>k δk,q, k = 1 . . . , D. The overall update
law for (3.6) can be rewritten as

Wk(m+ 1) = Wk(m)− αcδk,q(m)h
>
q(m)(k − 1) (3.7)

where q(m) identifies the q-th sequence obtained via the system matrices Wk(m),
k = 1 . . . , D. Update law (3.7) can be written entry-wise as

wkij(m+ 1) = wkij(m)− αcδi,khj(k − 1) (3.8)

where δi,k is the i-th entry of δk,q(m), and hj(k − 1) the j-th entry of hq(m)(k −
1). In a gradient backpropagation fashion, the optimization problem is solved in a
distributed way by alternating the following steps. Firstly, the learning sequence
is propagated forward in the network. Then, the error between the actual output
and the target one is computed and backpropagated. The overall distributed self-
configuration algorithm is described in Algorithm 1.

3.2 Particle Swarm Optimization

3.2.1 Basic Algorithm

Particle swarm optimization is a stochastic optimization method, belonging to the
class of nature-inspired metaheuristics, and it was first introduced in the pioneer
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Algorithm 1 Finite-time average consensus self-configuration, [Dung 2013]
Output: Matrix sequence Wk, k = 1, . . . , D

Initialization :
1: Number of steps D, number of patterns Q

2: Learning sequence {hi,q(0), yq}, where yq = 1
N

N∑
i=1

hi,q(0), i = 1, . . . , N , q =

1, . . . , Q

3: Randomly initialize Wk(0), Wk(−1), k = 1, . . . , D

4: Choose the learning rate αc
5: Select threshold γc, and Ei > γc
6: Set m = 0

LOOP Process :
7: while Ei > γc do
8: for q = 1 to Q do
9: Select the learning sequence hi(0) , hi,q(0), h̄ , yq

10: Learning sequence propagation

hi(k) =
∑

j∈Ni∪{i}

wkij(m)hj(k − 1), k = 1, . . . , D

11: Error computation δi,D = hi(D)− h̄, ei,q , δ2
i,D

12: Error propagation

δi,k−1 =
∑

j∈Ni∪{i}

wkji(m)δj,k, k = D, . . . , 2

13: For k = 1, . . . , D, i = 1, . . . , N , and j ∈ Ni ∪ {i}, update matrices via (3.8)

14: m = m+ 1

15: end for

16: Ei = 1
N

Q∑
q=1

ei,q

17: end while
18: return Wk, k = 1, . . . , D

work of [Eberhart 1995].
Let us consider the generic optimization problem

min
x
f(x) (3.9)

where x ∈ Rn, and f : Rn → R. PSO is concerned with finding a solution to (3.9),
possibly the global minimizer of f , via an evolutionary algorithm. Moreover, be-
longing to the class of metaheuristic optimization, PSO does not exploit any prior
knowledge of the problem structure in order to search for a solution. The only
requirement is that we have to be able to evaluate f in its domain. This is why
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this algorithm is also derivative-free. Moreover, under the stated only requirement,
the cost function is not restricted to any particular form, i.e. it does not even have
to be in analytic closed form. This opens up to a wide range of applications, e.g.
simulation-based optimization. For instance, authors of [Sandou 2008] capitalize on
PSO for the sake of autonomously tune an H∞-based controller for a LTI system.
In order to solve problem (3.9), the classic PSO algorithm of [Eberhart 1995] is
defined as follows. Let us consider a set of Np particles p = 1, . . . , Np, in the search
space, i.e. each particle represents a position xp ∈ Rn. During the performance of
the algorithm, these are allowed to move in the search space according to a pre-
scribed law of evolution, and they update and store in memory their latest personal
best visited position bp in respect of the cost function f to be minimized. Moreover,
they have access to the other particles personal best and the according cost function
value. On the basis of this knowledge then each particle is able to elect the best
particle among the swarm particle bests, i.e. the global best g. By defining a speed
variable sp, the generic particle of the swarm evolves according to the following
discrete time system.{

sp(k + 1) = ωsp(k) + φ1,p(k)(g(k)− xp(k)) + φ2,p(k)(bp(k)− xp(k))

xp(k + 1) = xp(k) + sp(k + 1)
(3.10)

Where, as stated above

bp(k) , arg min
x∈{xp(0),...,xp(k)}

f(x)

while g(k) is the global best of the swarm at the current step k, i.e.

g(k) , arg min
x∈{b1(k),...,bNp (k)}

f(x)

ω ∈ R is called the inertia factor, and where φ1,p and φ2,p are two aleatory variables
with uniform distribution of probability in the respective intervals [0, c1], and [0, c2],
where c1, c2 ∈ R+. PSO algorithm (3.10) thus realizes at each iteration step, and
for each particle, an aleatory linear combination of three trends, namely to follow
its path, to retrace its steps towards its personal best, to move towards the global
best current value. An illustration of the dynamic behavior of (3.10) is given in
Fig. 3.1. We additionally consider lower and upper bounds of the variables of the
form: x ≤ x ≤ x̄, by limiting the maximal speed of each particle, and forcing xp
to stay within the aforementioned bounds. This is simply obtained by adding the
following to (3.10).

sp(k + 1) , max{min{sp(k + 1), s̄},−s̄} (3.11)

xp(k + 1) , max{min{xp(k + 1), x̄}, x} (3.12)

Where we place respectively (3.11) right after the first equation in (3.10), and (3.12)
after the second equation in (3.10), and where s̄ , 1/2(x̄−x). The overall algorithm is
thus shown in Algorithm 2, where max_iter is the max iteration step to be set. The
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xp(k)

bp(k)

g(k)

sp(k)

xp(k + 1)

sp(k + 1)

Figure 3.1: An illustration of PSO classic dynamics of system (3.10).

Algorithm 2 Classic PSO algorithm
Output: Global best: g

Initialization :
1: Randomly initialize xp ∈ [x, x̄], sp ∈ [−s̄, s̄], p = 1, . . . , Np

2: bp = xp, p = 1, . . . , Np

3: Evaluate f bp , f(bp), p = 1, . . . , Np

4: Initialize global bests g = arg min
{bp}

{
f bp
}

LOOP Process
5: for k = 1 to max_iter do
6: Evaluate the particles in f : fxp , f(xp), p = 1, . . . , Np

7: update personal bests for p = 1, . . . , Np

(
bnewp , f b,newp

)
=

{(
xp, f

x
p

)
if fxp < f bp(

bp, f
b
p

)
otherwise

8: bp = bnewp ; f bp = f b,newp

9: update global bests g = arg min
{bp}

{
f bp
}

10: perform (3.10), (3.11), (3.12)
11: end for
12: return g

choice of the parameters is one first important step in the tuning of the algorithm as
they highly influence its dynamic behavior, i.e. the stability of its trajectories and
their behavior during the transient, and the quality of the solution to which particles
converge. As far as the latter issue is concerned, since PSO does not guarantee the
convergence to the global minimizer of f , we are generally interested in ensuring
the achievement of a good-enough solution to (3.9). A standard parameters setting
often employed in the literature, and validated by [Kennedy 2006], is given by

• Np = 10 +
√
n
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• ω =
1

2 ln 2

• c1 = c2 =
1

2
+ ln 2

More in general, plenty of works have been carried out in order to give a parameters
setting that could at least guarantee the stability of (3.10), i.e. the particles con-
vergence to a common value. A first work in this sense is provided by [Trelea 2003]
where, based on a deterministic analysis of (3.10), the author gives some insight on
how the dynamic behavior of the system is influenced by the parameter tuning. Au-
thors of [Kadirkamanathan 2006] suggest a system analysis based on the well-known
Lure’s stability problem, under the simplifying assumption that personal bests bp,
p = 1, . . . , Np and global best g are time-invariant. To give a further interesting
example, we can cite the work of [Pan 2014]. Here, since the stability problem con-
cerns the convergence to a common swarm value, the PSO algorithm is analyzed
from the perspective of stochastic consensus. Thus, under chosen negative values of
the inertia factor ω, the authors give conditions under which the swarm converges
to an aleatory variable with defined expected value and variance.

3.2.2 Avoiding Premature Convergence

The classic PSO of Algorithm 2 can be affected by the problem of premature con-
vergence. This phenomenon, also known as stagnation, occurs when bp and g do
not change over a prolonged period of time. In this case, according to (3.10), the
best particle speed would rapidly go to zero, i.e. it would give up its research,
[Clerc 2006]. As it is shown by system (3.10), PSO is based on two main behavioral
trends, namely exploitation of currently known information, i.e. the discovered bp,
and g, and exploration of the unvisited areas of the search space. Thus, it is clear
that if a PSO algorithm suffers from premature convergence, the exploration trend
should be boosted. This can be achieved either via a different tuning of the paramet-
ers, or via other algorithm modifications, (see for instance [van den Bergh 2002]).
However, a first enhancement can be simply achieved by letting each particle have
only access to the personal bests values of the particles belonging to a defined re-
stricted subset Sp of the swarm. In this case, each particle performs a modified
Step 9 of Algorithm 2, that is, computing its own knowledge of global best, which
is local because restricted to the mentioned subset. The modified Step 9 takes the
form of

lp , arg min
{bp∈Sp}

{
f bp

}
where we named lp the new local best to depict the concept of local information,
replacing the global one, (see e.g. [Aguirre 2007]).
There exist several techniques in the literature to define the neighborhood Sp. In
this work though, we provide the one proposed by [Aguirre 2007], named singly-
linked list, as it shows good convergence performance. First of all the size of the
neighborhood must be set via the introduction of a new parameter, Nm. For Nm =
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1

2

3

4

5

6

· · ·

Np

Figure 3.2: Singly-linked list definition for Nm = 2. Each particle p gives access to
its information to particles p+ 1, and p− 2.

Algorithm 3 Singly-linked list, [Aguirre 2007].
Output: Sp

Initialization :
1: Set Sp = ∅
2: Set Nm

3: step = 1

4: switch = 1

LOOP Process
5: while neighborhood_size < Nm do
6: Include the particle labeled p+ switch · step in Sp
7: step = step + 1

8: switch = −switch
9: end while

10: return Sp

2, the mentioned technique associates a concatenated communication among the
particles as shown in Fig. 3.2. For a general size Nm, for each particle p, the singly-
linked list neighborhood can be obtained via the pseudocode shown in Algorithm 3.

3.2.3 Constraints Handling

3.2.3.1 Problem Formulation and Available Solutions

With the exception of box constraints, which can be handled in the PSO framework
via (3.11), and (3.12), PSO was first introduced to solve unconstrained optimization
problems of the form of (3.9), for which generally it exhibits good performance.
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Let us now consider the following constrained optimization problem

min
x
f(x)

subject to

g(x) ≤ 0

h(x) = 0

(3.13)

where the optimization variable and the cost function are defined in Subsection 3.2.1,
and where, for the sake of generality, functions g : Rn → Rm, and h : Rn → Rq
are considered nonlinear, and may define a nonconvex feasible set. As it is well-
known, one of the major difficulties when employing PSO to solve optimization
problem (3.13) is the lack of an explicit method to direct the optimum search to-
wards the feasible region, [Aguirre 2007]. In classic optimization algorithms, con-
straints handling methods can be classified in two groups [Deb 2000], namely generic
methods, which do not exploit the mathematical structure of the constraints, and
specific methods, which do exploit the structure but are only applicable to a spe-
cific class of constraints. Within the former group, one would usually capitalize
on penalty function, Lagrange multiplier techniques, etc. As far as the latter one
is concerned, typical approaches include cutting plane, reduced gradient, gradient
projection ones, etc. [Deb 2012]. When employing a metaheuristic optimization
algorithm, such as PSO, though, in which the optimization problem is treated as a
black box, one tends to capitalize on generic methods to treat the constraints. One
of the most successful techniques belonging to this class is given by the well-known
Deb’s rule, whose principle is presented in Subsection 3.2.3.2. However, in addition
to the chosen constraint handling method, when incorporating constraints into the
cost function of an evolutionary algorithm, it is particularly important to maintain
diversity in the swarm, and to be able to keep solutions both inside and outside
the feasible region, [Cabrera 2007]. The diversity of the swarm can be interpreted
as a measure of the degree of exploration and exploitation ability of the algorithm,
via the particles position and speed distribution, [Cheng 2013]. Keeping a sufficient
level of diversity thus means to let the swarm have a good balance between explor-
ation and exploitation in order to avoid premature convergence. The works in the
literature are thus mainly concerned with solutions combining a generic method to
handle constraints, and techniques to preserve the diversity of the swarm. Works
of [Aguirre 2007, Pulido 2004, Cabrera 2007, Liu 2010] are based on similar ideas
of combining the mentioned Deb’s rule with different techniques concerning the di-
versity problem. In particular, authors of [Aguirre 2007] propose to add a dynamic
tolerance to handle inequality constraints, and the storage of tolerant particles, i.e.
laying in the feasible region, to enhance the constraints handling. Perturbation op-
erators are then defined to keep diversity. In [Pulido 2004], a turbulence operator is
employed to perturb the particles speed, and in [Cabrera 2007], the authors suggest
to use a combined action of algorithm reinitialization and mutation operator. Fi-
nally [Liu 2010] propose a combination of PSO and differential evolution algorithm
to help preserving the diversity. A similar approach to the aforementioned ones is
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shown in [Venter 2010] where, focusing on the only inequality constraints, it is pro-
posed to transform the optimization problem in a bi-objective one in order to treat
the constraints. Thus the problem is solved in the framework of multi-objective
optimization by searching the Pareto front. Authors of [Ali 2014] provide a test
on the penalty function approach, in both its static and dynamic variant, for the
electromagnetic-like method of optimization. The penalty function technique is
concerned with introducing the problem constraints in the cost function, and by
weighting them via a tunable penalty gain, which, for the dynamic case, can be
made iteration-varying. The resulting optimization problem is thus unconstrained.
Nonetheless, such approach exhibits some important pitfalls that limit its applic-
ability. Indeed, it generally introduces a cost function distortion if the penalty
function is not applied in the only unfeasible domain, and for which usually the
global minimizer of the original problem no longer preserves the same stationary
property in the modified one. PSO is combined with the augmented Lagrange mul-
tiplier method and with a nonstationary penalty function in [Sedlaczek 2005]. If,
for the sake of brevity, we consider the only inequality constraints in (3.13), authors
of [Sedlaczek 2005] consider the augmented Lagrange function

LA(x, λ, r) , f(x) + λg(x) + rg(x)>g(x)

obtained by adding the quadratic extension rg(x)>g(x) to the Lagrange function,
and where λ ∈ Rm having all strictly positive components, r ∈ R. Thus, they sug-
gest to alternate the classic update of the Lagrange multiplier λ, and an heuristic
update for r, with the classic PSO equations. An example of a specific method
coupled with PSO can be found in [Wakasa 2015a], where the authors make use of a
projection method to deal with convex constraints, and a modified one to treat non-
convex constraints. Eventually, a mixed generic and specific approach is proposed in
[Wakasa 2015b], where the authors capitalize on primal-dual decomposition method.
Here, PSO equations are employed for the primal variable update, combined with a
projection method to satisfy the convex constraints.

3.2.3.2 Deb’s rule

Having made no constraints assumption in optimization problem (3.13), we are
interested in generic methods to handle them. In particular, in the following we
provide the mentioned Deb’s rule combined with the basic PSO algorithm. This
was first introduced by [Deb 2000], who applied the proposed technique for the
genetic algorithm. This technique exhibits some interesting properties which make
it eligible for the application of plenty constrained optimization problems. Indeed,
even if belonging to the penalty function approaches, it does not require any penalty
parameter. Moreover, the aforementioned rule allows avoiding any cost function
distortion that may occur when incorporating the constraints in the problem via
penalty functions. Deb’s rule consists of a tournament selection in which, when
comparing two solutions of (3.13), the following criteria is adopted

• any feasible solution is preferred to any infeasible solution
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• among two feasible solutions, the one having better objective function value
is preferred

• among two infeasible solutions, the one having smaller constraint violation is
preferred

In addition, equality constraints are handled via a transformation into inequal-
ity constraints with the introduction of a positive threshold ε ∈ R+ such that
|h(x)| − ε ≤ 0, i = 1, . . . , N , where ε is a vector of proper dimension with all
its entries equal to ε. For ease of notation we define g̃(x) , col(g(x), |h(x)| − ε),
where g̃ is a vector of functions of dimension m+ q.
In order to implement Deb’s rule the agents have to evaluate a modified cost func-
tion, called fitness function, which takes into account the tournament selection de-
scribed above. Thus, instead of f(x), the particles have to be evaluated in the
following

F (x) ,


f(x) if g̃(x) ≤ 0

fmax +
m+q∑
i=1

χ (g̃i(x)) otherwise
(3.14)

being g̃i the i-th component of g̃, and where χ : R→ R is defined as

χ(y) ,

{
y if y > 0

0 otherwise
(3.15)

The second term of the second case of (3.14) accounts for the degree of constraint
violation, and it is called sum of constraints. fmax ∈ R+ is introduced so that
the feasible solutions are always preferred to the infeasible ones. It is set as the
objective function value of the worst feasible current solution in the swarm. If there
is no feasible solution, then it is simply set as 0. fmax thus needs to be updated each
time that new feasible solutions are found. However, for an easier implementation,
if some little prior information of the involved function of (3.13) is known, then fmax
can be set as a constant sufficiently high value, in order to guarantee that the first
case of (3.14) has always lower value with respect to the second one. Algorithm 2
is thus modified by substituting the f -evaluations with F .

Remark 3.1 As shown in [Aguirre 2007] the tolerance ε used to handle the equal-
ity constraints can be made iteration-varying to let better search space exploration.
Typically a linearly decreasing value is employed. This can be done by changing its
value at each iteration of modified Algorithm 2.

3.3 Gradient-based Distributed Optimization

In this section we aim at providing a brief introduction to the problem of distributed
optimization, and the main concepts of the available solutions in the literature. In
particular, we focus here on gradient-based algorithms as, even if we will not make
use of them for the WF optimization problem, we believe that it is useful to have
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an all-round view of the distributed optimization problem in order to contextualize
our work on evolutionary algorithms of Sections 3.4, and 3.5.
When dealing with multi-agent systems on large size networks, it might be too com-
putationally demanding to consider standard centralized optimization techniques.
Moreover, if the global network topology of the system is not known, it might even
be unfeasible. The common point among the available works on gradient-based dis-
tributed optimization is to blend consensus control techniques with classic convex
optimization algorithms. These are usually based on Lagrange multipliers, primal-
dual methods, augmented Lagrange function, etc. The dissertation of these well-
known notions and techniques goes beyond the scopes of this work. The reader may
refer to [Boyd 2004] for an introduction to convex optimization. The basic optimiz-
ation problem treated in the literature, from which all its variants are obtained, is
the sum of local cost functions, and it can be stated as follows. Consider a set of N
agents at the nodes of a connected graph G, then the problem to be solved is

min
x∈Rn

N∑
i=1

fi(x) (3.16)

where fi : Rn → R is a convex function, only available at node i. Notice also
that, in this general formulation, each local cost function fi depends on the whole
optimization variable. In other words, agents of the system share a common op-
timization variable. Thus a typical choice in the literature is to endow each agent
with a local estimation xi ∈ Rn of the optimization variable, even if fi does not
necessarily depends on the whole x. More refined solutions are available though,
[Wang 2011a]. One of the first work, concerned with solving (3.16) in a distrib-
uted way, can be found in [Nedic 2009], where the generic agent i estimation of the
optimization variable is updated according to

xi(k + 1) =
∑

j∈Ni∪{i}

wijxj(k)− βidi(k) (3.17)

where wij are properly chosen weights on the communication graph edges, βi a
tunable parameter, and di(k) the subgradient of fi evaluated at xi(k). As one can
see, (3.17) is given by a combined action of consensus, i.e. averaging with local
neighbors in order to meet condition xi = xj ∀i, j ∈ V, in the first term on the
right side, and a contribution towards the descent direction of fi in the second term,
obtained exploiting gradient information of fi. The algorithm is shown to converge
to an approximated optimal solution of (3.16), according to a trade-off between
accuracy and speed of convergence, managed via the tunable parameters. Such
algorithm is analyzed in [Kvaternik 2011] by a control theory perspective, where
the authors show that each xi converges to a neighborhood of the optimal solution,
which can be made little at will by acting on βi. A first variation of (3.16) is given
in [Sundhar Ram 2012], where a common convex constrained set is considered, and
the global cost function is modified as h

(∑N
i=1 fi(x)

)
, where h : R → R is known

by every agent. Constrained optimization is then treated via projection method.
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Function h basically brings an additional coupling term among the agents, and to
solve the optimization problem, differently from (3.17), the global cost function
needs to be estimated at each algorithm step. This is managed by employing an
additional variable for each agent, which is updated in parallel with xi, according
to average consensus techniques.
More recently, problem (3.16) has been treated in the primal-dual framework, via
an interesting alternative formulation, (e.g. [Wang 2010, Wang 2011a]). Indeed,
condition xi = xj ∀i, j ∈ V can be included in the optimization problem as an
equality constraint, yielding the equivalent problems

min
x

N∑
i=1

fi(x) = min
{xi,i=1,...,N}

N∑
i=1

fi(xi) = min
{xi,i=1,...,N}

N∑
i=1

fi(xi)

subject to xi = xj ∀i, j ∈ V subject to (L ⊗ In)x = 0
(3.18)

where ⊗ is the Kronecker product (see Appendix A.8), In the identity matrix of
dimension n, x , col(x1, . . . , xN ) ∈ RNn, 0 a vector of same dimension with all
its entries equal to 0, and where L ∈ RN×N is the Laplacian matrix associated to
G. From Appendix C, we know that under some graph connectivity assumptions
L1N = 0N , i.e. 0 is an eigenvalue of L with corresponding eigenvector equal to 1N .
Thus, constraint (L ⊗ In)x = 0, if satisfied, implies that x ∈ span(1N ⊗ v), where
v ∈ Rn is an arbitrary vector, i.e. xi = xj ∀i, j ∈ V. The last problem formulation
of (3.18) on the right is useful because, by writing the associated Lagrange function

L(x,λ) =
N∑
i=1

fi(xi) + λ>(L ⊗ In)x

with λ , col(λ1, . . . , λN ) ∈ RNn, the problem can be solved via{
ẋ = −(L ⊗ In)λ−G(x)

λ̇ = (L ⊗ In)x
(3.19)

where G(x) is a concatenation of gi, i.e. the gradient of fi, and for which it is easy to
derive the discrete time iterative implementable version [Wang 2010]. System (3.19)
describes the dynamics of the overall multi-agent system. The local law of the generic
agent i is thus simply obtained from (3.19) yielding

ẋi = −
∑
j∈Ni

aij(λi − λj)− gi(xi)

λ̇i =
∑
j∈Ni

aij(xi − xj)

Eventually, one efficient distributed algorithm often employed in the literature is
the Alternating Direction Method of Multipliers (ADMM), which is obtained by de-
fining the augmented Lagrange function associated to the last problem formulation
of (3.18), e.g. [Zhang 2014].
Belonging to gradient-based optimization algorithms, the aforementioned approaches
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inherit the pitfalls of centralized convex optimization, which may result in subob-
timality of the solution when treating nonconvex problems, and it basically limits its
application to problems that can be described via analytic smooth functions. These
are among the major motivations that lead us to the development of the algorithms
object of the next sections.

3.4 Distributed Cooperative PSO: DPSO1

3.4.1 Related Works and Contribution

Since its first formulation [Eberhart 1995], particle swarm optimization algorithm
has been widely studied, and a great number of modified versions has been proposed,
especially for centralized problems (see e.g. [Del Valle 2008]). Nonetheless PSO still
gains great attention, mainly due to the research effort to apply this successful al-
gorithm to complex engineering applications. Among them, large scale multi-agent
systems certainly provide new opportunities for the engineering community as they
represent the most natural way of treating many problems encountered in the do-
mains of telecommunication, transports, power systems, etc. Moreover the require-
ments for such systems to be scalable, modular, and resilient, logically imposes the
distributed framework as the one to be considered when dealing with them. This
motivates the increasing interest for distributed optimization techniques to which
distributed PSO (DPSO) belongs.
In this regard, numerous solutions are available in the literature. However, in order
to be consistent with the definitions that we will use in the sequel, and with the
problem addressed, we have to make a distinction clear. DPSO, and distributed
evolutionary algorithms more in general, are often related to parallel computation
in order to speed up the convergence to a solution. In this case the optimization
problem is usually centralized, and it is split among several units. In other words,
distributing the algorithm is a choice, [Rivera 2001]. We will refer to parallel PSO
(PPSO) when dealing with this class.
The problem we want to address though, is concerned with those systems that are
physically distributed, i.e. distribution is not a parameter of the algorithm. This
is, again, the case of multi-agent systems. In this second class of distributed sys-
tems, typically each agent would be endowed with some private parameters, e.g.
personal cost functions, and would cooperate with the other agents to solve a com-
mon optimization problem, which is usually given by the sum of the personal cost
functions. We will refer to DPSO to indicate the PSO algorithm applied to this
class of systems. In the literature, there exist only a few works belonging to this
latter class of algorithms. These usually combine PSO, and consensus techniques.
In [Wakasa 2015a] each agent has knowledge of its own cost function that depends
on only its own optimization variable, i.e. they do not share a common variable.
Coupling among the agents is then given by a common objective function known by
them all. A modified consensus technique, based on the work of [Sundhar Ram 2012]
is employed to estimate the sum of local cost functions at each step of PSO. Un-
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fortunately such estimation may fail to be sufficiently accurate to guarantee proper
convergence of the algorithm when the agents do share common variable. This issue
is treated in more details in Subsection 3.4.3. Authors of [Wakasa 2015b] propose
a distributed primal-dual optimization method, based on the work of [Chang 2014],
where the primal variable update, usually provided by sub-gradient methods, is re-
placed by the PSO algorithm. As in [Wakasa 2015a], agents do not share common
variables, and the only coupling among them is given by the requirement of satisfy-
ing a common inequality constraint obtained by the sum of local private constraint
functions. Consensus technique is thus employed to reach an agreement among the
agents on the dual optimization variable as well as to estimate the sum of local
constraints.
Examples of DPSO in which the agents share a common optimization variable, i.e.
their local cost function depends also on the other agents variables, can be found
for instance in [Gazi 2014, Navarro 2015]. However, they are both specific to the
problem they address, and they are not readily extendable to a more general class
of optimization problems. In particular, [Gazi 2014] capitalizes on DPSO to solve
a distributed agreement problem, while in [Navarro 2015] the technique is used to
tune the controllers of cooperative robots.
In this section we propose a first novel approach to DPSO, which we name DPSO1
and that allows a more general problem formulation and applies to a class of dis-
tributed constrained optimization problems. The algorithm is mainly concerned
with reproducing, in a distributed way, the exact behavior of a centralized PSO.
This is made possible by combining it with the means of average consensus tech-
niques. Moreover, in order to provide a fully-distributed solution, we capitalize on
the finite-time average consensus self-configuration shown in Section 3.1. Concerning
the centralized PSO that we aim to reproduce, we choose the work of [Aguirre 2007],
i.e. one of the PSO algorithms available in the literature, handling the optimization
problem constraints via Deb’s rule.

3.4.2 Problem Statement

Consider a group of N agents, each of which disposes of a private control variable
xi ∈ Rni , i = 1, . . . , N , private cost function, inequality and equality constraints.
By private we mean that they are only known by the associated agent i. We provide
the following useful definition.

Definition 3.1 In a constrained optimization problem, an agent i is physically
coupled to j if at least one among its private cost function, inequality and equality
constraints depends on agent j private control variable. Agent j is thus said to be
a physical neighbor of agent i.

We then consider a graph Gp = (Vp, Ep) that keeps track of the physical relations
among the agents. In particular Vp = {1, . . . , N} is the set of the agents, i.e. the
nodes of the graph, and Ep ⊆ Vp × Vp is the set of edges among them, where
the edge (i, j) ∈ Ep if and only if agent j is a physical neighbor of agent i. Note
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that according to the given definition of physical neighbor, Gp generally defines
a digraph, i.e. the graph edged have a direction associated to them. The set of
physical neighbors of agent i is defined as N p

i , {j ∈ Vp : (i, j) ∈ Ep}. By defining
xij , {xj ∈ Rnj : j ∈ N p

i } as the set of physical neighbors variables of agent i,
we are able to represent the generic agent i cost function, inequality, and equality
constraints respectively as fi(xi,xij), gi(xi,xij) ≤ 0, and hi(xi,xij) = 0, where

fi : R
ni+

∑
j∈Np

i

nj

→ R, gi : R
ni+

∑
j∈Np

i

nj

→ Rmi , hi : R
ni+

∑
j∈Np

i

nj

→ Rqi , and where
0 is a vector of proper dimension with all zero entries. Note that no assumptions
were made concerning these functions. We are now able to state the optimization
problem that agents have to cooperatively solve, as

min
x,[x1···xN ]>

F (x) , min
{xi,i=1,...,N}

N∑
i=1

fi(xi,xij)

subject to gi(xi,xij) ≤ 0, i = 1, . . . , N

hi(xi,xij) = 0, i = 1, . . . , N

(3.20)

where F is the global, or common cost function.

Remark 3.2 A first difference with the distributed algorithms of Section 3.3 is that
the agents do not have a copy of the whole optimization variable. Rather, they modify
their own optimization variable xi in parallel with the other agents ones.

3.4.3 Algorithm Description

3.4.3.1 Fitness Function

Having made no constraints assumption we choose a generic method to handle
constraints of (3.20). In particular we apply Deb’s rule, (see Subsection 3.2.3.2). As
shown, equality constraints are handle via a transformation in inequality constraints
with the introduction of a positive threshold ε ∈ R+, and by defining g̃i(xi,xij) ,
col(gi(xi,xij), |hi(xi,xij)|−ε), ∀i ∈ Vp, where g̃i is a vector of functions of dimension
mi + qi. In order to implement Deb’s rule, the following common fitness function is
defined

F̃ (x) ,


F (x) if g̃i(x) ≤ 0 ∀i ∈ Vp

fmax +
N∑
i=1

mi+qi∑
k=1

χ (g̃i,k(x)) otherwise
(3.21)

where g̃i,k is the k-th component of g̃i, and where function χ, and value fmax are
defined in (3.15). Recall that the second term in second case of (3.21) is the sum of
constraints.

3.4.3.2 Variables Settings

Each agent i has Np particles associated to its private variable, and they represent
a position in the search space xi,p ∈ Rni , p = 1, . . . , Np. As done for the centralized
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PSO of Section 3.2, we associate to each particle a personal best bi,p, and a local
best li,p of a defined subset Si,p. Moreover, we require such subset to be the same
for each particle having same p label, i.e. Si,p = Sp, ∀i ∈ Vp. In this work, such
subset is defined according to the singly-linked list of Algorithm 3. In addition
we define two new variables associated to each particle and personal best, namely,
h1
i,p, and h2

i,p as far as the former is concerned, and hb,1i,p , and hb,2i,p regarding the
latter. These are employed for average consensus purposes. In particular, variables
with superscript 1 are the local estimate of the original common cost function F

averaged among the N agents, while variables with superscript 2 are used for the
average of the sum of constraints. Both average functions are evaluated in the
optimization variable xp , col(x1,p, . . . , xN,p) concerning variables h1

i,p, and h2
i,p,

and in bp , col(b1,p, . . . , bN,p) concerning variables hb,1i,p , and h
b,2
i,p , i.e composed by

all agents particles, respectively personal bests, having the same p index. In other
words, as it will be clear in the sequel, the mentioned additional variables are used
to get knowledge of the common fitness function (3.21), by running an average
consensus algorithm that makes them reach the following values

h1
i,p =

1

N

N∑
l=1

fl(xl,p,xlj,p)

hb,1i,p =
1

N

N∑
l=1

fl(bl,p, blj,p)

h2
i,p =

1

N

N∑
l=1

(
1

ml + ql

ml+ql∑
k=1

χ(g̃l,k(xl,p,xlj,p))

)

hb,2i,p =
1

N

N∑
l=1

(
1

ml + ql

ml+ql∑
k=1

χ(g̃l,k(bl,p, blj,p))

)
(3.22)

where we defined xlj,p ,
{
xj,p ∈ Rnj |j ∈ N p

l

}
, resp. blj,p ,

{
bj,p ∈ Rnj |j ∈ N p

l

}
,

i.e. the sets of physical neighbors position and personal best associated to the
particle labeled p. Notice that we keep index i in (3.22) to stress the fact that,
once performed the average consensus, agent i estimate of average functions can
have a small difference with respect to the other agents one. If this difference can
be neglected, then we can approximate the consensus result via h1

i,p = h1
j,p = h1

p,
∀i, j ∈ Vp. Same conclusions hold for h2

i,p, h
b,1
i,p , h

b,2
i,p .

An illustration of all the variables for each agent is shown in Fig. 3.3.

3.4.3.3 Particles Update Law

As shown in Section 3.2, PSO equations determine the particles motion in the search
space in order to find the global optimum. For ease of notation, at iteration k of
the algorithm we note xi,p , xi,p(k), and x+

i,p , xi,p(k+ 1). Same notations hold for
the speed si,p, particle best bi,p, and local best li,p. We rewrite then PSO equations,
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x1,1,b1,1,l1,1,

h1
1,1,h2

1,1,h
b,1
1,1,h

b,2
1,1

1

x1,Np ,b1,Np ,l1,Np ,

h1
1,Np

,h2
1,Np

,hb,11,Np
,hb,21,Np

xN,1,bN,1,lN,1,

h1
N,1,h2

N,1,h
b,1
N,1,h

b,2
N,1

xN,Np ,bN,Np ,lN,Np ,

h1
N,Np

,h2
N,Np

,hb,1N,Np
,hb,2N,Np

N

Figure 3.3: Variables associated to the N agents of the network for DPSO1.

which for each particle, are given by{
s+
i,p = ωsi,p + φ1i,p(li,p − xi,p) + φ2i,p(bi,p − xi,p)
x+
i,p = xi,p + s+

i,p

(3.23)

(b+i,p, h
b
i,p) =

{
(x+
i,p, h

+
i,p) if h+

i,p < hbi,p

(bi,p, h
b
i,p) otherwise

(3.24)

l+i,p = arg min
{b+i,p:p∈Sp}

{hbi,p} (3.25)

where hi,p , hi,p(k) =

{
h1
i,p if h2

i,p = 0

fmax + h2
i,p otherwise

and h+
i,p , hi,p(k+1). A similar definition holds for hbi,p, h

b,1
i,p , h

b,2
i,p . Equation (3.24) is

the decision step of the algorithm in which the new particles are compared to the ac-
cording personal best in terms of average fitness function evaluation. φ1i,p , φ1i,p(k),
and φ2i,p , φ2i,p(k) are defined as in Subsection 3.2.1, and here they are allowed
to have different value for any particle labeled (i, p). Eventually, box constraints of
the form xi ≤ xi ≤ x̄i are handled by adding equations of the form of (3.11), (3.12)
to (3.23), which rewritten for each particle p of each agent i are

si,p(k + 1) , max{min{si,p(k + 1), s̄i},−s̄i} (3.26)

xi,p(k + 1) , max{min{xi,p(k + 1), x̄i}, xi} (3.27)

3.4.3.4 Communication Settings

The algorithm relies on the following assumption on the communication graph.

Assumption 3.1 It exists a communication graph Gc = (Vc, Ec) such that Vc ≡ Vp,
and Ec ⊆ Vc × Vc is such that if (i, j) ∈ Ep then both (i, j), and (j, i) ∈ Ec.

Assumption 3.1 implies that each agent i has to be able to exchange information in
both senses, i.e. receive and transmit information, with both its physical neighbors
j : j ∈ N p

i , and the agents for which i is a physical neighbor, i.e. k : i ∈ N p
k . The
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1, f1(x1, x2)

2, f2(x2, x3, x4)

3, f3(x3, x4)

4, f4(x3, x4)

Figure 3.4: Physical graph Gp (dash line), and communication graph Gc (solid line).

Algorithm 4 Distributed average common fitness function evaluation
Input: i component of x̂p
Output: Average fitness function value: ĥi,p
1: Send x̂i,p to all agents j : i ∈ N p

j , via Gc
2: Wait to receive x̂j,p from the physical neighbors, via Gc
3: ĥ1

i,p = fi(x̂i,p, x̂ij,p)

4: ĥ2
i,p =

1

mi + qi

mi+qi∑
k=1

χ (g̃i,k(x̂i,p, x̂ij,p))

5: Run average consensus on variables ĥ1
i,p, and ĥ2

i,p, p = 1, . . . , Np, via Gc (see
Section 3.1)

6: if (ĥ2
i,p == 0) then

7: ĥi,p = ĥ1
i,p

8: else
9: ĥi,p = fmax + ĥ2

i,p

10: end if
11: return ĥi,p

communication graph is thus undirected. An example for N = 4 is given in Fig. 3.4.

3.4.3.5 Distributed Functions Evaluation

Before providing the overall algorithm, we need to introduce a distributed sub-
routine that allows the evaluation of the average common cost function and sum of
constraints in order to compute the average common fitness function. This has to
be run each time that a decision step, as the one of (3.24), has to be performed.
Since this subroutine makes use alternatively of variables h1

i,p, h
2
i,p, and hb,1i,p , h

b,2
i,p

according to the algorithm requirements, and the functions evaluations is done in
different points of the search space, in order to present it in a general way, we refer
to a new definition of generic variables ĥ1

i,p, ĥ
2
i,p, and x̂p , col(x̂1,p, . . . , x̂N,p). These

will be replaced by the needed variables according to the situation. The distributed
subroutine is shown in Algorithm 4, where each component x̂i,p of the generic pos-
ition x̂p, is associated with the estimation of the average common fitness function



90 Chapter 3. Novel Distributed Optimization Algorithms

Algorithm 5 DPSO1
Output: Local best among Sp: li,p

Initialization :
1: Randomly initialize xi,p ∈ [xi, x̄i], si,p ∈ [−s̄i, s̄i], where s̄i , 1

2(x̄i − xi)
2: bi,p = xi,p
3: Set ε = ε̄

4: Run Algorithm 4 with input xi,p
5: Perform (3.25), and set li,p = l+i,p

LOOP Process
6: for k = 1 to max_iter do
7: Perform (3.23)
8: Run Algorithm 4 with input x+

i,p

9: Perform (3.24)
10: Set ε = ε(k)

11: Run Algorithm 4 with input b+i,p
12: if (h+

i,p < hbi,p) then

13:
(
b+i,p, h

b
i,p

)
=
(
x+
i,p, h

+
i,p

)
14: end if
15: Perform (3.25)
16: Set xi,p = x+

i,p, bi,p = b+i,p, and li,p = l+i,p
17: end for
18: return li,p

ĥi,p.

Remark 3.3 It is important to notice that the functions evaluation in Algorithm 4
is dependent on the chosen value of constraints threshold ε, via the definition of g̃i.
In order to let better performance, as shown in the centralized PSO algorithm of
[Aguirre 2007], we can employ an additional constraints handling technique, named
dynamic tolerance. This consists in letting the mentioned threshold be iteration-
varying, typically linearly decreasing from an initial value ε̄ to a final target ε.

3.4.3.6 Distributed Optimization Algorithm

The overall distributed algorithm to be run by each agent on each of its particles
xi,p is shown in Algorithm 5, where iterations are performed until a prescribed
number max_iter. In this algorithm, Steps 10−14 are only necessary if ε is iteration-
varying. Indeed if ε decreases at each algorithm step, then the personal bests need
to be reevaluated to see how they fit the new, ε-dependent, fitness function. If not
performed, a bi,p computed at the beginning of the iterations has higher probability
to have better fitness function value with respect to one computed afterwards. As
previously mentioned, the basic idea behind Algorithm 5 is to perform a distributed
optimization algorithm that, from a global perspective, acts as a centralized PSO.
In this case, the latter is chosen to be the one of [Aguirre 2007], as it is one among
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the centralized PSO algorithms combining PSO with Deb’s rule. In order to do
so, iteratively, variables xi,p, and bi,p are updated only where needed, according
to Definition 3.1, and their effect on the common fitness function is evaluated by
means of average consensus. Thus, the only source of error between the performance
of DPSO1 and its centralized version is given by the consensus errors, if any. As a
result, because of the structure of the proposed algorithm, and under the assumption
of negligible average consensus errors, we are able to conclude the following

Proposition 3.1 Consider the centralized PSO algorithm obtained by substitution
of Algorithm 4 with direct computation of ĥi,p. If it converges, so it does Algorithm 5.
In addition, they converge with same performance in quality of the solution and speed
of convergence.

Because of Proposition 3.1, DPSO1 has the same statistical properties of its cent-
ralized counterpart. For this reason, we do not provide here statistical simulations
to prove its convergence properties.

Remark 3.4 It is important to note that thanks to Assumption 3.1 we are able to
communicate variables xi,p, and bi,p with one communication step. This allows us
to avoid adding any consensus or consistency constraint to (3.20), as it is usually
done in the mentioned references of Subsection 3.4.1.

Remark 3.5 It is important to stress that even if Assumption 3.1 allows direct
communication of the particles and the associated personal bests among the agents,
this fact does not have to be confused or interpreted as if each agent only needed
to retrieve information about its direct neighbors according to Gc. Indeed, in order
to properly move its own particles, recall that each agent has to have knowledge of
the average common fitness function via Algorithm 4. In other words, each agent
has to have knowledge of how every other agent in the network contributes to the
common fitness function, including those agents to which it is not directly physically
coupled. To go further in practical implementation details, this is needed to perform
decision steps (3.24) in DPSO1. This fact sets a major difference with respect to
the algorithm proposal of Section 3.5.

Remark 3.6 In the centralized PSO described in [Aguirre 2007], an additional step
is considered to help keeping diversity of the flock of particles, which in turns helps
preventing from premature convergence. This is obtained by applying two perturb-
ation operators to the particle personal bests bi,p each time that they are updated.
These operators are named C-Perturbation, and M-Perturbation. The reader may
refer to the mentioned reference for further details. This additional step can be easily
implemented in Algorithm 5. However, in order to evaluate the new perturbed bi,p
in the common fitness function, the average consensus step needs to be performed,
and this clearly lengthen the time of convergence. Thus, it should be considered only
if it actually enhances the optimality of the solution in a remarkable way.
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3.4.4 Enhancement of Self-configuration Step

The main communication burden is due to the need for performing the average
consensus in Algorithm 4 to evaluate the problem functions. This step cannot be
approximated as a one-step communication as shown in [Wakasa 2015a], as the
accuracy of consensus would not be sufficient to perform decision steps on particles,
as (3.24). Nonetheless we employ a finite-time average consensus algorithm to reduce
the communication burden as much as possible. In addition, being interested in a
whole-distributed solution, we capitalize on the distributed self-configuration shown
in Section 3.1. Recall that such self-configuration step is performed via solving the
nonconvex optimization problem of minimizing quadratic error (3.3), with respect to
matrices W1, . . . ,WD. However, being the presented approach gradient-based, the
solution is strongly dependent on the algorithm initialization, i.e. the initialization
of the mentioned self-configuration step. We notice that (3.3) can be written in the
form of (3.20), with no constraints, by taking the agent i private cost function as∑Q

q=1 (hi,q(D)− yq)2, and (3.3) as common cost function. Thus, we propose to use
Algorithm 5 to provide an initial point to Algorithm 1, as it could help finding a
better solution. In this self-configuration step though, clearly, the average consensus
used in Algorithm 4 cannot be performed via the finite-time algorithm, which is the
aim of this stage. For this reason we consider to update ĥi,p variables at Step 5 in
Algorithm 4, for this only self-configuration step, via

ĥ+
i,p = ϕiiĥi,p +

∑
j∈Ni

ϕij ĥj,p (3.28)

ϕij =


1

max{di, dj}+ 1
if (i, j) ∈ Ec

1−
∑
j∈Ni

1

max{di, dj}+ 1
if i = j

i.e. ϕij are Metropolis-Hastings weights, where di is the degree of node i, i.e. the
number of edges connected to it. Update law (3.28) thus only requires each agent
to know little information about its neighbors, and it has to be run for a sufficient
number of steps in order to ensure proper convergence of Algorithm 5. In addition,
for the particular problem of minimizing (3.3), there is no need for the agents to
send, their private variables to the other ones. Agents do share common variables,
but this link is kept implicit in the computation of hi,q(D), appearing in (3.3),
via (3.1).

Example

We consider MATLAB R©bucky graph in Fig. 3.5, to show the enhancement that one
can achieve via a combined action of DPSO1 with self-configuration of Algorithm 1.
This graph has radius, and diameter r = d = 9, and a total number of agents
N equal to 60. Good results are found for a value of D = 11, i.e. 11 steps are
needed to find the average consensus on the network with an acceptable small er-
ror. Fig. 3.6 shows the results of Algorithm 1 whose initialization is provided by



3.4. Distributed Cooperative PSO: DPSO1 93

Figure 3.5: Bucky communication graph.
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(a) Gradient backpropagation with DPSO1
solution as initialization. h components reach
their average value after 11 step with a small
steady state error.
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(b) Gradient backpropagation with random
initialization. h components fail to reach their
average value.

Figure 3.6: Combined DPSO1 and backpropagation versus backpropagation.

DPSO1 versus the solution provided by the only gradient backpropagation approach
of Algorithm 1. The dash-dot black line represents the average of the initial net-
work state 1/N

∑N
i=1 hi(0), where hi(0), i = 1, . . . , N are randomly selected, and

thus the value to which the agents state should converge in D steps. From this
example it is clear that DPSO1 not only can enhance the optimality of the solution
of Algorithm 1, but it also helps finding one when gradient back-propagation fails.
Indeed, weights found via gradient back-propagation do not let convergence to the
average consensus value as it shows a steady state constant error. By employing the
algorithm initialization provided by DPSO1, the steady state error is negligible.
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3.4.5 Conclusion

We presented a novel distributed PSO algorithm that enables to solve general dis-
tributed constrained optimization problems that can be written in the form of (3.20).
Potentiality of the algorithm was also shown when solving a distributed factoriza-
tion problem to tune the finite-time average consensus algorithm.
The main drawback of the approach is due to the communication burden, in turns
due to the need for performing a finite-time average consensus algorithm for each
step of DPSO1. This basically raises the time for convergence especially for commu-
nication graphs having high diameter, and radius. This is one of the reasons that
motivated the work of next section.

3.5 Distributed Cooperative PSO with reduced commu-
nication: DPSO2

3.5.1 Related Works and Contribution

In Subsection 3.4.1, in order to distinguish the available distributed PSO algorithms
from those treating the particular case of physically distributed systems, we intro-
duced the class of PPSO. Recall that this is concerned with parallel computation of
originally centralized problems. How these problems are distributed among several
units is thus a choice, i.e. a problem parameter. On the one hand, the two classes of
distributed problems, namely PPSO and DPSO, have many points in common, and
this justifies the interest for studying the literature concerning them both. On the
other hand, they refer to essentially different problems, and they cannot be treated
in the same framework. Please refer to Subsection 3.4.1, for the available works in
the literature concerning DPSO.
When a centralized, usually large-scale, optimization problem has to be solved,
parallel computing is often employed to speed-up convergence. In this regard, the
author in [Rivera 2001] identifies different strategies to do so, namely global, fine-
grained, and coarse-grained parallelization. As far as PPSO is concerned, for the
first type of strategy one can cite, for instance, the works of [Schutte 2004, Chu 2003]
for synchronous parallelization, and [Venter 2006, Koh 2006] for the asynchronous
one. However, their main goal is to exactly reproduce the PSO algorithm while re-
ducing the run time [Chu 2003]. Thus the main structure of the algorithm remains
unchanged. For this reason, this approach cannot be employed for DPSO. In fine-
grained parallelization the update of each particle of the PSO algorithm is performed
by a dedicated agent. A formalization of such strategy can be found in [Akat 2008],
and an interesting application for multi-robots in [Hereford 2006]. From a DPSO
perspective each agent shares the whole optimization variable, and the common cost
function is known to each of them, which is not the case of the problem addressed
in this work. Moreover, its use for physically distributed systems is confined to
limited application, as the one of [Hereford 2006], where the number of agent has
to be sufficiently high. Coarse-grained parallel computing becomes an interesting
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strategy when it is combined with techniques of cooperative co-evolution (CC). In-
stead of simply sharing the PSO particles among multiple agents the problem is
divided in smaller sub-problems assigned to each agent. CC was first introduced by
[Potter 1994], while its first application to centralized PSO (CC-PSO) can be found
in [Van den Bergh 2004]. The main idea, known also as divide and conquer strategy,
can be summarized in three important steps, namely problem decomposition, sub-
component optimization, and cooperative combination [Mahdavi 2015, Yang 2008].
In the first step, a n-dimensional problem is divided in sub-problems of lower dimen-
sion, i.e. each of them, during the subcomponent optimization step, is responsible
for searching a solution in only a nonoverlapping subset of the possible dimensions.
Such decomposition is critical as it is strongly sensible to the degree of separability of
the problem. The concerning literature is thus mainly due to the different methods
of grouping the optimization problem in subcomponents whose inter-dependency is
minimized. A review of such techniques can be found in [Mahdavi 2015]. Once the
decomposition is chosen, CC can be coupled with PPSO (CC-PPSO) by assigning
a different group to each agent. As an example, this technique is proposed by the
authors of [Calazan 2013] to solve high-dimension optimization problems, and in
[Atashpendar 2016] for multi-objective optimization. However, the success of this
approach strongly relies on the decomposition itself. Thus, its main short-come,
and the reason why it cannot be generally applied to DPSO is that, in physically
distributed systems, the decomposition is imposed by the physics of the problem
itself, and it cannot be modified.
In this section we propose a novel DPSO algorithm to solve a class of physically
distributed optimization problems among a set of agents, and we name it DPSO2.
In particular, differently from [Wakasa 2015a], and [Wakasa 2015b], the agents are
allowed to share a common optimization variable. Moreover, based on some com-
munication assumptions, we exploit the problem structure rather than employing
consensus techniques in order to estimate the common objective function.
In the original CC formulation, the populations belonging to each subcomponent
are processed in sequential order, i.e. at any time step of the algorithm, only one
population is active. In this case we say that the update timing parameter is sequen-
tial [Popovici 2006]. Moreover, the population to be evaluated is usually coupled
with the latest local best values found by the other subcomponent populations. This
strategy, known as single best collaboration [Wiegand 2003], guarantees the object-
ive function to be strictly nonincreasing in the local best trajectories during the
run of the algorithm [Van den Bergh 2004]. Nonetheless, when the optimization is
distributed among the agents, as for DPSO, and PPSO, where the goal is to re-
duce the run time, we are interested in a parallel update timing, i.e. each agent
population is active at any algorithm time step, without the need for waiting its
own turn. In our work we focus on this last case, as the algorithm that we present
has some important common points with CC-PPSO algorithms where the update
timing is parallel. In particular, our contribution has some similarities with the
approach shown in [Calazan 2013], which is though conceived for PPSO. However,
the latter does not provide any analysis of the impact of choosing a parallel update
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timing. How this parameter changes the behavior of the algorithm has been stud-
ied by [Popovici 2006], and [Jansen 2003]. In particular, [Popovici 2006] provides
an analysis built on the so-called best-response curves. Based on them, we carry
out a new dynamic behavior analysis. This in turns suggests the introduction of
a new parameter, as well as a modification of the classic PSO algorithm, which
reveals to have an important impact in the performance of the proposed DPSO.
Eventually, the presented algorithm can be extended to the constrained optimiza-
tion case in which each agent has a private constraint allowed to depend also on the
other agents optimization variables. On this regard, as we have previously done for
DPSO1, while [Wakasa 2015b] makes use of a perturbed primal-dual method, and
[Wakasa 2015a] capitalizes on projection functions, we choose to handle constraints
by employing Deb’s rule.

3.5.2 Problem Statement

Differently from what done in Section 3.4, we state here the unconstrained distrib-
uted optimization problem on which the main result of this section and the following
discussion are based. The reader may refer to Subsection 3.5.6 for the constrained
extension. The problem statement is based on similar definitions, functions and
variables settings of Subsection 3.4.2. For the convenience of the reader, in the fol-
lowing we recall and adapt them for the unconstrained version. Let us consider a
group of N agents, each of which disposes of a private control variable xi ∈ Rni ,
i = 1, . . . , N , and a private cost function fi. In this context, it is useful to provide
an unconstrained version of Definition 3.1.

Definition 3.2 In an unconstrained optimization problem, an agent i is physically
coupled to agent j if its private cost function depends on agent j private control
variable. Agent j is thus said to be a physical neighbor of agent i.

We again consider a graph Gp = (Vp, Ep) that keeps track of the physical coupling
among the agents according to the above definition. In particular Vp = {1, . . . , N}
is the set of the agents, i.e. the nodes of the graph, and Ep ⊆ Vp × Vp is the set
of edges among them, where the edge (i, j) ∈ Ep if and only if agent j is a physical
neighbor of agent i. Thus, the set of physical neighbors of agent i is defined as
N p
i , {j ∈ Vp : (i, j) ∈ Ep}. By defining xij , {xj ∈ Rnj : j ∈ N p

i } as the set of
physical neighbors variables of agent i, we are able to represent the generic agent i

cost function as fi(xi,xij), where fi : R
ni+

∑
j∈Np

i

nj

→ R. The overall unconstrained
optimization problem is

min
x,[x1···xN ]>

F (x) , min
{xi,i=1,...,N}

N∑
i=1

fi(xi,xij) (3.29)

Thus, agents have to cooperatively minimize a common cost function F : R
∑N
i ni →

R while sharing the common optimization variable x.
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Remark 3.7 Note that agent i optimization variable xi is a subcomponent of prob-
lem (3.29) optimization variable x. Reflecting the physics of the problem, such de-
composition is given, and it cannot be altered to perform particular CC algorithms.

3.5.3 Dynamic Behavioral Analysis

Before providing the distributed algorithm to solve (3.29), let us consider it in its
centralized formulation. In particular, we focus the analysis of this section on a
CC-PSO algorithm based on parallel update timing. The reason for doing so is
two-fold. On the one hand, the distributed algorithm described in Subsection 3.5.4
has its same convergence properties. On the other hand, this analysis suggests the
modification of the classic PSO equations by introducing a new parameter.

3.5.3.1 CC-PSO Algorithm

If (3.29) is considered in the CC-PSO framework, then F is the cost function to
be minimized, and x the optimization variable. The problem is then divided in
N sub-problems, i.e. the vector x is decomposed in N subcomponents xi ∈ Rni ,
i = 1, . . . , N , each of which represents a nonoverlapping subset of the dimension of
the search space. A swarm of Np particles is associated to each subcomponent. In
order to evaluate each of them, i.e. how each of its particles fits the cost function F ,
a context vector has to be constructed [Van den Bergh 2004]. This is usually done
by concatenating each subcomponent particle with the global best particles of the
other subcomponents swarms [Wiegand 2003]. This practice will be detailed in the
algorithm description. The swarm is then updated independently one from another
by employing the previously introduced classic PSO equations

si,p(k + 1) =ωsi,p(k) + φ1i,p(k)(gi(k)− xi,p(k))

+ φ2i,p(k)(bi,p(k)− xi,p(k))

xi,p(k + 1) = xi,p(k) + si,p(k + 1)

(3.30)

where k is the current algorithm step, xi,p, si,p, and bi,p are respectively the position,
the speed and the personal best position values associated to the p-th particle of the
i-th subcomponent, gi is the global best of the i-th swarm. See Section 3.2 for the
other parameters definition and settings.
It is well known that the key point affecting the algorithm convergence is the problem
decomposition step. By giving the definition of separable function [Weise 2012]:

Definition 3.3 A function F (x1, . . . , xN ) is separable if and only if

arg min
x1,...,xN

F (x1, . . . , xN ) ={
arg min

x1
F (x1, . . .), · · · , arg min

xN
F (. . . , xN )

}
then, in order to assure proper convergence of the algorithm, the cost function F

should be separable in the chosen decomposition. As pointed out in Remark 3.7, in
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Algorithm 6 CC-PSO with parallel update timing
Output: Global best: gi

Initialization :
1: Randomly initialize xi,p ∈ [xi, x̄i], si,p ∈ [−s̄i, s̄i], p = 1, . . . , Np
2: bi,p = xi,p, p = 1, . . . , Np
3: Randomly initialize gi ∈ [xi, x̄i]

LOOP Process
4: for k = 1 to max_iter do
5: Compose the context vectors associated to the particles xi,p:

xgi,p , (g1, . . . , xi,p, . . . , gN ), p = 1, . . . , Np
6: Compose the context vectors associated to the personal bests bi,p:

bgi,p , (g1, . . . , bi,p, . . . , gN ), p = 1, . . . , Np

7: Evaluate the particle context vectors in F : F xi,p , F (xgi,p), p = 1, . . . , Np

8: Evaluate the personal best context vectors in F : F bi,p , F (bgi,p), p = 1, . . . , Np
9: Update personal bests for p = 1, . . . , Np

(
bnewi,p , F b,newi,p

)
=

{(
xi,p, F

x
i,p

)
if F xi,p < F bi,p(

bi,p, F
b
i,p

)
otherwise

10: bi,p = bnewi,p ; F bi,p = F b,newi,p

11: Update global bests gnewi = arg min
{bi,p}

{
F bi,p

}
12: gi = gnewi

13: Perform (3.30)
14: end for
15: return gi

the addressed problem, the problem decomposition is given and it may not reflect
the structure of the cost function, i.e. F may not be separable in such decompos-
ition. Moreover, as previously mentioned, we consider each swarm associated to
each subcomponent to be active at any algorithm step. In other words the update
timing is parallel. Eventually, as done in Section 3.4 for DPSO1 algorithm, box
constraints of the form of xi ≤ xi ≤ x̄i, xi, x̄i ∈ Rni , i = 1, . . . , N , can be handled
by placing respectively (3.26) right after the first equation in (3.30), and (3.27) after
the second equation in (3.30). The overall proposed CC-PSO algorithm is described
in Algorithm 6 for the generic i-th swarm.

Remark 3.8 Since at each iteration the global bests of each swarm are likely to
change, the cost function value associated to the personal best bi,p may provide a
false comparison reference for the corresponding particle xi,p context vector eval-
uation because they may refer to different values of global bests. This is why we
propose a first algorithm modification by requiring to evaluate the personal best at
each algorithm step, by composing the context vectors associated to them too. This
is performed by Steps 6, and 8 of Algorithm 6.
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3.5.3.2 Motivating Example

The given subcomponents affect the convergence properties as well as the dynamic
behavior of the algorithm because they define the best-response curves. Follow-
ing [Popovici 2006] and Definition 3.3, the generic best-response curves associated
to (3.29) are

bestResponseXi(x1, . . . , xi−1, xi+1, . . . , xN ) ,

arg min
xi

F (. . . , xi, . . .), i = 1, . . . , N
(3.31)

which clearly depend on the given problem decomposition. Authors of [Popovici 2006]
provide some insights of how the update timing influences the performance of the al-
gorithm according to the aforementioned best-response curves. However, motivated
by the following example, we provide a new dynamic behavior analysis as well as the
synthesis of a modified CC-PSO algorithm with parallel update timing. Let us con-
sider the cost function F (x1, x2) = (x1 − x2)2 to be minimized, where x1, x2 ∈ R.
Note that F (x1, x2) is not separable. However let us consider the decomposition
given by the two components of the optimization variable, x1, and x2. Using (3.31),
as in [Popovici 2006], we analyze the deterministic system associated to the CC-PSO
algorithm, which, for this example, is given by{

x1(k + 1) = bestResponseX1(x2(k)) = x2(k)

x2(k + 1) = bestResponseX2(x1(k)) = x1(k)
(3.32)

Such system reproduces the parallel update timing of the CC-PSO algorithm as
if the swarms associated to the two components were able to find the global best
at each time step. Even though F (x1, x2) is a simple convex function, having its
minima in Ωex ,

{
(x1, x2) ∈ R2 : x1 = x2

}
, system (3.32) shows an oscillatory be-

havior, given by the fact of having its eigenvalues in −1, and 1. Thus, it does not
converge to Ωex for any initial condition

{
(x1(0), x2(0)) ∈ R2 : x1(0) 6= x2(0)

}
. This

fact has an important implication on the dynamics of the CC-PSO algorithm. Al-
though system (3.32) does not exactly reproduce Algorithm 6 behavior, it is likely to
have similar oscillatory dynamics as the number of particles of each swarm increases.
Fig. 3.7a shows the swarms global best trajectories during the run of CC-PSO al-
gorithm for such example, where we set Np = 100. Inspired by classic results in
control theory, where typically an oscillatory system can be stabilized by introducing
additional damping, we modify system (3.32) equations, according to

x1(k + 1) = x1(k) + β (bestResponseX1(x2(k))− x1(k))

= x1(k) + β(x2(k)− x1(k))

x2(k + 1) = x2(k) + β(bestResponseX2(x1(k))− x2(k))

= x2(k) + β(x1(k)− x2(k))

(3.33)

Such system converges to Ωex for any initial condition, and β ∈]0, 1[. Indeed, for
the considered values of β, system (3.33) has one eigenvalue inside the unit circle,
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Figure 3.7: CC-PSO with parallel update timing dynamic behavior.

and one eigenvalue in 1 with corresponding eigenvector equal to 12 , col(1, 1).
Thus, system (3.33) trajectories converge to the subspace given by span(12), i.e.{

(x1, x2) ∈ R2 : x1 = x2

}
, which is exactly Ωex. This motivates the CC-PSO al-

gorithm modification shown in next subsection.

Remark 3.9 The original CC-PSO is conceived for a sequential update timing
parameter. In this case, only one subcomponent is active at any algorithm step.
In particular, this implies that the cost function F is evaluated after the update of
each subcomponent, and this guarantees F to be strictly nonincreasing in the best
context vector trajectory [Van den Bergh 2004]. Such property is no longer satisfied
in the case of parallel update timing. For instance, Fig. 3.7b shows the cost function
of the aforementioned example evaluated in the best context vector trajectory, i.e.
the one show in Fig. 3.7a.

3.5.3.3 Damped CC-PSO Algorithm

In the previous subsection we saw how the introduction of the damping factor β let
the deterministic system (3.33) converge to Ωex. Here we generalize this result for
the minimization of a class of quadratic convex functions, providing the following

Theorem 3.1 Given a cost function F of the form

F (x, z) = [x> z>]Q

[
x

z

]
+ [x> z>]b+ d

where x ∈ Rnx , z ∈ Rnz , nx, nz ∈ N+, F : Rnx+nz → R, d ∈ R, b ∈ R(Q),

Q =

[
Q1 Q2

Q>2 Q3

]
� 0, Q1 ∈ Rnx×nx � 0, and Q3 ∈ Rnz×nz � 0; then the system

given by the following difference equations{
x(k + 1) = x(k) + β (bestResponseX(z(k))− x(k))

z(k + 1) = z(k) + β (bestResponseZ(x(k))− z(k))
(3.34)
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converges to Ω , {(x, z) ∈ Rnx+nz : (x, z) = arg min
x,z

F (x, z)

}
for any initial condi-

tion x(0) ∈ Rnx , and z(0) ∈ Rnz if the damping factor β ∈ R : β ∈ ]0,min
{

1
λ̄(B)

-

ε, 1}], where ε ∈ R+ is small, and B ,

[
Inx Q−1

1 Q2

Q−1
3 Q>2 Inz

]
, being Inx , Inz the

identity matrices of respective dimension nx, and nz, and λ̄(B) the maximum eigen-
value of B.

Proof: First of all note that Q � 0 is required for the convexity of the optim-
ization problem. Ω is given by the first order condition, i.e. by the couples (x, z)

that satisfy the following system of linear equations{
∂F (x,z)
∂x = 0

∂F (x,z)
∂z = 0

⇒

{
2Q1x+ 2Q2z + b1 = 0

2Q3z + 2Q>2 x+ b2 = 0
(3.35)

where b , [b>1 b>2 ]>. In order to let this system have a solution we require b ∈
R(Q), [Boyd 2004]. From (3.35) it is immediate to compute the best-responses
curves: arg min

x
F (x, z) = −Q−1

1 Q2z − 1
2Q
−1
1 b1

arg min
z
F (x, z) = −Q−1

3 Q>2 x− 1
2Q
−1
3 b2

Thus the difference equations under analysis are given by[
x(k + 1)

z(k + 1)

]
=

[
(1− β)Inx −βQ−1

1 Q2

−βQ−1
3 Q>2 (1− β)Inz

] [
x(k)

z(k)

]
− β

2

[
Q−1

1 b1
Q−1

3 b2

]
(3.36)

Note that β = 0 does not let the system move from its initial condition, and β = 1

provide the original undamped system. Thus, we additionally confine a priori β
in the interval ]0, 1]. A more general analysis, though possible, is considered to
be beyond the interest of this work and it will not be carried out. The equilibria
(xe, ze) of system (3.36) do not depend on β, and they are given by the solution of
the following system of linear equations[

Inx Q−1
1 Q2

Q−1
3 Q>2 Inz

] [
xe
ze

]
=

[
−1

2Q
−1
1 b1

−1
2Q
−1
3 b2

]
(3.37)

Clearly (3.37) is the same as (3.35). As a consequence Ω coincides with set of
equilibrium points of (3.36). A first conclusion on the stability of system (3.36) can
be drawn by employing Gerschgorin theorem (see Appendix A.9). Thus, a sufficient
condition for the system to be stable is that ‖Q−1

1 Q2‖∞ < 1, and ‖Q−1
3 Q>2 ‖∞ < 1. In

this case the stability of the system does not depend on β, as long as β ∈]0, 1]. In the

sequel we provide a more general analysis. We first name B ,

[
Inx Q−1

1 Q2

Q−1
3 Q>2 Inz

]
.

Noticing that B =

[
Q−1

1 0

0 Q−1
3

]
Q , Q−1

d Q, we can conclude that σ(B) ⊂ C≥0

by applying Lemma A.1 of Appendix A. Moreover, according to Lemma A.2 of
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Appendix A its eigenvalues are real. By naming y , [x> z>]>, the autonomous
system associated to (3.36) can be written as y(k+ 1) = (I − βB)y(k). On the one
hand, if B � 0, by employing V (y) = y>y as a Lyapunov function, we have that
V (k+ 1)−V (k) < 0 if β < 1/λ̄(B), where λ̄(B) is the greatest among the eigenvalues
in σ(B). On the other hand, if B � 0, suppose that B has r < nx + nz nonzero
eigenvalues, then it exists a nonsingular matrix T : TBT−1 = Λ = diag(Λr,0),
where Λr , diag(λ1, . . . , λr). The linear transformation ỹ = Ty yields the system
equations in the new coordinates ỹ(k+1) = (I−βΛ)ỹ(k)−βb̃/2, where b̃ , TQ−1

d b =

[b̃>1 0>]>, and b̃1 ∈ Rr. This is due to the fact that R(B) ≡ R(Q), thus Q−1
d b ∈

R(B) because b ∈ R(Q) by assumption. Eventually, we can split the dynamics of ỹ
in two, according to {

ỹ1(k + 1) = (Ir − βΛr)ỹ1(k)− β
2 b̃1

ỹ2(k + 1) = ỹ2(k)
(3.38)

where ỹ1 ∈ Rr. As for the previous case, we can employ the Lyapunov function
V1 , ỹ>1 ỹ1 for the reduced order autonomous system associated to the first equation
of (3.38). We obtain that V1(k + 1)− V1(k) < 0 if β < 1/λ̄(Λr) = 1/λ̄(B).
We can see how the result of Theorem 3.1 is only sufficient if we apply it to (3.33).
According it, we are able to enforce stability of the system by choosing β ∈]0, 1/2[,
while we saw in the previous subsection that any value of β in ]0, 1[ guarantees
proper convergence. Although the results of Theorem 3.1 are not readily extendable
to more general cost functions, and despite the fact that the considered system of
equations (3.34) does not fully capture the CC-PSO algorithm dynamics, in the
author’s opinion such system still sheds light on the parallel update timing strategy
behavior and it allows us to deduce an important heuristic. The main idea is to
add the damping factor β in Algorithm 6 in order to reproduce a similar behavior
to the one seen in the example of the deterministic system (3.33). In particular, we
propose to substitute Step 11 of Algorithm 6 with

gnewi = gi + β

(
arg min

{bi,p}

{
F bi,p

}
− gi

)
This has the effect of damping the update of the global bests, and possibly reducing
unwanted oscillations. When applied in the algorithm, it is difficult to compute β
using mathematical tools. Thus, it is left as an additional parameter to be tuned
by selecting a value in ]0, 1]. Generally, such value should be chosen to reduce
possible oscillations while letting proper convergence of the algorithm, which could
be unnecessarily worsened by excessive damping. We name the modified algorithm
as the damped CC-PSO with parallel update timing. Let us now apply this algorithm
to the example of the previous subsection for different values of β. The results are
shown in Fig. 3.8. We remark how the damping reduces the oscillations seen in
Fig. 3.7a. Moreover, as expected, the convergence time increases as the damping
increases, i.e. as β → 0.
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Figure 3.8: Global bests trajectories for different values of damping factor β.

Remark 3.10 We considered β ∈ R. However, more in general, if the private
variables xi have dimension ni > 1, and if xi and xj have same component-wise
physical meaning for i, j = 1, . . . , N , then a different β value can be associated to
different components of the private variables. An example is given in Section 3.6.

3.5.4 Algorithm Description

The distributed PSO proposed to solve (3.29) is concerned with reproducing the
damped CC-PSO algorithm with parallel update timing shown in Subsection 3.5.3
in a distributed way, and it is based on the same communication assumption used
for DPSO1, i.e. Assumption 3.1.

3.5.4.1 Exploiting the Problem Structure

Differently from the existing DPSO algorithms, which mainly employ consensus
approaches to let the agents evaluate their contribution in the common cost function,
we rather exploit problem (3.29) structure, and Assumption 3.1. The idea is that
each agent i only needs to evaluate its contribution, i.e. its context vectors, in
the agents private cost functions in which its own private control variable appears.
In other words, agent i has to evaluate its context vectors in all fk such that k :

i ∈ N p
k , and, according to Assumption 3.1, this can be done by employing a direct

communication without the need for consensus techniques. This is due to the fact
that

arg min
{xgi,p}

{
F (xgi,p)

}
= arg min

{xgi,p}

 ∑
k:i∈N pk∪{i}

fk(x
g
i,p)

 (3.39)

where we remind that xgi,p is the context vector associated to the particle xi,p, defined
in Step 5 of Algorithm 6. Clearly the same conclusions hold true for the personal
best context vectors. As an example, let us consider agent 2 of Fig. 3.4. This only



104 Chapter 3. Novel Distributed Optimization Algorithms

needs to evaluate its context vectors xgi,p, (and b
g
i,p), p = 1, . . . , Np, in f1, and f2,

and compute f1 + f2, because f3 and f4 do not depend on variable x2. Indeed, if
f3 and f4 were taken into account, this would simply add the same constant value,
f3(g3, g4) + f4(g3, g4), to each context vector evaluated in f1 + f2. Thus, this would
provide the same result since the comparison of solution is done via the personal
best update, which is performed in similar manners to Step 9 of Algorithm 6.

Remark 3.11 Notice that (3.39) is only possible thanks to the use of context vectors
strategy. By recalling Remark 3.5 on DPSO1 requirements of information commu-
nication, this is precisely what allows DPSO2 to avoid performing an average con-
sensus algorithm at each iteration step. In DPSO2, each agent is able to properly
move its own particles on the only knowledge of how they fit in a partial common
fitness function, thanks to (3.39). This was not possible in DPSO1, where functions
are not evaluated in context vectors causing relationship (3.39) to be generally not
verified. This fact has an important implication in the application of DPSO1 and
DPSO2 to the wind farm optimization problem in Chapter 4.

3.5.4.2 Role of Local Bests

Instead of letting each particle compare its personal best with the ones of all the
other Np − 1 particles for the global best computation, usually a smaller subset
is considered. As shown in Section 3.2, this practice is well-known to reduce the
possibility of premature convergence. In particular, each particle xi,p has access to
the personal bests of the particles belonging to a defined subset Si,p. Thus, xi,p
has its own knowledge of global best, which is local because it is restricted to the
mentioned subset. Again, we indicate the local best associated to each particle with
li,p. PSO equations (3.30) are then modified by simply replacing gi with li,p. As done
for DPSO1, we additionally require the subset Si,p to be the same for each particle
among the agents having same p index. Thus we can drop its i index: Si,p = Sp,
i = 1, . . . , N . As for DPSO1, we make use of the singly-linked list structure for Sp,
described in Algorithm 3, where we can select the number Nm of particles belonging
to each subset Sp.
In the context considered in this work, the local best strategy has an important
additional role in the convergence of the algorithm. CC-PSO with sequential update
timing is known to suffer from a stagnation problem that is caused by the restriction
that only one swarm is updated at a time [Van den Bergh 2004]. The parallel update
timing version can present a similar problem. This is mainly due to the fact that each
swarm puts together its context vectors by employing the single best collaboration
technique, i.e. using the other swarm global bests. Thus the particles, and the
personal bests, are restricted to one hyperplane of the search space, and this limits
its exploration. The algorithm can be remarkably improved by employing the local
bests when composing the context vectors, i.e.

xli,p , (l1,p, . . . , xi,p, . . . , lN,p)

bli,p , (l1,p, . . . , bi,p, . . . , lN,p)
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Figure 3.9: Local best based context vectors (dots) for the x1 component.

where we renamed xli,p, and b
l
i,p, respectively the context vector, and the personal

best context vector associated to the particle xi,p. This strategy is depicted in
the example of Fig. 3.9, where we show a search space of dimension 2, Np = 4

particles, and the corresponding context vectors for the swarm associated to the x1

component. In order to show the improvement brought by the described strategy,
let us provide the following example. Consider the cost function

F (x1, x2) = 3(1− x1)2e−x
2
1−(x2+1)2 − 10(x1/5− x3

1 − x5
2)e−x

2
1−x22 − 1/3e−(x1+1)2−x22

(3.40)
In the region defined by [−2.5, 2.5]× [−2.5, 2.5], among its minima, function (3.40)
has a global minimum in A = (0.2282;−1.626) where its value is −6.5511, and a
higher local minimum in B = (−1.347; 0.2045) where its value is −3.0498. This
is shown in Fig. 3.10. We run 1000 times the damped CC-PSO algorithm with
parallel update timing for both the case of single best, and local best strategy. As
far as the latter is concerned we select Nm = 2, while for both strategies we choose
Np = 40, and β = 0.4. While for the local best strategy the algorithm converges
to the global minimum for the totality of the trials, the single best one attains A
approximately the 70% of them while for the remaining 30% it converges to B. This
fact is representative of the benefit gained by using the local bests to compose the
context vectors.

3.5.4.3 Distributed Optimization Algorithm

The overall DPSO2 algorithm that we propose, is presented in Algorithm 7, and it
is referred to the generic agent i. Each iteration of the algorithm requires each agent
to exchange information with its neighbor agents according to Gc twice. Moreover
agent i evaluates its private cost function fi, 2Np(|N p

i |+1) times, for a total number
of 2Np(|N p

i | + 1)max_iter evaluations, where |N p
i | indicates the cardinality of the

set N p
i . However note that, from experimental results, both max_iter, and N p

i

appear to be small with respect to the usual values used in classic PSO.

Remark 3.12 It has to be mentioned that the choice of Nm for the set Sp plays an
additional role on the convergence of the algorithm. Indeed a too small value can pre-
vent the particles to converge to the same value, i.e. ∀i = 1, . . . , N : limk→∞ ‖xi,p(k)−
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Figure 3.10: Plot of function (3.40).

xi,t(k)‖ = 0, ∀p, t = 1, . . . , Np. In order to recover from this issue while maintaining
a sufficient level of exploration as shown in the previous section, Nm can be made
iteration-varying. For instance, it can be linearly increased at each iteration.

3.5.5 Benchmark Test

3.5.5.1 Simulation Setup

In the context of physically distributed agents, it seems impracticable to provide
a rigorous test that is able to grasp the whole variety of real world optimization
problems. Indeed, they may vary in the degree of interdependence among the agents,
i.e. the structure of the physical graph Gp, in the number of the agents involved, and
in the structure of the private parameters, i.e. the structure of the cost functions.
This is why, in this subsection, we choose to focus on the analysis of Algorithm 7
behavior with respect to the degree of separability of the functions involved as well
as to the dimension of the optimization problem, as in the author’s opinion, these
are two major factors of influence in the convergence of the algorithm itself. The
case of a real world distributed optimization problem is treated in Section 3.6.
We choose to consider the following setup. Based on [Li 2013a], we select a number
of classic benchmark functions F : Rn → R, and we distribute them among N = n

agents, each of which has a nonoverlapping private variable xi ∈ R, and a private
cost function fi(xi,xij) = 1/NF (x). Note that the physical graph associated to such
distributed problem is complete. In other words, each agent is influenced by and
influences every other one, i.e. |N p

i | = n − 1, ∀i. This can be considered as the
extreme case of what one can find in applications to real world multi-agent systems
where the number of mutual interconnections among the agents is usually limited.
The benchmark functions F chosen in this test are the well-known Ackley, Griewank,
Alpine, and Rastrigin ones, which all have global minimum value equal to 0. The
respective considered domains are [−32, 32]n, [−600, 600]n, [−10, 10]n, and [−5, 5]n.
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Algorithm 7 DPSO2
Output: Local bests: li,p, p = 1, . . . , Np

Initialization :
1: Randomly initialize xi,p ∈ [xi, x̄i], si,p ∈ [−s̄i, s̄i], p = 1, . . . , Np
2: bi,p = xi,p, p = 1, . . . , Np
3: Randomly initialize li,p ∈ [xi, x̄i], p = 1, . . . , Np

LOOP Process
4: for k = 1 to max_iter do
5: Send xi,p, bi,p, li,p p = 1, . . . , Np to all agents k : i ∈ N p

k , via Gc
6: Wait to receive xj,p, bj,p, lj,p p = 1, . . . , Np from all agents j ∈ N p

i , via Gc
7: Compose the context vectors associated to the its own particles xi,p:

xli,p , (xi,p, lj,p : j ∈ N p
i ), p = 1, . . . , Np

8: Compose the context vectors associated to its own personal bests bi,p:
bli,p , (bi,p, lj,p : j ∈ N p

i ), p = 1, . . . , Np
9: Compose the context vectors associated to the particles xj,p of its neighbors j ∈ N p

i :
xlj,p , (xj,p, li,p, lk,p : k ∈ N p

i ∧ k 6= j), p = 1, . . . , Np
10: Compose the context vectors associated to the personal bests bj,p of its neighbors

j ∈ N p
i : b

l
j,p , (bj,p, li,p, lk,p : k ∈ N p

i ∧ k 6= j), p = 1, . . . , Np

11: Evaluate particle context vectors xli,p in fi: fxi,p , fi(x
l
i,p), p = 1, . . . , Np

12: Evaluate personal best context vectors bli,p in fi:
f bi,p , fi(b

l
i,p), p = 1, . . . , Np

13: Evaluate particle context vectors xlj,p ∀j ∈ N
p
i in fi: f

x,j
i,p , fi(x

l
j,p), p = 1, . . . , Np

14: Evaluate personal best context vectors blj,p ∀j ∈ N
p
i in fi: f b,ji,p , fi(b

l
j,p), p =

1, . . . , Np
15: Send fx,ji,p , f

b,j
i,p , p = 1, . . . , Np to the corresponding agent j ∈ N p

i , via Gc
16: Wait to receive fx,ik,p, f

b,i
k,p, p = 1, . . . , Np from the corresponding agent k : i ∈ N p

k , via
Gc

17: Compute F xi,p , fxi,p +
∑

k:i∈Np
k

fx,ik,p, p = 1, . . . , Np

18: Compute F bi,p , f bi,p +
∑

k:i∈Np
k

f b,ik,p, p = 1, . . . , Np

19: Update personal bests for p = 1, . . . , Np

(
bnewi,p , F b,newi,p

)
=

{(
xi,p, F

x
i,p

)
if F xi,p < F bi,p(

bi,p, F
b
i,p

)
otherwise

20: bi,p = bnewi,p ; F bi,p = F b,newi,p

21: Update local bests for p = 1, . . . , Np

lnewi,p = li,p − β
(

arg min
{bi,p∈Sp}

{
F bi,p

}
− li,p

)

22: li,p = lnewi,p , p = 1, . . . , Np
23: Perform modified (3.30)
24: end for
25: return li,p, p = 1, . . . , Np
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Figure 3.11: Benchmark functions.

Their plot for n = 2 is shown in Fig. 3.11. These functions are fully separable,
i.e., following Definition 3.3, each of their components xi ∈ R can be optimized
independently from the other ones. In order to act on their degree of separability it
is well-known practice to rotate them, i.e. the rotated function Frot associated to F
is defined as Frot(x) , F (Mx), where M = diag(M̄, I) ∈ Rn×n, I ∈ R(n−m)×(n−m)

is the identity matrix, M̄ ∈ Rm×m is an orthogonal matrix, and where m ≤ n.
By acting on m we are able to test different degrees of separability. For instance,
m = 0, and m = n respectively represent the fully separable, and fully nonseparable
case. Moreover, for each function F we consider different problem dimension values
n. For each n value, m is selected as a percentage m% of n, i.e. m = dm%ne.
Note that these functions have been chosen as they represent different degrees of
complexity, and they are expected to provide different results, thus enabling a better
comprehension of the algorithm behavior.

3.5.5.2 Test results

Two tests are proposed. The first one aims at providing insights of the algorithm
performance and behavior for different values of n, and m% on the selected bench-
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Table 3.1: Algorithm Parameters

m% Np Nm β

0 15 2 1
33 15 2 1
66 50 2 0.8
100 50 2 0.8

(a) Ackley

m% Np Nm β

0 25 25 0.5
33 40 2 0.5
66 40 2 0.5
100 60 2 0.5

(b) Griewank

m% Np Nm β

0 15 2 0.8
33 15 2 0.8
66 30 2 0.8
100 30 2 0.8

(c) Alpine

m% Np Nm β

0 75 15 0.1
33 80 25 0.1
66 80 25 0.1
100 120 25 0.1

(d) Rastrigin

mark functions. In the second one, we compare the algorithm rate of convergence
against the required evaluations per agent with DPSO1 algorithm. As far as the
first test is concerned, the main algorithm parameters associated to each function,
and each chosen m% value are shown in Table 3.1. These have been chosen empir-
ically. max_iter is set to 200. The mean and standard deviation values out of 30

trials for each function in the corresponding dimension and m% values are shown
in Table 3.2. The algorithm performs well on both Ackley and Griewank functions,
with no apparent dependence onm%. Results slightly worsen as n increases. Similar
trends are shown concerning Rastrigin function, i.e. the algorithm presents similar
performances for fixed n, and variable m%, while they generally decrease in com-
parable ways for different m% values as n increases. Moreover they do so with a
faster rate with respect to the other two mentioned functions. This can be ascribed
to the high multimodality of Rastrigin function as well as to the presence of several
local minima, as shown in Fig 3.11d. Alpine test presents two trends. Performance
decreases as either n or m% increases.
As far as the second test is concerned, for each benchmark function we consider

one couple of parameters n, and m%. Simulation results, and the corresponding
parameters are shown in Fig. 3.12, where we compare DPSO1 and DPSO2 perform-
ance. The figure shows the mean values out of 30 trials of the benchmark functions
evaluated in the global bests trajectories, i.e. the bests among the local bests.
DPSO1 requires Np function evaluations per agent at each iteration step as there is
no constraint in the optimization problem, and thus no threshold ε to be set, while,
for this particular test configuration, DPSO2 requires 2Npn evaluations per itera-
tion. This, again, can be considered as the worst case, as typically |N p

i | is limited
and consequently the number of evaluations too. Yet the two algorithms generally
exhibit similar performance, and, for the case of Ackley and Rastrigin functions,
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Table 3.2: Test Results

n

4 10 25 45 70 100

m%

0 (2.16±1.78)e-5 (12.4±6.36)e-5 (6.27±3.06)e-4 (14.9±5.06)e-4 (2.99±1.17)e-3 (4.22±1.47)e-3
33 (2.20±1.95)e-5 (15.2±8.53)e-5 (8.32±3.58)e-4 (24.0±6.93)e-4 (4.31±1.78)e-3 (6.75±1.20)e-3
66 (7.81±6.53)e-6 (5.82±2.46)e-5 (25.1±5.33)e-5 (6.80±1.88)e-4 (13.6±3.65)e-4 (22.4±6.06)e-4
100 (10.6±7.37)e-6 (6.28±2.78)e-5 (28.9±5.84)e-5 (9.23±2.59)e-4 (19.9±4.79)e-4 (3.96±1.14)e-3

(a) Ackley

n

4 10 25 45 70 100

m%

0 (1.55±3.18)e-1 (6.07±7.72)e-3 (1.08±3.34)e-3 (7.76±9.56)e-3 (2.19±1.35)e-2 (11.3±9.95)e-2
33 (13.3±9.20)e-3 (8.25±25.4)e-4 (8.56±8.74)e-5 (11.4±8.55)e-4 (10.3±4.06)e-3 (4.27±2.35)e-2
66 (9.71±7.44)e-3 (4.40±23.6)e-2 (5.54±4.62)e-5 (1.78±2.93)e-3 (11.0±7.37)e-3 (4.55±2.72)e-2
100 (8.14±6.14)e-3 (3.15±7.24)e-6 (6.83±7.01)e-5 (1.32±1.47)e-3 (11.9±7.52)e-3 (4.79±4.63)e-2

(b) Griewank

n

4 10 25 45 70 100

m%

0 (8.21±29.4)e-5 (8.41±13.9)e-4 (4.73±5.27)e-3 (3.79±9.74)e-2 (1.00±2.99)e-1 (5.25±14.1)e-1
33 (3.33±7.10)e-4 (7.51±12.9)e-4 (3.75±8.80)e-2 (4.02±7.42)e-1 2.16±2.39 4.94±3.57
66 (9.73±24.9)e-4 (4.34±7.17)e-3 (3.49±12.4)e-1 1.00±2.35 2.17±2.77 4.44±5.10
100 (1.29±3.27)e-3 (2.17±11.7)e-1 (3.39±13.1)e-1 (4.09±3.31)e-1 3.83±8.52 8.64±11.90

(c) Alpine

n

4 10 25 45 70 100

m%

0 (5.57±13.2)e-1 5.96±1.21e+1 1.19e+1±3.38 2.59e+1±5.91 (5.19±1.23)e+1 (8.19±1.55)e+1
33 1.35±6.67 2.71±2.25 1.28e+1±4.88 2.77e+1±8.07 (4.87±1.25)e+1 (7.43±1.50)e+1
66 (2.32±4.28)e-1 2.68±1.59 1.18e+1±3.07 2.85e+1±8.40 (5.07±1.70)e+1 (7.95±2.06)e+1
100 (6.93±30.6)e-1 (49.0±1.11)e-1 1.10e+1±3.20 2.54e+1±6.63 (4.31±1.23)e+1 (6.84±1.43)e+1

(d) Rastrigin

DPSO2 shows better convergence rate. This is mainly due to the fact that the
proposed DPSO algorithm of this section requires less iterations to converge, as,
unlike DPSO1, it belongs to the class of CC algorithms, which typically have good
convergence rate properties. Note that, as pointed out in Remark 3.9, although the
DPSO2 cost functions globally decrease along the global bests trajectories, this is
not guaranteed at a local level. The overall experiment results suggest that

• Performance decreases as n increases at a pace that seems to depend on the
degree of multimodality of the cost function.

• m% seems to have a more important role on asymmetric cost functions.

• DPSO2 presents good convergence rate properties when compared to DPSO1.

Remark 3.13 Even though in general the algorithm exhibits lower performance for
high values on n, we need to stress the fact that in this particular test N = n =
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(b) Griewank: (n,m%) = (30, 70).
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(d) Rastrigin: (n,m%) = (7, 20).

Figure 3.12: Mean convergence plots for the selected benchmark functions.

|N p
i | + 1, ∀i. Thus high n value both indicates a high number of agents, and high

physical interdependence among them. However, in the problems we wish to address
in this report, the number of physical connections among the agents of the considered
physical systems is usually limited and does not grow with problem dimension.

Remark 3.14 Both DPSO1, and DPSO2 rely on Assumption 3.1. However, the
former requires a consensus algorithm to be run on the whole system of agents at
each iteration step. Thus, in practice, its convergence is worsened by a potentially
high communication burden.

3.5.6 Constrained Optimization Extension

The results shown in Subsection 3.5.4 can be extended to the case in which the
agents have private constraints of the form gi(xi,xij) ≤ 0, and hi(xi,xij) = 0, where

gi : R
ni+

∑
j∈Np

i

nj

→ Rmi , hi : R
ni+

∑
j∈Np

i

nj

→ Rqi , and where 0 is a vector of proper
dimension with all zero entries. For this case, we refer to the definition of physical
neighbor given in Section 3.4, i.e. Definition 3.1. The overall optimization problem
takes thus the form of problem (3.20). As done for DPSO1, we employ Deb’s rule to
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handle the problem constraints, and we transform the equality ones into inequalities
via the introduction of a positive threshold ε ∈ R+. As a result, agent i generalized
constraint functions assume the form of g̃i(xi,xij) , (gi(xi,xij), |hi(xi,xij)| − ε),
where g̃i is a vector of functions of dimension mi + qi.
In order to implement Deb’s rule the agents have to evaluate a modified cost func-
tion, i.e. the fitness function, which takes into account the tournament selection
described in Subsection 3.2.3.2. Referring to Algorithm 7, agent i additionally has
to evaluate the context vectors of Steps 11−14 in the constraints functions g̃i. Thus
we additionally define g̃xi,p , g̃i(x

l
i,p), and g̃

b
i,p , g̃i(b

l
i,p) as far as agent i own context

vectors are concerned, and g̃x,ji,p , g̃i(x
l
j,p), and g̃

b,j
i,p , g̃i(b

l
j,p) for agent i neighbor

context vectors. These values are exchanged as done for the cost function values in
Steps 15 − 16. The fitness function evaluation concerns Steps 17 − 18, where the
cost function associated to the p-th particle of the i-th agent is modified as follows

F̃ xi,p ,


F xi,p if

{
g̃xi,p, g̃

x,i
k,p : k : i ∈ N p

k

}
≤ 0

fmax +
mi+qi∑
t=1

χ
(
g̃xi,p(t)

)
+

∑
k:i∈N pk

mk+qk∑
t=1

χ
(
g̃x,ik,p(t)

)
otherwise

(3.41)

where fmax and χ are defined in Subsection 3.2.3.2. Same results hold true for the
personal bests evaluation, in which case we name (3.41) F̃ bi,p.

Remark 3.15 As done for DPSO1 and pointed out in Remark 3.3, the tolerance
ε used to handle the equality constraints can be made iteration-varying to let better
search space exploration. Typically a linearly decreasing value is employed. This
can be done by changing its value at each iteration of Algorithm 7. Differently from
DPSO1, this modification does not require any additional function evaluation nor
communication step.

3.5.7 Conclusion

We presented a novel PSO algorithm applied to physically distributed systems to
solve the class of optimization problems of (3.29), for which the agents have to co-
operate in order to find the best common solution. A similar problem is typically
tackled by cooperative co-evolutionary algorithms. However these are not readily
applicable to the systems considered in this work because such algorithms rely on
a problem decomposition that grasps the structure of the problem itself. We addi-
tionally focused on cooperative algorithms with parallel update timing parameter
as they represent the most natural way to treat distributed systems while aiming
at fast convergence. Thus, we carried out a new dynamic behavior analysis, and we
proposed the introduction of a damping parameter, which has the role of reducing
unnecessary algorithm trajectories oscillations caused by the parallel update tim-
ing parameter. Based on the aforementioned analysis, and on the assumption that
each agent can directly communicate with its physical neighbors, we introduced a
distributed PSO algorithm. Simulation results on four benchmark functions showed
that it presents a decrease in performance as both the number of agents, and |N p

i |
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increase. From a practical point of view though, this does not limit the field of
application, as |N p

i | has typically limited value. Belonging to the class of CC al-
gorithms, the proposed one inherits fast convergence properties with respect to the
required algorithm iterations. The price paid is the number of function evaluations,
which increases as the agents neighborhoods increase. However, when compared to
DPSO algorithm of Section 3.4, it shows good convergence properties with respect
to the required function evaluations too. Eventually, we extended the algorithm ap-
plication to the constrained case by employing Deb’s rule. An engineering example
of this last framework is provided in Section 3.6.
The main algorithm drawback is concerned with stagnation, especially when both
the number of agents and their physical interdependence increase. This can be
mainly ascribed to the parallel update timing parameter, and to the context vector
composition. This problem was treated by employing the local bests strategy via
the introduction of parameter Nm that allows to set the particles neighborhood di-
mension, and that enhances the search space exploration. Nonetheless, on the one
hand this technique may not be sufficient to guarantee convergence to a good solu-
tion, especially for cost functions with high multimodality. On the other hand, a too
small value of Nm, selected for better exploration, can prevent the agents particles
to converge to a common global best value. Techniques that enrich the search space
exploration while reducing the problem of premature stagnation still represent an
open research question for the considered kind of systems. An interesting future
perspective could be given by considering new algorithm modifications that would
allow the common cost function to be decreasing in the global bests trajectories.
Concerning this last topic, some insights could be unraveled by a deeper analysis of
the influence of the introduced damping factor on the algorithm dynamics.

3.6 Optimal Power Flow Application

3.6.1 Related Works and Contribution

Optimal power flow (OPF) is a well-known engineering problem having a central
role in the power dispatching and planning of the electric grid. Since its first formu-
lation [Carpentier 1962], the problem has been widely studied and a great number of
centralized algorithms have been proposed to solve it (see for instance [Lavaei 2012]
and references therein). Such research effort is motivated by the complexity of the
problem itself, which happens to be highly nonconvex, mainly due to the power flow
equations. Nonetheless, nowadays OPF is still object of great attention. Distributed
generation, free electricity market as well as the increasing penetration of renew-
able energy sources in the grid require the OPF solutions to adapt to a definitely
complexified electric network. In particular, the requirements for scalability and
efficiency make centralized solutions no longer tractable and justify the research for
distributed ones [Liu 2015].
In this regard, numerous solutions are available in the literature. Generally speak-
ing, they usually split the problem in two steps. Firstly, it is reduced to a convex one,
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either by approximation or exact relaxation. Secondly, the obtained optimization
problem is distributed among the agents, i.e. the buses of the grid. This step usually
capitalizes on ADMM technique because it proved good convergence and scalability
properties (e.g. [Dall’Anese 2013, Peng 2014, Magnússon 2015]). Moreover, typic-
ally, the optimization problem is formulated in a distributed way via the introduc-
tion of an additional constraint called consistency or consensus constraint, which
is responsible for the consistency, or agreement, of the variables which are shared
among the agents of the network (e.g. [Peng 2014, Magnússon 2015, Liu 2015]).
Considerable attention has been devoted to exact convex relaxation methods (e.g.
[Peng 2014, Dall’Anese 2013]) because they enable to find the OPF global optimum
in polynomial time. Unfortunately they are restricted to special network classes,
such as radial ones. Other approaches (e.g. [Sun 2013, Magnússon 2015]), even
if removing the assumptions on the network topology, are based on some convex
approximations of the original OPF. In [Magnússon 2015], for instance, the au-
thors rely on convexification of nonconvex constraints. Thus, neither optimality of
the solution nor feasibility of the original problem are guaranteed. In [Liu 2015]
a consensus based distributed OPF is proposed by employing available convex op-
timization tools. In addition the consensus constraint is taken into account via the
method of the penalty function. Thus, it inherits the problem of distortion of the
original objective function [Deb 2000].
In the following, we employ the two previously described algorithms of Section 3.4,
and Section 3.5 to solve the OPF problem. Application of the first proposed al-
gorithm to OPF is object of our work of [Gionfra 2017c]. As in [Magnússon 2015],
this allows us to aim at scalability of the solution and to refer to an OPF problem for-
mulation which is as general as possible. The use of PSO technique in this framework
is also legitimated by the works of [Abido 2002, Wannakarn 2010, Syai’in 2012]), in
which centralized PSO algorithms show good performance in solving the OPF prob-
lem. On the one hand, the discussion carried out in the sequel results in a first
contribution, as to the author’s knowledge, PSO was never applied to solve OPF
in a distributed manner. On the other hand, the following results allow us to show
how the proposed DPSO algorithms perform in a real engineering problem.

3.6.2 Power System Model

The following notes are a simplified version of the power system modeling of reference
[Andersson 2008]. The reader may refer to it for further details.

3.6.2.1 Power Flow Equations

The system equations are obtained via lumped-circuit model, or π-model, of an
AC transmission line between two nodes of a power network k, and m, also called
buses, and by using the equivalent mono-phase electric scheme. This is represented
in Fig. 3.13a, where the complex variables Ek, and Em are the phasors associated
to the voltages, respectively, at bus k, and m, i.e. Ek , Uke

jθk , Em , Ume
jθm ,
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Figure 3.13: Circuits for power system modeling.

being Uk, Um the voltage amplitudes, θk, θm their phase, and j the imaginary
unit. Moreover, zkm is the series line impedance, in Ω, zkm , rkm + jxkm, with
rkm, xkm > 0, and yshkm is the shunt admittance, in siemens, yshkm , gshkm + jbshkm,
with gshkm, b

sh
km > 0. Here, for the sake of simplicity, the shunt admittances are

supposed to be equal. In general yshkm 6= yshmk. By considering the series admittance
ykm , z−1

km = gkm + jbkm, with gkm > 0, bkm < 0, and by employing Kirchhoff law,
the complex current Ikm in the transmission line is given by

Ikm = ykm(Ek − Em) + jbshkmEk (3.42)

where we neglected the term gshkm as it is usually very small. The complex power
flowing from k to m is thus given by Skm , Pkm + jQkm, where Pkm is the active
power, and Qkm the reactive one, and it can be computed using (3.42), via

Skm = EkI
∗
km = y∗kmUke

jθk(Uke
−jθk − Ume−jθm)− jbshkmU2

k (3.43)

The expression of Pkm, and Qkm can be identified from respectively the real and
imaginary parts of (3.43), yielding

Pkm = U2
kgkm − UkUmgkm cos(θk − θm)− UkUmbkm sin(θk − θm)

Qkm = −U2
k (bkm + bshkm) + UkUmbkm cos(θk − θm)− UkUmgkm sin(θk − θm)

Similar computations can be performed for the complex power flowing in the oppos-
ite direction, i.e. Smk = Pmk + jQmk. Thus, the active and reactive losses on the
transmission line between buses k, and m are given by

P losskm , Pkm + Pmk = gkm(U2
k + U2

m − 2UkUm cos(θk − θm)) (3.44)

Qlosskm , Qkm +Qmk = −bshkm(U2
k + U2

m)− bkm(U2
k + U2

m − 2UkUm cos(θk − θm))

(3.45)

Let us now consider the net current injection from generators and loads at a network
bus k, Ik, as shown in Fig. 3.13b. By Kirchhoff law, Ik + Ishk =

∑
m∈Nk

Ikm, where
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Ishk is the current injection from the shunt, whose admittance is yshk , Nk is the set
of neighbor buses of k, and Ikm is given by (3.42). Using this relation, it yields

Ik =

yshk +
∑
m∈Nk

(yshkm + ykm)

Ek −
∑
m∈Nk

ykmEm (3.46)

By writing (3.46) for k = 1, . . . , N , where N is the number of buses in the network,
the expression ca be rewritten in matrix form as

I = Y E

where I , col(I1, . . . , IN ), E , col(E1, . . . , EN ), and Y , G + jB is the nodal
admittance matrix, whose entries are

Ykm = −ykm
Ykk = yshk +

∑
m∈Nk

(yshkm + ykm)

The general matrix entry Ykm can be further detailed in real and imaginary part as
Ykm = Gkm + jBkm. Thus we can rewrite the expression of Ik as

Ik =
∑

m∈Nk∪{k}

(Gkm + jBkm)Ume
jθm

Thus, the complex power injection at bus k is

Sk = Pk + jQk = EkI
∗
k = Uke

jθk
∑

m∈Nk∪{k}

(Gkm − jBkm)(Ume
−jθm) (3.47)

Eventually, the expressions of the active and reactive power injections at bus k can
be obtained by identifying the real and imaginary parts of (3.47), yielding

Pk = Uk
∑

m∈Nk∪{k}

Um(Gkm cos(θk − θm) +Bkm sin(θk − θm)) (3.48)

Qk = Uk
∑

m∈Nk∪{k}

Um(Gkm sin(θk − θm)−Bkm cos(θk − θm)) (3.49)

3.6.2.2 Power Flow Constraints

Each bus k of the network disposes of two independent variables, i.e. Uk, and θk,
and two dependent ones, i.e. Pk via (3.48), and Qk via (3.49). According to which
variables are given and which are to be computed, we can define three main type of
buses:

• PQ bus: Pk, and Qk are specified, Uk, and θk are calculated.

• PU bus: Pk, and Uk are specified, Qk, and θk are calculated.
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• Uθ bus: Uk, and θk are specified, Pk, and Qk are calculated.

PQ buses usually represent load buses, as they impose a given demanded active
power value P , and they are operated at constant power factor3 cosϕ. PU buses
are used to represent generation buses with voltage control. Eventually, at least
one Uθ bus, also called reference or slack bus, is needed in the network to balance
active power generation, load and losses. Moreover, it usually provides the voltage
reference angle, typically set as 0◦.
In the OPF problem addressed in the next subsection, we consider a slight modi-
fication to the above bus definition. In particular, we let each bus k act on its
independent variables Uk, and θk in order to satisfy the active and reactive power
constraints defining the type of bus itself. Thus, with a slight abuse of notation, let
us consider:

• PQ bus: Uk, and θk are such that the given Pk, and Qk values are satisfied.

• PU bus: Uk, and θk are such that the given Pk value is satisfied.

• Uθ bus: θk is set as reference, and Uk is chosen to balance the active power in
the network.

In this sense, according to the first given bus type definition, in PU and Uθ buses,
Uk can be considered specified by the solution of the OPF problem described in the
next subsection.

Remark 3.16 The voltage amplitude value is allowed in the typical interval of
[0.95, 1.05] p.u.4, which is treated as a box constraint on the independent variable
Uk.

3.6.3 Distributed Optimal Power Flow

3.6.3.1 Problem Formulation

OPF is concerned with minimizing a given cost function while satisfying the electric
grid constraints. For its distributed setup, we consider each bus k of the network
as a an agent of the system that can act on its private optimization variables Uk,
and θk. Conforming to the model developed in Subsection 3.6.2, each agent is
electrically coupled, i.e. physically coupled, to those buses to which it is connected
via a transmission line. According to such model, and Definition 3.1, we are thus
able to define the set of physical neighbors N p

k associated to each agent k. Among
the possible cost functions to be minimized usually employed for OPF, in this work

3Recall that the power factor cosϕ is defined as the ratio of the active power over the apparent
power |S|, i.e. cosϕ , P√

P2+Q2
.

4Recall that the per-unit (p.u.) system is the expression of system quantities as fractions of
a defined base unit quantity. In the case of voltage p.u., this is done by normalizing the voltage
values with respect to the network nominal voltage Un.
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we choose the sum of power losses in the transmission lines, which can be expressed
as

N∑
k=1

∑
m∈N pk

(
P losskm +Qlosskm

)
(3.50)

where P losskm , and Qlosskm are given by respectively (3.44), and (3.45). In the sequel we
neglect the shunt susceptance bshij , for it is usually verified that |bshij | � |bij |. Thus,
we can simply define the generic transmission line loss as

Llosskm , P losskm +Qlosskm ' (gkm − bkm)(U2
k + U2

m − 2UkUm cos(θk − θm)) (3.51)

This can be considered as a cost function associated to each transmission line of the
network. Since the chosen agents coincide with the grid buses, in order to pose the
optimization problem in the form of (3.20), i.e. to associate a private cost function
to each agent, we consider

Llossk ,
∑
m∈N pk

(gkm − bkm)(U2
k − UkUm cos(θk − θm))

It is then easy to see that
N∑
k=1

Llossk is equivalent to (3.50), i.e. the sum of power losses

in the network. Notice also that Llossk (Uk, θk,Ukm,θkm), where, according to the
problem formulation used for both DPSO1 and DPSO2, Ukm ,

{
Um ∈ R : m ∈ N p

k

}
,

and θkm ,
{
θm ∈ R : m ∈ N p

k

}
. In other words, each agent private cost function

generally depends on its own private variables, and on the ones of its physical neigh-
bors.
As far as the optimization problem constraints are concerned, they are given by the
box constraints on the voltage amplitude, (see Remark 3.16), and by constraints on
active and reactive power according to the type of bus defined in Subsection 3.6.2,
and via equations (3.48), and (3.49). Notice that, having considered (Uk, θk) as the
private variable of the generic agent k, this allows a constraint function formulation
in the form of the ones appearing in (3.20). Moreover, we consider an additional
typical constraint concerning the generators, i.e. the PU buses. These are required
to keep their reactive power within given limits with respect to their active power
production. Indeed the reactive power supplied above a Q/P ratio of (tanϕ)max or
absorbed under (tanϕ)min is subject to the application of a charge5. The overall

5In France, for instance, it amounts to 16.3 e/MVARh for electric grids whose nominal voltage
is in [50, 130] kV. In particular (tanϕ)max, (tanϕ)min are set respectively as 0.4, and −0.35.
According to the document about TURPE 4 (Tarifs d’Utilisation du Réseau Public de Distribution
d’Électricité), the mean cost for the active power losses is estimated as 53 e/MWh
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Figure 3.14: 5-bus electric grid example.

OPF optimization problem, written in the form of (3.20), is given by

min
{(Uk,θk),k=1,··· ,N}

N∑
k=1

Llossk

subjet to

0.95 ≤ Uk ≤ 1.05, k = 1, . . . , N

via (3.48), (3.49) :

{
Pk = P̄k, Qk = Q̄k if k is a PQ bus
Pk = P̄k, Qkmin ≤ Qk ≤ Qkmax if k is a PU bus

where P̄k, and Q̄k are problem data. In particular, in this work, Q̄k is obtained from
P̄k by imposing the PQ buses to operate at constant power factor cosϕ = 0.97.

3.6.3.2 Application of DPSO1 and DPSO2

Having posed the OPF problem in the form of (3.20), we are now able to employ the
distributed algorithms described in Section 3.4, and Section 3.5. We additionally
consider satisfied communication Assumption 3.1, on which both algorithms rely.
We illustrate and compare their performance on a 5-bus grid, shown in Fig. 3.14,
which is a modified scheme of a grid example in [Andersson 2008]. The considered
grid has nominal voltage equal to 63 kV, and the grid cables impedance are set to be
R = 0.15 Ω/km, and X = 0.21 Ω/km. Bus 5 is the Uθ bus, and it can be considered
as a source substation. The generators are prescribed to produce P̄1 = 50 MW,
P̄3 = 70 MW, and load buses require P̄2 = 60 MW, P̄4 = 85 MW.

DPSO1 Settings

We choose Np = 70 particles for each bus, and max_iter = 600. Each particle has
access to the whole set of particles belonging to the same bus, i.e. Nm = Np. After
having normalized the power and voltage values, as far as the equality constraints are
concerned, as suggested in Remark 3.3, we consider a threshold ε linearly decreasing
from ε̄ = 1 to ε = 10−5 until the 90% of the iterations. For the considered graph,
finite-time average consensus algorithm to be run in Algorithm 4 to let the agents



120 Chapter 3. Novel Distributed Optimization Algorithms

0 200 400 600
iteration (i)

0.96

0.98

1

1.02

1.04
vo

lta
ge

 (
p.

u.
)

g
1

g
2

g
3

g
4

g
5

(a) Global best trajectories associated to
voltage amplitude values.

0 200 400 600
iteration (i)

-2

0

2

4

an
gl

e 
(°

)

g
1

g
2

g
3

g
4

g
5

(b) Global best trajectories associated to
voltage angle values.

Figure 3.15: Global best trajectories for the OPF problem during the run of DPSO1.

get knowledge of the common fitness function evaluation, only requires 2 steps to
be solved. Eventually, for the specific application considered in this example, as
pointed out in Remark 3.6, we do not consider any perturbation operator, as by
numerical simulations it does not seem to bring any enhancement in the optimality
of the solution.

DPSO2 Settings

We choose Np = 70 particles for each bus, and max_iter = 70. Each particle has
access to an iteration-varying set of particles belonging to the same bus. In partic-
ular, Nm is chosen to be linearly increasing from a value of 2, (see Remark 3.12).
Differently from DPSO1 settings, we do not consider here an iteration-varying value
for ε. After normalization of power and voltage values, it is set to ε = 10−4. Even-
tually, as suggested in Remark 3.10, we choose two different damping factors for U ,
and θ variables, respectively βU = 0.6, and βθ = 0.8.

Simulations

Let us name g(i) the best among all the personal bests bk,p(i) in the network at
iteration i, i.e. the global best. Thus, in Fig. 3.15, and Fig. 3.16 we are able to see
a typical global best trajectory during the performance of respectively DPSO1 and
DPSO2, where gk, k = 1, . . . , 5 identifies the k-th component of g. As a first remark,
we see how, in terms of speed convergence, DPSO2 outperforms DPSO1, requiring
∼ 60 iterations to converge, against the 600 iterations of DPSO1. Moreover, re-
call that DPSO2 requires less communication steps as it does not need any average
consensus algorithm to be performed. By a further comparison of DPSO1 traject-
ories of Fig. 3.15 with the one of DPSO2 of Fig. 3.16, we can also observe that
the former exhibit a particular slower pace. This is essentially due to the need, in
DPSO1, for considering an iteration-varying threshold ε. This fact can be further
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Figure 3.16: Global best trajectories for the OPF problem during the run of DPSO2.

analyzed in Fig. 3.17. Indeed, recalling Deb’s rule, a particle is assigned with a
sum of constraints value whenever it is not feasible, and with a common cost func-
tion value otherwise. At the beginning, being randomly initialized, they are very
likely to be unfeasible. Nonetheless they reach feasibility quite quickly since ε is
still large enough. As iterations grow, ε becomes smaller, thus, the common cost
function respecting constraints is updated, and this explains its increasing value
from about iteration 100. At the very end, all particles move according to their
sum of constraints value since ε reaches a very small value. However, this fact does
not have to be interpreted as nonconvergence. Indeed, at this point, the particles
would only adjust their position in a small neighborhood of their last feasible vis-
ited position. This fact is confirmed by a maximum convergence quadratic error:
maxi,p ‖xi,p(max_iter)−g(max_iter)‖2 being of the order of 10−7, which shows con-
vergence of the algorithm. Performance is then compared out of 15 trials. Optimal
values, and equality constraints are shown for both DPSO1, and DPSO2 respect-
ively in Table 3.3, and Table 3.4. These show that good performance is achieved,
especially concerning the respect of the power flow constraints, as the ideal ratio
P̄/Pk, and Q̄/Qk should be 1. Eventually, the total optimized active and reactive
power losses are (6.16 ± 0.13) MW, and (8.63 ± 0.19) MVAR concerning DPSO1,
and (6.53± 0.17) MW, and (9.15± 0.23) MVAR for DPSO2. All in all, we can con-
clude that DPSO1 performs better in terms of optimality of the solution. However,
this is attained at the cost of a much higher number of iterations, and the according
communication burden, which makes DPSO2 a more appealing solution for prac-
tical implementation. Indeed, according to the situation, OPF may be required to
be solved with almost real-time timing.

3.6.4 Conclusion

We presented a novel distributed approach to solve the OPF problem. Since the
proposed algorithms belong to the class of metaheuristics optimization, no assump-
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Figure 3.17: Particles common cost function, and sum of constraints during itera-
tions of DPSO1.

Table 3.3: DPSO1 Optimal Variables and Equality Constraints

bus n◦ 1 2 3 4 5

U (p.u.) 1.0377±0.0093 1.0046±0.0114 1.0313±0.0119 0.9612±0.0127 1.0194±0.0122

θ (◦) 1.6261±0.1020 -0.4530±0.0693 0.6074±0.1232 -2.6792±0.0855 0

P̄/Pdpso 1.0000±0.0000 1.0000±0.0001 1.0000±0.0001 1.0028±0.0093 –

Q̄/Qdpso – 1.0001±0.0001 – 1.0000±0.0001 –

Table 3.4: DPSO2 Optimal Variables and Equality Constraints

bus n◦ 1 2 3 4 5

U (p.u.) 1.0263±0.0085 0.9946 ±0.0040 1.0155±0.0045 0.9518±0.0032 1.0175±0.0067

θ (◦) 2.0407±0.3298 -0.1387±0.2086 1.2091±0.4225 -2.4581±0.2092 0

P̄/Pdpso 1.0000±0.0395 1.0001±0.0263 1.0000±0.0401 1.0001±0.0059 –

Q̄/Qdpso – 1.0001±0.1427 – 1.0002±0.0812 –

tion are needed concerning either the cost function of the optimization problem,
and the network topology. Both DPSO1 and DPSO2 were tested and evaluated
on the addressed OPF problem. While the former achieves better results in terms
of optimality of the solution, this is obtained at the cost of both high number of
iterations, and communication burden, which result in high convergence time. On
the other hand, as expected, DPSO2 converges to a relatively good solution in a few
number of iterations, which is a typical characteristic of CC algorithms. Together
with the lower number of required communication steps, this fact leads DPSO2 to
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a much lower convergence time with respect to DPSO1. One may conclude that,
if the communication graph of the multi-agent system is well-connected, i.e. it has
a relatively small radius and diameter allowing the finite-time average consensus
to be solved in a few steps, then DPSO1 should be considered as, at least in the
given example, it provides a better solution. For more complex networks, the pit-
falls of DPSO1 can be widely recovered by employing DPSO2, still obtaining good
solutions.
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4.1 Introduction

4.1.1 Problem Motivation

In recent years, we have witnessed a relevant increase in the installation of wind
farms composed of several WTs, e.g. more than one hundred of units for some off-

shore WFs. In the meantime, developments in the field of control and optimization,
along with the mature technology level of variable-speed variable-pitch variable-yaw
WTs, have pushed the WF control targets further ahead towards a better exploita-
tion of the wind source. In particular, the great adaptability of modern WTs to a
wide range of wind conditions for the maximum power capture as well as a better
understanding of the aerodynamic phenomena involved in the WFs, suggested to
take in consideration the aerodynamic interaction among the WTs, when the power
maximization of large wind farms is concerned. Indeed, when extracting kinetic
energy from the wind, a wind turbine causes a reduction of the wind speed in the
downstream wake. As a result a turbine, standing in the wake of an upstream
one, experiences a reduction of available wind power. Intuitively as the number of
wind turbines of a wind farm increases, the wake effect becomes more important,
so that considering it when optimizing the wind production proves potential gain
with respect to classic individual turbine MPPT operating mode. As a matter of
fact, in such situation, a greedy control, according to which each WT tracks its own
maximum available power, no longer guarantees the maximization of the power ex-
traction at the WF level. This mainly justifies a growing interest in cooperative
methods to control wind turbines belonging to large wind farms.
As shown in Chapter 2, if at WT level there exist several situations for which the
control objective deviates from the power maximization one, it is reasonable to think
that this holds true at the WF level too. When a WT is required to track a de-
loaded power reference to sustain the grid, e.g. for frequency support purposes or
power curtailment constraints, this has to be managed by a higher control level that
ensures that the WF, as a whole, respects the aforementioned grid requirements.
From the above discussion it is clear that a WF controller is needed to manage the
power production sharing, among its WTs, according to different scenarios, which
define the control objectives. A comprehensive survey on the WF control state of
the art can be found in [Knudsen 2015], where the authors identify three main WF
objectives summed up as follows

I Maximize the total WF active power.

II Follow a reference for the total WF active power.

III Do I and II while minimizing fatigue loading for the WTs in the WF.

Notice that a third point has been added to the list of the discussed ones, namely
the fatigue reduction of the WF. Indeed, when a WF is required to follow a

particular power profile, usually imposed by the grid operator, and this happens to
be lower than the WF extractable power, than the power production can be fairly
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shared among the WTs to evenly distribute the mechanical load.
A WF controller has to deal with a larger quantity of information with respect to
the WT local ones. It has to process and communicate a growing number of vari-
ables with the increasing number of WT units, while respecting the dynamics of
the system involved. This is why, recently, a great research effort has been given in
developing adequate control architectures to fulfill requirements of system reliability
while being fast enough to grasp its dynamics. A first major WF control architec-
ture widely used in the literature is the centralized hierarchical one. This classic
approach is based on a higher centralized slower controller, responsible for deliver-
ing the power references to the local WT faster ones, on the base of grid operator
requirements and system measurements. Typically, when WF aerodynamic effects
are taken into account, the problem solved by this higher level controller reduces
to an optimization one, i.e. dynamics of the system are neglected in the problem
formulation because of the complexity of the system itself. Still the requirements
for fast computation have to be fulfilled. More recently, there has been a growing
research interest in distributed solutions to the WF control problem. Even though,
typically, such approaches provide suboptimal solutions with respect to their cent-
ralized counterpart, they allow some important practical features that justify their
interest. Notice, that they still preserve a hierarchical architecture. In other words,
here, the adjectives centralized and distributed refer to the higher control level. In
this sense, in this part, both the aforementioned hierarchical architectures present
a decentralized lower control level. That is to say that, once the optimal power
references are computed by the higher optimization level, they are delivered to the
local WT controllers, as the one treated in Part I, and, at this point, no additional
information is exchanged by them. The case in which also the local WT controllers
are allowed to exchange information is treated in Part III. In this case the lower
control level in the hierarchical pyramid is no longer decentralized, and it is said to
be distributed.

4.1.2 Related Works

Modeling the aerodynamic coupling among the WTs of a WF, i.e. their wake in-
teraction, also known as wake effect, with high fidelity degree is not a trivial task.
This involves numerical solutions to systems of partial differential equations. In
other words, in principle, computational fluid dynamics (CFD) simulation should
be employed. However, for the sake of engineering applications, such as the real
time control of a WF, for which, as mentioned above, fast algorithms should be
employed, a simplified wake model should be considered. As far as the latter is
concerned, even though in the literature there exist many wake model represent-
ations, they basically are variants of the pioneer work of [Jensen 1983], who first
proposed the single wake model, i.e. describing the wake interaction between two
WTs, and [Katic 1986], who introduced the wake model accounting for multiple
WTs interactions. This, also known as Park wake model, describes a piece-wise lin-
ear wind speed profile distribution within a WF, and it is based on the assumption
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that the wake behind the WTs expands linearly, according to a wake constant kw,
in the downstream direction, and that the wind inside the wake is constant at equal
distance from the according WT. Many software are nowadays available based on
Park model. For instance, one can cite WAsP (Wind Atlas Analysis and Applica-
tion Program) [Mortensen 1998], which, among its applications, allows calculation
of the wind farm production. Based on a constant selected kw value, given the WT
thrust coefficient Cp/λ, and the WF layout, it estimates the wake power losses and,
thus, the net annual energy production (AEP). Software like WAsP let good estim-
ation of WF power generation for the AEP, via constant kw values, by employing
high time scale averaged quantities, as the wind signal one, in the simulation. As
a consequence, it has been argued that model variations should be considered in
order to grasp the variability of the wind source, and the according validity of the
model, for more real time applications. Authors of [Herp 2015] propose a finer Park
model calibration, based on ensemble models, to depict the flow variability in a lower
time scale. This is done by considering a variable kw value, and by relating it to
the upstream free wind direction and modulus via a probability density function.
Similarly, in [Peña 2014], the authors suggest a Park model modification based on
different kw values to meet different atmospheric stability conditions.
One of the disadvantages of Park wake model is that it does not include the influence
of the WTs yaw angle in the wake profile. In [Fleming 2015], a CFD tool named
SOWFA (Simulation for Onshore/Offshore Wind Farm Applications) was developed
to analyze the yaw impact, and authors of [Gebraad 2016] proposed a parametric
wake model, considering the yaw effect, to be tuned either on CFD simulation or
on real wind farm data. Based on it, [Park 2015a] provided a continuous analytic
wake model, which can be used for efficient gradient-based optimization algorithms,
as well as for model validation purposes. All the aforementioned wake models are
based on underlying steady state assumptions, i.e. given the WTs operating con-
ditions, and the free upstream wind value, the wind distribution is computed by a
static wake model. In other words, the dynamics involved in the wind propagation
within a WF are neglected. This approximation allows these models to be suitable
to describe the problem addressed in terms of an optimization one, e.g. layout op-
timization and power maximization. In [Soleimanzadeh 2010], it is presented a first
attempt to consider the dynamics of the wind within a WF, while allowing the use
of efficient control algorithms that are not based on CFD simulation. In particular,
neglecting the yaw influence, a state space wake representation is obtained from a
system of partial differential equations via finite volume method, and this allows the
employment of control theory results rather than static optimization ones.
A first straightforward application of the wake model and its influence on a WF
power production is represented by the problem of optimal layout of the wind tur-
bines, i.e. where they should be placed within a WF in order to minimize the wake
interaction. Plenty of works have been proposed in this regard. One can cite for in-
stance [Larsen 2011, Park 2015b, Feng 2015]. In this case, the optimization problem
has to be solved off-line, and this allows more complex wake models and validation
via CFD simulation to be used. Moreover, the layout optimization problem is con-
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cerned with large time scales, typically annual, and the objective function is usually
enriched with other terms taking into account the costs of the WTs, infrastructures,
etc.
When the WF layout is given, still some optimal control of a WF can be seek via
optimization and control methods, and by employing the simplified wake models
mentioned above. The control objectives are, thus, mainly the one identified in
Subsection 4.1.1. The research literature is vast in this regard, and it can be mainly
divided in two main groups according to the chosen control architecture, namely
centralized and distributed solutions. As previously introduced, we restrict the case
of the former class to the centralized hierarchical one, which are typically based on
SCADA system. In the centralized architectures that actively consider the wake
effect in the control problem, typically a static WF power generation model is em-
ployed, leading to an optimization problem formulation. Research works are then
mainly conceived only with the solution of such optimization problem, which is the
task of the higher level controller, under the assumption of existing local WT ones.
Moreover, the addressed optimization problem is usually concerned with the uncon-
strained WF power maximization one. In other words, neither the system physical
constraints such as the WTs nominal power Pe,n, and the one imposed by the grid
operator, are directly considered in the problem formulation. Thus, the provided
solutions are confined to the case in which the total available WF power is lower
than the maximum allowed one. Alternatively, one can a posteriori constrain the
solution of the unconstrained problem. However, this generally leads to a subop-
timal solution. As it will be explained in the following sections, the optimization
problem is nonlinear and nonconvex, and adding the mentioned constraints to it
brings the problem to a higher level of complexity, because they are typically non-
linear nonconvex too. An exception to the described solutions can be found in the
work of [Soleimanzadeh 2012], where the authors capitalize on the dynamic wake
model of [Soleimanzadeh 2010]. The problem addressed is then posed as an optimal
constrained control one, and it is solved by MPC means. A similar solution is also
hypothesized by [Spudic 2010].
Generally speaking the most employed centralized architectures are based on gradient-
based optimization algorithms. One can cite, for instance, [Heer 2014, Park 2015a,
Herp 2015]. Authors of [Park 2015a] capitalize on sequential convex programming
techniques, with yaw influence consideration, enabled by the choice of a continu-
ous and differentiable wake model. In [Herp 2015], authors aim at speeding up the
optimization problem convergence, by using a sequential optimization method. In
particular, with the knowledge of the upstream free wind direction, they exploit
the problem structure by letting only the parameters of a WT to be active at a
time, starting from the most upstream WT towards the most downstream one. The
aforementioned optimization approaches suffer from convergence to local optima,
and their solution is affected by the initial guess (see Appendix A.7). This is why
global optimization methods have been proposed for the sake of controlling a WF.
An example is given by authors of [Tian 2014], who capitalize on particle swarm
optimization technique. In this reference, system constraints are also actively con-
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sidered in the problem formulation. However, the authors do not mention how
these are managed in the algorithm, which is known to be a nontrivial problem in
metaheuristic optimization. Although, as shown above, there exist simplified wake
models to be used in the optimization problem, they may lack of reliability be-
cause of the complexity of the aerodynamic phenomena. Moreover, they make the
optimization problem generally difficult to be solved. This is what motivates the
search for model-free data-driven solutions to the power maximization problem. An
example is given in [Gebraad 2016] where the authors considered a game-theoretic
approach to optimize the WTs yaws, and by [Park 2016], where the wake model is
learned on-line by testing the WTs yaws and axial induction factors, and Bayesian
optimization technique is employed aiming at reducing the convergence time to a
solution.
The centralized approaches suffer from some important drawbacks that can be sum-
marized as follows

• High computation and communication burden.

• Non-scalability of the architecture, meaning that the problem gets more com-
plex as the system size increases.

• Non-modularity of the architecture, meaning that the removal or addition of
a WT unit makes the entire control solution to be re-designed.

• Single point of failure, i.e. if the central controller fails so it does the entire
system.

These disadvantages can be at least partially recovered by distributed architectures.
In this case, the wind turbines would solve the optimization problem cooperatively
by exploiting a communication graph on which they share their own local inform-
ation. In the literature, the works concerning this kind of architecture are mainly
based on model-free approaches. One can cite [Gebraad 2013, Barreiro-Gomez 2015]
for methods based on gradient estimation, [Marden 2013] as far as game-theoretic
approaches are concerned, and again [Park 2016] for a Bayesian approach. In
[Ebegbulem 2016], the authors make use of the extremum seeking technique to es-
timate the cost function gradient, coupled with results of consensus control, to solve
the distributed power maximization problem. The main drawback of the mentioned
data-driven distributed approaches mainly regards the speed of convergence. This
is due to the fact that the WF control parameters have to be first tested on the
real plant before knowing their real effect. Moreover, these approaches limit the
system parameters exploration to those that guarantee a safe system exploitation
while being tested.
Distributed architectures are also widely employed in the literature to address the
problem of fatigue minimization while satisfying grid power constraints. In this
framework though, the wake model is usually not considered in the problem formu-
lation, and this allows it to be treated from a control perspective, i.e. generally the
system dynamics are considered. However, if in the considered WF, the wake effect
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cannot be neglected, then the control should be validated on a model that takes it
into account. Usually, the WF dynamic model is first linearized, thus allowing clas-
sic results of linear control theory to be applied. Generally, consensus techniques
are also employed in order to let satisfaction of the maximum power production.
One can cite for instance [Madjidian 2011, Biegel 2013, Zhang 2013].

4.1.3 Contribution

In our work we focus on the problem of controlling wind farms in which the wake
interaction among WTs cannot be neglected, and it is taken into account in the
problem formulation. Both the centralized and the distributed hierarchical control
architectures are analyzed. However, our main first contribution is concerned with
the distributed WF optimization for power maximization under the system physical
constraints, and maximum allowed power one imposed by the grid operator. In
particular, we suggest to apply the two novel distributed versions of the PSO al-
gorithm, proposed in the previous chapter, as they allow the optimization problem
to be formulated by directly considering the power constraints. Being the optimiz-
ation problem nonconvex, we chose the PSO technique, as it belongs to the global
optimization methods class. The first proposed algorithms that we aim to test is
DPSO1, enabling a distributed architecture to be implemented by means of PSO
combined with available techniques of finite-time consensus. Here, recall that the
basic structure of classic PSO remains unchanged, while distribution among a set of
agents, i.e. the wind turbines, is allowed by a proper re-organization of the system
variables, and the choice of a particular communication graph. Our second proposed
distributed PSO algorithm, i.e. DPSO2, enables less communication burden with
respect to DPSO1. Recall that, differently from DPSO1, this is achieved by introdu-
cing a new algorithm modification, which changes the classic PSO structure. Such
modification has a remarkable impact on the convergence time of the algorithm to a
solution, opening up to a more practical implementation in real plants. Both DPSO1
and DPSO2 are model-based, as we seek for fast convergence of the algorithm, for
real time implementation. Nonetheless, they are not restricted to WF power models
of specific form, as it happens for gradient-based optimization algorithms, which
need the WF power function to be continuous and differentiable with respect to the
system variables. This feature is inherited from metaheuristic algorithms, which
only need the WF power function to be evaluated in selected search space points.
The results of DPSO2 applied for the WF optimization are object of a patent de-
posited by EDF (Électricité de France) in July 2017, and entitled Pilotage d’un parc
éolien (’Control of a wind farm’).
As stated by [Marden 2013], the optimization algorithms mentioned in Section 4.1.2,
generally rely on the assumption of the existence of local control strategies for in-
dividual wind turbines that can stabilize around any feasible optimal set point,
solution of the wind farm optimization problem. Even if proving a potential bene-
fit in the amount of extracted wind power, these assumptions are not necessarily
realistic as either the dynamics of the optimization variables and the performance
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of the local controllers play an important role in the actual gain. Thus, as a second
contribution, we analyze the overall control architecture performance, i.e. we con-
sider the problem of maximizing a wind farm power production, based on a static
optimization at high level for optimal set points generation and local control at low
level to stabilize the wind turbines around them. Nonetheless, in this second frame-
work, we mainly focus on the local controller performance to demonstrate what can
actually be achieved by means of such hierarchical architecture. The local control
employed in this approach is the one developed in Chapter 2. As a consequence, this
analysis enables us to create the first important connection between the presented
tools in Part I and the purpose of controlling a wind farm. In the literature, few
works have analyzed the effective gain of wind farm optimization under wake effect
when the dynamics of the controlled turbines are considered. An example is given
in [Heer 2014], where a local controller based on system linear approximation is em-
ployed, and it shows ∼ 1% energy gain with respect to classic greed control, where
farm optimization would not be performed. The central aspect that motivated this
work is that, when cooperative optimization is employed, the optimal set points
delivered to each turbine in the wind farm can deviate from the classic power refer-
ences typically used in greed control. This confirms the importance of the deloading
WT control techniques developed in Chapter 2. The described system analysis has
been object of our work of [Gionfra 2016a].

4.2 Wake Model

In this section, we aim at providing a model of the wind farm power function. As
it has been mentioned in the previous section, in many cases, the WTs of a wind
farm are aerodynamically coupled via the previously introduced wake effect. Thus,
a proper modeling of such effect is essential for the description of the available power
extraction at the WF level. The wake model is generally complex, and involves solv-
ing partial differential equations via CFD tools. If the WF power function though
is to be used in real-time for WF optimization and control, i.e. for model-based
techniques, then a model simplification is needed to let practical implementation
feasible. As it will be shown in the sequel, typically, a new optimization needs to be
run each time that wind conditions change. Thus, an important feature of the em-
ployed optimization algorithm, and, as far as this work is concerned, a model-based
one, is fast convergence.
Among the available simplified analytic wake models, as mentioned, the Park one
is by far the most employed. In the sequel we present the wake model introduced
in the works of [Gebraad 2016, Park 2015a]. This is still based on the some basic
Park model assumptions and formulations, but it additionally takes into account
the WTs yaw angle influence in the wake profile. Moreover, while Park wake model
results in a nonsmooth power function, the model here considered is continuous and
differentiable, and it is useful if gradient-based optimization algorithms are to be
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Figure 4.1: Wind flow and wind speed at rotor disc, vr = v(cos o−α), [Park 2015a].

employed. This is obtained by considering a particular mathematical model charac-
terizing the wake shape, which, in addition, allows a better degree of model fidelity
with respect to Park one, without introducing much model complexification that
may result in higher computational burden. Eventually, when applied to a given
WF, such model is tuned with CFD simulation data, by acting on some parameters
left as degree of freedom. For instance in [Park 2015a], it shows a high degree of
fidelity when calibrated on the Horns Rev 1 wind farm located in Denmark.

4.2.1 Modified Park Wake Model

Recall from Section 2.2 of Chapter 2, that for a wind blowing in the axial direction
of a WT, the available extractable power can be expressed as a function of α, the
axial induction factor1. This is done by providing the theoretical value of the WT
power coefficient Cp, as the function expressed in (2.3), and that we report here for
the convenience of the reader

Cp(α) = 4α(1− α)2

This function additionally enables to compute the theoretical α value for which Cp
attains its maximum, i.e. 1/3, and that we previously named αbetz. However, when
the WT rotor plane is yawed with respect to the wind direction by a yaw offset
angle o, as shown in Fig. 4.1, then the expression of α is given by α = v cos o−vr

v , as
the wind component in the axial direction is v cos o. The power extracted by a WT
from the wind can be expressed as

P =
1

2
ρπR2(v cos o)34α̃(1− α̃)2 (4.1)

where α̃ = v cos o−vr
v cos o is the axial induction factor as if the wind blew in the axial

direction with a speed value equal to v cos o. Thus α̃ = α/cos o, and by replacing it
in (4.1), it yields

P =
1

2
ρπR2v34α(cos o− α)2

1Recall that α is defined as α , v−vr
v

, i.e. as the ratio of the difference between the wind speed
value in the axial direction and the wind speed at the rotor plane, and the upstream value, (see
Fig. 2.3).
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from which it is easy to identify the power coefficient Cp in this yawed case as a
function of both α, and o, i.e. Cp(α, o) = 4α(cos o−α)2. As it has been mentioned,
the model described in this section presents some tunable parameters. Thus, the
power coefficient expression is modified by introducing a first parameter τ1 ∈ R,
yielding

Cp(α, o) = 4α(cos(τ1o)− α)2

Park wake model describes the wind speed value in a downstream wake, by intro-
ducing a deficit factor δv(d, r, α), i.e. function of the distance d behind the wake,
the radial wake distance r, and the axial induction factor α of the WT causing the
wake. Such wind speed value is computed according to

v(d, r, α) = v(1− δv(d, r, α))

In such model, it is assumed that the radius of the wake linearly increases with
the downstream distance, according to R(d) = R + κwd, where R is the radius of
the WT rotor plane, and κw the wake expansion, mentioned in Section4.1, which
depends on the surface roughness of the WF site. Deficit δv is then assumed to be
null outside the wake, constant inside on equal distance values d, and proportional
to the rapport between the area of the rotor plane, πR2, and the wake plane area

at d, πR2(d), having value 2α
(

R
R(d)

)2
. This is where Park model introduces a

discontinuity. However, it has been observed that for distance values d > 10R, the
cross sectional wind speed profile resembles a Gaussian function [Park 2015a]. Thus,
δv(d, r, α) can be modeled as

δv(d, r, α) = 2α

(
R

R(d)

)2

e
−
(

r

R(d)

)2

(4.2)

The aforementioned considerations on the wake expansion, and shape behind the
WT are depicted in Fig. 4.2. Eventually, in order to take into account the yaw
effect, (4.2) can be further modified as, more in general, when o 6= 0, the area swept
by the WT blades assume an ellipsoidal form whose surface is given by πR2 cos o.
By introducing a second parameter τ2 ∈ R to let model tuning, (4.2) takes the
generalized expression

δv(d, r, α, o) = 2α cos(τ2o)

(
R

R(d)

)2

e
−
(

r

R(d)

)2

(4.3)

4.2.2 Single Wake Model

Having introduced the wind deficit factor in the downstream wake of a given WT
j, we now need to quantify the wind speed reduction experienced by a downstream
WT i. Intuitively, this depends on the wake position with respect to the downstream
WT rotor plane. This can be modeled by introducing two parameters, namely dij ,
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Figure 4.2: Modified Park wake expansion model, [Park 2015a].

x

y

xi

yi

j, (xj , yj)

v

θW

i, (xi, yi)

(a) Absolute reference frame.

x

y

xi

yi

y′

x′

j

v

θW

i

x′i

y′i

(b) Rotated reference frame.

Figure 4.3: Wind farm reference frame.

and rij . The former represents the axial distance according to the free stream wind
direction θW , while the latter represents the radial distance of the wake centerline
from WT i rotor plane center. Moreover, in order to take into account the effect
of the rotating blades and the yaw effect on the wake trajectory, rij is composed of
three terms, i.e.

rij = rlij + rrij + roij (4.4)

Both dij , and rij are described in the sequel. Let us consider an absolute reference
frame (x, y). In the following we will always make reference to the axis disposition
and orientation shown in Fig. 4.3a. We can thus define the position of each turbine
i via its coordinates (xi, yi). The wind direction θW in front of the considered
upstream WT j can be defined with respect to the mentioned reference frame.
Then we can consider a rotated reference (x′, y′) by an angle equal to θW , as shown
in Fig. 4.3b, and given by the coordinate transformation{

y′ = x sin θW + y cos θW

x′ = x cos θW − y sin θW
(4.5)

On this basis, we can compute the distance dij , and rij , illustrated in Fig. 4.4a, as
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Figure 4.4: Axial and radial wake distance, [Park 2015a].

dij = |y′i − y′j |
rlij = |x′i − x′j |

where rlij is the first term in (4.4), and it represents the radial wake distance due
to the relative locations of WT i, and j with respect to θW , i.e. in the rotated
coordinates. The second term of rij , i.e. rrij , allows to take into account the wake
deviation caused by the rotating blades. In [Gebraad 2016], it is shown that this
term depends linearly on dij via a tunable parameter τ3 ∈ R+. Moreover, without
loss of generality, we consider a positive deflection towards the right of the wake
centerline, i.e.

rrij = τ3dijsign(x′i − x′j)

where sign(x′i − x′j) = 1 if x′i − x′j ≥ 0, and −1 otherwise. This second term
contribution is illustrated in Fig. 4.4b. The last term in rij , roij , is due to the yaw
offset angle of WT j, oj . The wake is deflected by the yaw, then, influenced by
the free stream, it deviates in its direction. The result is a curved trajectory, as
shown in Fig. 4.4c. Authors of [Jiménez 2010] describe this curvature at a generic
downstream distance d via the angle of the centerline of the wake ξ(d), which assumes
the following expression [Gebraad 2016]

ξ(d) =
ξinit(αj , oj)(

1 +
τ4d

R

)2

where τ4 ∈ R+ is left as an additional tunable parameter, and

ξinit(αj , oj) ,
1

2
(cos oj)

2(sin oj)4αj(1− αj)
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Figure 4.5: Local polar coordinates, [Park 2015a].

Moreover, the yaw-induced lateral offset δγ(dij) can be approximated by Taylor
expansion to solve the following integral

δγ(dij) =

dij∫
0

tan(ξ(x))dx

' ξinit(αj , oj)R

15τ4

15
(
τ4dij
R + 1

)4
+ ξinit(αj , oj)

2(
τ4dij
R + 1

)5 − 15− ξinit(αj , oj)2


As shown in Fig. 4.4c, a positive yaw offset oj increases the yaw-induced offset.
However, this latter can increase or decrease the total value of rij depending on the
relative locations of the wind turbines and the wind direction. According to the
above considerations, roij can be computed as

roij = |δγ(dij)|sign(x′i − x′j)

We are now ready to determine the wind speed deficit of a WT i caused by the
single wake of WT j. Indeed, using the expressions of the wind deficit in (4.3), dij ,
and rij , the wind speed profile can be computed using local polar coordinates (r′, θ′)

as shown in Fig. 4.5. Thus, we have that the wind speed value captured by WT i

at the generic position (r′, θ′) is

vij(r
′, θ′, αj , oj , v, θ

W ) = v(1− δv(dij , r, αj , oj))

where δv is computed in (dij , αj , oj), and where r =
√

(rij − r′ cos θ′)2 + (r′ sin θ′)2.
Notice that dij , and r, on which δv depends, are function of (αj , oj), and θW , but
not on v. For the purpose of simplification we can now derive the average wind
speed v̄ij on the rotor disc of the downstream WT i. By applying the mean value
theorem for integrals, this is given by

v̄ij(αj , oj , v, θ
W ) =

1

πR2

θ′=2π∫
θ′=0

r′=R∫
r′=0

vij(r
′, θ′, αj , oj , v, θ

W )r′dr′dθ′
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Figure 4.6: Wind deficit as a function of dij and rij caused by WT j on WT i, when
oj = 0, α = αbetz.

From the above expression, the power extracted from the downstream WT is

Pi =
1

2
ρπR2v̄3

ij(αj , oj , v, θ
W )Cp(αi, oi) (4.6)

We are able to see how Pi is function of the according WT i operating conditions
via Cp, as well as function of the upstream WT j ones via the wake model, defining
v̄ij(αj , oj , v, θ

W ). The model parameters tuned by CFD simulation on the Horns
Rev 1 wind farm, whose WTs have R = 63 m, provided by [Park 2015a], are given
in Table 4.1. An example of average wind deficit δ̄v,ij , 1− v̄ij

v as a function of dij ,
and rij , caused by a WT j with oj = 0, αj = αbetz, is given in Fig. 4.6, where the
model parameters of the aforementioned table were used.

Table 4.1: Horns Rev 1 wind farm parameters
κw τ1 τ2 τ3 τ4

0.0313 0.7850 1.5410 0.0211 0.5617

4.2.3 Wind Farm Power Function

In a wind farm, a wind turbine i is likely to experience a wind speed deficit caused
by multiple wakes, i.e. from all the upstream WTs. In order to take into account
the wake interference among multiple WTs, the kinetic energy conservation method
proposed by [Katic 1986] in Park model, is by far the most employed one. In this
model it is assumed that the kinetic energy deficit by the mixed wake is equal to the
sum of the kinetic energy deficits by individual wakes, [Park 2015a]. Before providing
the expression of the wind deficit in the multi-wake case, it is useful to employ the
definition of physical neighborhood given in the previous chapter. Each WT i is
physically coupled to any upstream WT j via the wake model, since the average
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captured wind speed v̄ij , affecting turbine i power function via (4.6), is function of
WT j operating points, i.e. αj , and oj . Thus, WT j is a physical neighbor of WT i.
Notice that, differently from the OPF case of Section 3.6 in Chapter 3, here the vice
versa is not true. For each WT i we are thus able to define the associated physical
neighborhood as N p

i , {j : y′i−y′j > 0}, i.e. if WT j is an upstream turbine to i. In
the same way of what done in the previous chapter, we can also define the associated
variables αij , {αj : j ∈ N p

i }, and oij , {oj : j ∈ N p
i }. Notice that N p

i (θW ), i.e.
it is a function of the wind farm free stream wind direction θW via (4.5). Thus, if
θW is a function of time, then N p

i is time-varying too. According to the mentioned
method of conservation of kinetic energy, we can thus describe the total average
wind speed deficit δ̄v,i experienced by WT i in a WF as

δ̄v,i =

√∑
j∈N pi

δ̄2
v,ij

If we now name v∞ the free stream wind speed blowing towards the wind farm, we
have that the average wind speed captured by WT i is

v̄i(αij ,oij , v∞, θ
W ) = v∞(1− δ̄v,i(αij ,oij , θW ))

As a result, its available power is

Pi(αi, oi,αij ,oij , v∞, θ
W ) =

1

2
ρπR2v̄3

i (αij ,oij , v∞, θ
W )Cp(αi, oi)

Eventually, the total wind farm available power Pwf , given the free stream wind
parameters (v∞, θ

W ), and the WTs operating conditions αi, oi, i = 1, . . . , N , where
N is the number of WTs in the WF, can be simply computed by summing the single
power productions, yielding

Pwf ,
N∑
i=1

Pi(αi, oi,αij ,oij , v∞, θ
W ) (4.7)

Remark 4.1 Notice that, according to the considered wake model, the wind deficit
experienced by each turbine is function of the free stream wind direction θW , but not
of its speed value v∞. This influences the power production, but it intervenes as a
factor in (4.7). This fact has important consequences in the optimization problem
formulation, as it will be discussed in the next sections.

4.3 Hierarchical Control

4.3.1 High Level Optimization Problem

As mentioned in Section 4.1, we focus on a hierarchical structure for the sake of
controlling a wind farm. This is developed on a two-level pyramidal structure,
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Figure 4.7: Hierarchical architectures.

whose low control level coincides with the local WT control, as the one developed in
Chapter 2. Thus, it is responsible for making the WT tracking the power reference
signal computed by the higher control level. In this work, according to the consider-
ations done in Section 4.1, the higher control level reduces to an optimization step.
The associated optimization problem is built upon the wind farm model shown in
Section 4.2, which is static. In other words, we do not consider the dynamics rul-
ing the wind field in a WF. Wind speed values can be thus considered as steady
state ones. The hierarchical structure can be centralized or distributed according
to how the optimization problem is solved. In the former case, a central controller
communicates with the WTs ones to get information about the wind conditions and
to deliver optimized power references. Typically such communication architecture
is realized via SCADA systems. The optimization is performed by a single central
controller, based on WF measurements and on additional power constraints, which
for the sake of simplicity, can be considered as imposed by the grid operator. Such
system suffers from the main drawbacks listed in Section 4.1, and this motivates the
interest for distributed hierarchical architectures. In this case, the optimization step
is executed cooperatively by high level controllers associated to each WT and that
are able to exchange information among them. Two examples of communication will
be discussed in Section 4.4. A schematic illustrating the considered architectures is
given in Fig. 4.7.
Let us now consider the optimization problem in details. Given a WF of N WTs,
this usually takes the form of an unconstrained wind farm power maximization,
which can be formulated as follows

min
(α,o),{(αi,oi),i=1,...,N}

−Pwf (α,o, v∞, θ
W ) (4.8)

Some considerations need to be done concerning problem (4.8). First of all, notice
that according to Remark 4.1, it follows that its argument (α?,o?), i.e. the optimal
optimization variables, does not change if only the wind speed value v∞ does. This
is due to the fact that (4.8) cost function has invariant minima with respect to
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v∞, as it appears as a factor in it. The important practical implication is that, in
this case, the optimization needs to be performed only when the wind direction θW

changes.
In a real world implementation though, the solution to (4.8) may not be feasible
due to system constraints. We identify two main sources of them, which will be
considered in the sequel, namely

• physical constraints, i.e. WT nominal power, Pe,n.

• grid constraints, expressed in the form of maximum allowed power injection
in the grid, Pmaxwf .

As a result, from a practical point of view, the optimal solution to (4.8) can be
applied to the system only if, in the absence of a Pmaxwf constraint, the free stream
wind speed value v∞ is such that Pi(α?,o?) ≤ Pe,n, i = 1, . . . , N . Another approach
that could be considered is to constrain the solution of (4.8) a posteriori. However,
in this case, being the optimization problem nonconvex, and because the considered
power constraints generally define a nonconvex feasible set, such solution is likely to
be suboptimal. For this reason, we rather consider such constraints actively in the
optimization problem, by modifying (4.8) as follows

min
(α,o)

−Pwf (α,o, v∞, θ
W )

subject to

Pi(α,o) ≤ Pe,n, i = 1, . . . , N

Pwf (α,o, v∞, θ
W ) ≤ Pmaxwf

(4.9)

It is important to notice that, differently from (4.8), problem (4.9) has to be solved
each time that either v∞, or θW changes, as v∞ modifies the feasible region via the
problem constraints. It is clear that under this requirement, the optimization step
solving (4.9) has to be faster than the variation of the wind conditions. Moreover
the system has to have the time to actualize such solution via the local controllers.
The above considerations can be summarized in the following

Assumption 4.1 The couple (v∞, θ
W ) varies slowly with respect to the convergence

time of the optimization algorithm and the dynamics of the controlled WTs.

Under this assumption, it seems reasonable to consider an optimization step with
respect to averaged values of wind speed and direction signals, in order to grasp their
main trends affecting the wind farm power function, and to sufficiently filter out the
turbulence components. For this reason, for now on, we will refer to (v∞, θ

W ) as the
filtered values of the original wind speed and direction signals. For instance, from
wind measurements, this can be achieved via a moving average filter. Eventually
we consider the additional

Assumption 4.2 The couple (v∞, θ
W ) is uniform along the wind farm length.
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Figure 4.8: 6-WT wind farm example for yaw effect analysis.

4.3.2 Yaw Angle Influence on the Optimization Problem

As shown in the wake model of Section 4.2, the yaw angle influences the wake shape
trajectory, and for this reason it should be considered as an optimization variable, as
done in the optimization problem formulation in (4.9). However, a suboptimal yet
simpler choice for the WTs yaw angles of a WF could be considered if it simplifies
and enhances the convergence of the optimization algorithm. Intuitively such choice
is oi = 0, i = 1, . . . , N , i.e. the yaw angle γi of each WT is γi = θW . In this case the
WTs are always oriented such that their rotor plane is perpendicular to the wind
direction. This is why in this subsection we aim at analyzing the sensitivity of the
solution to (4.9) with respect to the yaw angle, by comparing it with the mentioned
case of oi = 0, i = 1, . . . , N . For such purpose we consider a modified problem (4.9),

in which we add the penalizing term βo
N∑
i=1

(γi − θW )2 to its cost function, where

βo ∈ R+
0 is a tunable parameter. The idea is to compare the problem optimal

solutions for the cases βo = 0, and βo > 0, i.e. respectively corresponding to
the original problem, and to the case in which γi are pushed to be equal to θW .
Moreover, in this analysis, we employ a classic centralized PSO with Deb’s rule
to solve the described modified problem. In view of using the distributed PSO
versions previously proposed in order to solve the WF optimization problem, this
additionally allows us to anticipate the behavior of such metaheuristic algorithms
for this specific problem. The test is performed on a 6-WT wind farm example
shown in Fig. 4.8. The simulations are carried out for θW = 0, and θW = π/2,
i.e. respectively the negligible wake effect case, and the worst wake effect one,
and for both low and high wind speed values v∞, to test the problem solution in
respectively the active and inactive constraint case. As far as the constraints are
concerned, only the physical ones are considered, i.e. a maximum allowed power
value for each WT equal to Pe,n = 5 MW, corresponding to WTs whose rotor
radius2 is R = 63 m. Concerning the algorithm parameters, we consider 500 as
maximum iteration, and for this particular problem setup we additionally modify
the inequality constraints Pi ≤ Pe,n, i = 1, . . . , N by introducing a linearly iteration-
decreasing positive threshold ε such that Pi ≤ Pe,n + ε, i = 1, . . . , N , in order to
enhance the quality of the algorithm solution. Notice that this technique is usually

2Note that this values belong to the WTs of the Horns Rev 1 wind farm.
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Figure 4.9: Global best trajectories for θW = 0 and low wind speed, and for both
βo = 0, and βo > 0: convergence to p?1.
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(a) βo = 0 case: convergence to p?2.
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(b) βo > 0 case: convergence to p?3.

Figure 4.10: Global best trajectories for θW = 0 and high wind speed.

employed to manage the equality constraints (see Section 3.2 of Chapter 3). In the
sequel we only report the global best trajectories associated to the six couples of
variables (α, o), during the run of the PSO algorithm. The use of ε explains their
particular behavior shown in the following figures.
Let us start our test for the case θ = 0, i.e. negligible wake effect. At low wind

speed, i.e. v∞ = 7 m/s in this example, the algorithm converges to the same optimal
solution p?1 , (α?1,o

?
1) for both the cases βo = 0, and βo > 0, to which it corresponds

a total WF power P ?wf,1 = 9.81 MW. The corresponding global best trajectories are
shown in Fig. 4.9. As expected, in order to maximize the power extraction, o?1 = 0,
and α?1 = 1αbetz. At high wind speed, i.e. v∞ = 14 m/s in this example, simulations
are shown in Fig. 4.10a, and Fig. 4.10b for respectively βo = 0, and βo > 0, where
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(a) βo = 0 case: convergence to p?4.
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(b) βo > 0 case: convergence to p?5.

Figure 4.11: Global best trajectories for θW = π/2 and low wind speed.

the algorithm converges respectively to p?2 , (α?2,o
?
2), and p?3 , (α?3,o

?
3), and where

o?3 ' 0. It has to be stressed that in the case of active constraints, there exist
infinite feasible couples (α,o) that let their satisfaction. This has an important
effect in the algorithm convergence as it can be seen in Fig. 4.10a. Indeed here,
the algorithm is not able to choose a specific couple among the feasible ones, and
this results in the oscillatory behavior of the global best trajectories. Moreover, this
behavior seems to particularly affect the yaw global best ones, and this is indicative
of how the problem solution is less sensitive to the choice of yaw values as long as
they stay within a bounded interval around θW . In this test, for instance, we chose
the interval −π/6 ≤ o ≤ π/6. This is further motivated if we compare p?2, and p?3.
As a matter of fact, α?2 ' α?3, while o?2, and o?3 are quite different. Nonetheless,
their associated WF power values, P ?wf,2 = 29.85 MW, and P ?wf,3 = 29.90 MW are
similar. Again, the solution appears to be more sensitive to the choice of α variables.
Let us now consider the case of θW = π/2, i.e. maximum wake effect. At low wind

speed, the optimal solutions are p?4 , (α?4,o
?
4), and p?5 , (α?5,o

?
5), for respectively

βo = 0, and βo > 0, where o?5 ' 0. Simulations are reported in Fig. 4.11. The WF
power obtained via p?4 is P ?wf,4 = 5.30 MW, while it is P ?wf,5 = 5.25 MW for p?5. From
these results, it is clear that when constraints are not active and wake effect is not
negligible, the yaw angles do have a role in determining the optimal solution. Thus,
in this case, pre-assigning the value γi = θW , i = 1, . . . , N results in a suboptimal
solution. Nonetheless, the difference between P ?wf,4 and P ?wf,5 is not large, and this
confirms again the less sensitivity of the solution with respect to the yaw angles.
Eventually, similar results to the case of θW = 0 are obtained for high wind speed
values. These are illustrated in Fig. 4.12. Indeed, if among the feasible solutions, we
select the one having yaw values γi = θW , i = 1, . . . , N , the quality of the solution
stays unchanged, yielding for the βo = 0 case p?6 , (α?6,o

?
6), and corresponding
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(a) βo = 0 case: convergence to p?6.
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(b) βo > 0 case: convergence to p?7.

Figure 4.12: Global best trajectories for θW = π/2 and high wind speed.

P ?wf,6 = 29.92 MW, and for the βo > 0 case p?7 , (α?7,o
?
7), and corresponding

P ?wf,7 = 29.70 MW. The overall test results are collected in Table 4.2. According to
the simulations and remarks provided above, we can conclude the following. As long
as it stays within a given bounded interval around the θW value, e.g. [−π/6, π/6],
the yaw angle has generally little importance in determining the optimal solution of
the optimization problem, when constraints are active. Moreover, considering it as
an optimization variable may lead to unclear algorithm convergence when PSO-like
algorithms are employed. As expected, the yaw angle has an active role in providing
the optimal solution when constraints are not active and in the presence of the wake
effect. However, the optimality of the solution seems to be poorly sensitive to its
choice, with respect to the case in which γi = θW , i = 1, . . . , N . In the light of the
above considerations, we make a choice that can be stated through the following

Assumption 4.3 Given the free stream wind direction θW , the WTs yaw angles
are set as γi = θW , i = 1, . . . , N .

As a results, optimization problem (4.9) reduces to

min
α
−Pwf (α,0, v∞, θ

W )

subject to

Pi(α,0) ≤ Pe,n, i = 1, . . . , N

Pwf (α,0, v∞, θ
W ) ≤ Pmaxwf

(4.10)

where we set o = 0.

Remark 4.2 Under Assumption 4.3, the radial wake distance term roij, described
in Section 4.2, is 0.
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Table 4.2: Yaw Influence Test Results

v∞

7 m/s
inactive constraints

14 m/s
active constraints

βo
0

• p?1
• P ?wf,1 = 9.81 MW

• constraints satisfied X

• α?2 ' α?3
• o?2: unclear convergence
• P ?wf,2 = 29.85 MW

> 0
• p?1
• P ?wf,1 = 9.81 MW

• constraints satisfied X

• α?3 ' α?2
• o?3 ' 0

• P ?wf,3 = 29.90 MW

(a) θW = 0, negligible wake effect.

v∞

7 m/s
inactive constraints

14 m/s
active constraints

βo
0

• p?4
• P ?wf,4 = 5.30 MW

• constraints satisfied X

• α?6 ' α?7
• o?6: unclear convergence
• P ?wf,6 = 29.92 MW

> 0
• p?5
• P ?wf,5 = 5.25 MW

• constraints satisfied X

• α?7 ' α?6
• o?7 ' 0

• P ?wf,7 = 29.70 MW

(b) θW = π/2, maximum wake effect.

4.4 Distributed Optimization

4.4.1 Application of DPSO1

4.4.1.1 Communication Settings

As seen in the previous section, the functions involved in the optimization problem
are the WTs power functions, which are obtained via the considered wake model of
Section 4.2. Then, the WT physical neighbors defined in Subsection 4.2.3, along with
their variables (α, o), respect the definition of physical neighbors of Definition 3.1,
given in Section 3.4 of Chapter 3. Note that, because of Assumption 4.3, the involved
optimization variables reduce to the only axial induction factors. As described in
the DPSO1 section, the physical relationships define the physical graph Gp, which
as mentioned, for this application case, is time-varying, as it depends on θW . Recall
that, according to Assumption 4.1, θW is supposed to be slowly varying with respect
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to the WTs dynamics. DPSO1 relies on communication Assumption 3.1, for which
each agent, i.e. WT, is required to communicate with all its physical neighbors,
and with all the WTs for which it is in turns a physical neighbor. As a result, the
defined communication graph Gc is a priori time-varying too. For the application of
DPSO1 algorithm though, we consider the following

Assumption 4.4 The communication graph Gc is time-invariant, and equal to the
undirected graph associated to the digraph Gp corresponding to the θW values for
which Gp has higher connectivity.

As an example of the above assumption, consider the wind farm layout of Fig. 4.8.
According to the continuous wake model of Section 4.2, the higher graph connectiv-
ity is obtained ∀θW : θW 6= kπ, k ∈ N+

0 , for which cases the graph is complete, i.e.
every pair of WTs is connected by a unique communication edge. In the following,
to simplify the analysis, we consider the worst case of complete graph Gc associated
to any given WF. Such solution will serve as an analysis tool rather than a real im-
plementation proposition. Indeed, clearly, it may be unfeasible to implement when
big-size WFs are considered, and especially if DPSO1 is employed to solve the op-
timization problem. Recall that DPSO1 needs a finite-time average consensus to be
run upon Gc at each algorithm step. However, we complete the analysis under this
strong communication assumption as it enables to shed a light on how DPSO1, and
more in general classic PSO-like algorithms behave in the WF optimization problem
resolution. Indeed, because of Proposition 3.1, DPSO1 reproduces the behavior of
a centralized PSO. A different analysis will be carried out for DPSO2 in Subsec-
tion 4.4.2, as it differs from the classic PSO algorithms. Eventually, Assumption 4.4
can be relaxed, as shown in Subsection 4.4.1.4.

4.4.1.2 Problem Formulation

We formulate the WF optimization problem under the following

Assumption 4.5 The couple (v∞, θ
W ), and value Pmaxwf are known by all the WTs

of the wind farm.

In practice, this can be achieved by letting a subset of WTs on the borders of the
WF measure (v∞, θ

W ), and a possibly different subset of WTs receive information
about grid constraints. These values can be then forwarded3 to the rest of WTs of
the WF via Gc. The optimization problem, written in the form of (3.20), can be
formulated as

min
{αi,i=1,...,N}

−
N∑
i=1

Pi(αi,αij , v∞, θ
W )

subject to

Pi(αi,αij , v∞, θ
W ) ≤ min

{
Pe,n,

Pmaxwf

N

}
, i = 1, . . . , N

(4.11)

3For instance, classic leader-follower consensus algorithms can be employed for this purpose,
see e.g. [Olfati-Saber 2007], or Part III for basic notions on leader-follower consensus technique.
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Figure 4.13: Horns Rev 1 wind farm layout.

where the private cost function associated to WT i is −Pi, and the private constraint
function the i-th one appearing in (4.11). Because of Assumption 4.3, and thanks
to Assumption 4.5, WTs can always be oriented such that γi = θW , 1, . . . , N , thus
oi = 0, 1, . . . , N , and they are not shown in (4.11) for ease of reading. Notice
also that we make the choice of equally distribute the maximum allowed power
production Pmaxwf among the WTs, by imposing a local maximum power constraint
of Pmaxwf /N, whenever the latter is inferior to the WTs nominal power Pe,n. Other
choices though possible are beyond the scope of this work and will not be treated
further. As an example, the total power sharing could be computed in order to
minimize the overall WF mechanical fatigue. Eventually, notice that to set the
power constraint Pmaxwf /N, each WT is required to have knowledge of the number of
WTs in the WF.

4.4.1.3 Simulation

We test the DPSO1 algorithm for the sake of solving optimization problem (4.11).
For this purpose, we consider a wind farm layout as illustrated in Fig. 4.13, where
WTs coordinates are given with respect to the shown (x, y) reference frame. Here
we can additionally set parameters Nx, and Ny, which are respectively the num-
ber of WTs along the x direction, and along the y direction, for a total number of
N = NxNy. Such layout is the one of Horns Rev 1 wind farm in Denmark, where
Nx = 10, and Ny = 8, [Park 2015a]. The tunable wake model parameters are the
ones given in Table 4.1. As far as the DPSO1 parameters are concerned, we choose
a maximum iteration number of 600 steps, and Np = 70 particles associated to each
WT, with a particle neighborhood Sp of dimension Nm = 5.
First of all, we propose a test at low wind speed, in particular v∞ = 7 m/s, with no
Pmaxwf constraint, i.e. no constraint is active. Simulations are carried out on Horns
Rev 1 wind farm, for θW = 0, π/4, π/2. The maximized WF power is compared with
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Table 4.3: Horns Rev 1: cooperative vs greedy control

P ?wf P greedywf Gain

θW

0 90.80 MW 84.90 MW 6.95%

π
4

86.20 MW 78.91 MW 10.31%

π
2

68.01 MW 52.34 MW 29.95%

the greedy control one, i.e. with the obtained WF power when all the WTs are op-
erated at an induction axial factor equal to αbetz. Results are reported in Table 4.3,
and they confirm the interest in considering the wake effect when maximizing the
WF power extraction. This test also shows that DPSO1 achieves good performance
for big-size WFs when constraints are not active. Moreover the algorithm is robust,
as the results of Table 4.3 stay basically unchanged if the experience is reproduced.
Here, we tested algorithm robustness on 20 trials.
As a second simulation test, we aim at analyzing the algorithm performance, with
respect to the WF size, when constraints are active, since for inactive constraints,
DPSO1 showed good and robust convergence properties even when N is large. From
an algorithm perspective, the physical and the grid constraints are equal, as they are
treated in the same way. For this reason, without loss of generality, in the sequel we
only consider the physical constraints, and we select v∞ = 15 m/s to be sure that
they are active. Moreover, thanks to this particular choice we are also aware of the
optimal solution to (4.11), and thus able to compare it with the solution provided
by DPSO1 to evaluate performance. Indeed, the chosen v∞ value is high enough to
let the WTs operate at their nominal power value Pe,n, which is thus the optimal
solution to (4.11). Notice that in the range of feasible wind speed values of a WT,
[vcutin , vcutout ], (see Chapter 2), it always exists a value of α, to which it corresponds
at least one couple of pitch angle ϑ, and rotor speed ωr, such that the extracted
power can be limited at Pe,n. It could be argued that, in this case of high wind speed
value, the high optimization level is useless as it would be sufficient to saturate the
extracted power of each WT at Pe,n, which is done via the local controller in classic
power limiting mode of operation, (see Chapter 2). However, information of when
limiting the extracted power at Pe,n is not known a priori on the basis of the only
knowledge of v∞ value, when wake effect is considered, and WF power maximized.
Such piece of information is indeed output of the high level optimization. Moreover,
according to the WF layout and wind direction θW , there exist different ranges of
v∞ values for which some WTs should be operated at Pe,n, and some others should
not. In other words, it is not a trivial task to determine a priori which WT has its
physical constraint active for given ranges of v∞, and the problem gets even more
complex if grid constraints are taken into account too.
We thus proceed as follows. We set θW = π/4, and progressively increment paramet-
ers Nx, and Ny, and for each associated WF, we test DPSO1 on 20 trials. On each
trial, we count the number of WTs that, according to DPSO1, would have to extract
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Figure 4.14: Mean and standard values out of 20 trials of the number of suboptimal
WTs, for θW = π

4 , and v∞ = 15 m/s.

a power value which is lower then 99%Pe,n, where 99% is considered to have some
margin4. Such test allows us to quantify how much DPSO1 solution is suboptimal
since, as mentioned, in this case the optimal one is given by all WTs in the WF
operated at Pe,n. The mean and standard value of the number of suboptimal WTs
for each considered couple of parameters (Nx, Ny) is shown in Fig. 4.14, where the
number of WTs in the axis of abscissae are obtained with the couples (3, 2), (3, 3),
(4, 3), (5, 3), (6, 3), (5, 4), and (5, 5). We can conclude that, even if DPSO1 provides
good robust solutions to (4.11) when constraints are not active, this is no longer the
case if they are active. Moreover performance worsens as N grows.

4.4.1.4 Wake Model Approximation

As we mentioned in Subsection 4.4.1.1, Assumption 4.4 may result in unfeasible
implementation for the case of big-size WFs, because it generally leads to high
communication burden. Recall that low communication burden is within the reason
why a distributed architecture was considered in the first place. This is why we
propose to relax the aforementioned assumption to restore this important feature.
The main idea is that even if, according to the considered continuous model, each
WT j influences every other downstream WT i, i.e. such that y′i − y′j > 0, (see
Subsection 4.2.3), the deficit in the wind speed caused by WTs that are sufficiently
far away can be neglected. We thus propose to let lower communication burden
by considering an approximated wake model. This is such that the number of
physical couplings among the WTs, defining N p

i , i = 1, . . . , N , and Gp, is reduced.
Since DPSO1 is based on communication Assumption 3.1, also the connectivity of
Gc is reduced. In particular, we consider each WT in the WF to be influenced
by the WTs that are immediately adjacent to it and within a given distance. If,
as an example, we consider Horns Rev 1 wind farm, the communication graph
Gc associated to the mentioned approximated wake couplings, reduces to the one
shown in Fig. 4.15, where each WT communicates with a maximum number of 8

4In the considered numerical simulations, DPSO1 showed to be always able to find a feasible
solution to the optimization problem. This is why potential solutions above Pe,n are not counted.



4.4. Distributed Optimization 151

i

Figure 4.15: Generic WT i reduced communication graph Gc for DPSO1, based on
wake model approximation.

WTs. Notice that also in this case we consider Gc to be time-invariant. According
to this approximated wake model, each WT computes its optimal axial induction
factor as if the reduced upstream WTs intercepted a wind speed value equal to v∞.
Of course, this fact is generally not true as the majority of the WTs experiences a
wind speed reduction because of the wake effect. However, the solution to (4.11)
by employing the considered model approximation still provides a feasible solution
when applied to the original model, and thus it is implementable. Clearly, such
solution would be suboptimal with respect to the original problem. The reason for
such solution to be feasible in the original model is due to the fact that the model
approximation is conservative with respect to the constraints satisfaction. In other
words, if each WT considers every upstream one to be excited by v∞, then it would
over-reduce its own α in order to respect the power constraints. We show the above
considerations on some simple examples. First of all, we apply the optimization
problem based on the model approximation to Horns Rev 1 when constraints are
not active, and we employ the same model parameters used in Subsection 4.4.1.3.
Results are shown in Table 4.4, where we can see the percentage of power gain lost
because of the model approximation. Eventually, we compare the solution of the
optimization problem for the original wake model and the approximated one, in the
case of active constraints. In particular we consider a WF of (Nx, Ny) = (3, 3),
and wind (v∞, θ

W ) = (15, π/4). While in the original model, DPSO1 provides a
solution in which each turbine is operated at its nominal power Pe,n = 5 MW, in the
approximated one some WTs are required to operate at 4.95 MW, which show the
level of conservatism introduced by the approximated model. Overall, even though
the considered model approximation applied to WFs provides a solution which is
mathematically suboptimal with respect to the case of complete communication, still
the obtained power gains, and power values are similar. Moreover, the results are
obtained with highly reduced communication burden, and this justify the interest
for this approximated solution. Unfortunately DPSO1 reveals worse performance
when constraints are active and the number of WTs in the WF grows. This issue is
recovered by the application of DPSO2, described in the next subsection.
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Table 4.4: Horns Rev 1: original vs approximate wake model control

P ?wf P approxwf Gain

θW

0 90.80 MW 90.78 MW 0.02%

π
4

86.20 MW 85.99 MW 0.24%

π
2

68.01 MW 67.04 MW 1.45%

Remark 4.3 As it has been stressed out in Remark 3.5 in the general DPSO1 de-
scription of Chapter 3, even if the wake model approximation considered in this
subsection lets reduction of communication burden, still DPSO1 needs to perform an
average consensus algorithm over the whole farm at each iteration step. In other
words, each WT needs to estimate information about the whole wind farm WTs via
the average consensus algorithm in order to properly update its particles and personal
bests and converge to a meaningful solution.

4.4.2 Application of DPSO2

4.4.2.1 Discussion on Wake Model Approximation

Differently from what done for DPSO1, we evaluate DPSO2 performance directly
with respect to an approximated model that allows to reduce the communication
burden. Indeed, because of the continuous wake model and the fact that DPSO2
relies on the same communication Assumption 3.1 as DPSO1, it would be gener-
ally required to implement a complete communication graph Gc. However the wake
model approximation of Subsection 4.4.1.4 considered for DPSO1 cannot be applied
to DPSO2 as, in this case, it would not let a proper common fitness function evalu-
ation, thus leading to a meaningless algorithm convergence. This fact is intimately
related to the algorithm common fitness function evaluation. This is explained in
the following. First of all, recall from Section 4.2, that in order to compute its own
power function Pi = 1

2ρπR
2v̄3
iCp(αi), each WT i needs to compute the wind speed

value v̄i. According to the wake model, this depends on the upstream WTs axial
induction factors, and on v∞, the free stream wind speed or the wind captured by
the most upstream WTs in the farm. In Subsection 4.4.1.4, the wake model reduc-
tion is concerned with approximating the wind deficit experienced by each WT as
caused by a smaller subset of the actual upstream WTs. Thus, in order to com-
pute v̄i, the approximation also consists in letting the wind speed value of the most
upstream WT in this smaller subset of upstream WTs with respect to WT i, be
v∞. We name WT supi such upstream WT. This is generally not true as the wind
captured by WT supi , vsupi , depends in turns on v∞ via the wake model. As already
discussed, this leads to a conservative yet implementable solution. However, the
point we need to stress here is that the approximation due to the choice vsupi = v∞,
i = 1, . . . , N , still leads to a meaningful DPSO1 convergence because WT particles
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are compared on how they fit the same common fitness function, via the finite-time
average consensus algorithm, (see Remark 3.5). In DPSO2 algorithm, particles are
evaluated on a reduced common fitness function thanks to the use of the context
vectors technique, (see Remark 3.11). Nonetheless, in order to be sure that rela-
tionship (3.39) is satisfied, i.e. that the particles evaluation on the reduced common
fitness function leads to the same result as if they were evaluated on the whole one,
Pi, i = 1, . . . , N need to be representative of the real wake model. Thus, to com-
pute v̄i, approximation vsupi = v∞ cannot be considered. Its value needs to be the
one determined by the wake model. We can summarize the above discussion in the
following points

I vsupi is needed by WT i to compute v̄i.

II vsupi generally depends on WT supi upstream WTs axial induction factors.

III We want to reduce direct communication.

Thus, if vsupi is computed by WT i itself, then direct communication with the WTs
influencing its value is needed. This is why we require vsupi to be computed locally
by WT supi , and its value communicated to WT i. Because of the above point
II, its value is likely to change during the run of DPSO2. As a result, it needs
to be sent to the corresponding WT i at each algorithm iteration. The details of
DPSO2 algorithm applied to solve the wind farm optimization problem are described
in Subsection 4.4.2.3. How to choose WT supi and, more in general, each WT i

neighborhood, is object of the next subsection.

Remark 4.4 If WT supi is such that the wind blowing in front of it is actually the
free stream wind, i.e. vsupi = v∞, then its value needs to be sent to the corresponding
WT i only once at the beginning of DPSO2 algorithm, as during the run of the
algorithm, v∞ is supposed to be constant, (see Assumption 4.1).

Remark 4.5 One may think that since vsupi is computed by WT supi according to
the wake model, no model approximation is actually introduced. This is unfortu-
nately not true because of the distributed nature of the optimization algorithm and
the subsequent communication steps. This will be more clear in Subsection 4.4.2.3,
where the detailed DPSO2 algorithm is illustrated. We can though anticipate that at
algorithm iteration k, each WT i computes its current power function Pi employing
vsupi , received from WT supi . However, vsupi refers to the value computed by WT supi

at the previous iteration k− 1, by employing its own upstream WTs variables avail-
able at k − 1. Such relay of information concerning vsupi introduce delays, in turns
responsible for the errors in the computation of the power functions.

4.4.2.2 Communication Settings

The aim of the communication settings is to find the minimal communication graph
Gc sufficient to let the solution of optimization problem (4.11), via DPSO2, i.e. to
guarantee satisfaction of the problem constraints and to let convergence to a good-
enough solution.
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Figure 4.16: WT i neighborhood for DPSO2: WT upi in light gray area, WT downi in
light blue area.

Wind Turbine Neighborhood

The definition of the communication neighborhood of WTs associated to WT i is
done via the introduction of two parameters, ψd,i, and ψt,i, for each WT i in the
farm. These define respectively a distance in the wind direction, and a distance in
the transversal direction of the wind. Such parameters are in fact function of θW :
ψd,i(θ

W ), ψt,i(θW ). The neighborhood of WT i is obtained as shown in Fig. 4.16a.
For a given wind direction θW , by selecting a value for the aforementioned paramet-
ers, a rectangle centered in WT i is obtained. Then, all the WTs laying within it are
part of the communication neighborhood of WT i. Notice that such neighborhood
is associated to the θW value. Thus, differently from the DPSO1 case, here Gc is
time-varying, as θW may change in time. The neighborhood thus defined via ψd,i,
and ψt,i can be further divided in the upstream turbines subset, which we name
WT upi , i.e. WT i physical neighbors, and the downstream turbines subset, which
we name WT downi , i.e. those turbines for which WT i is a physical neighbor. Thus
WT supi , defined as the most upstream WT in the neighborhood of WT i, belongs
to WT upi . The problem of finding the minimal communication graph can be thus
reformulated as the one of finding the minimum values for ψd,i, and ψt,i for each
possible wind direction that guarantee a satisfactory solution to the optimization
problem.

Computation of Wind Turbine Neighborhood Parameters

For the sake of simplicity, from now on we consider the distance parameters defined
above to be the same for each WT in the wind farm. We can thus drop index i: ψd,
ψt. This generally holds true for WFs having a regular geometry. Notice that, for
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every set value of ψt(θW ), parameter ψd(θW ) defines the WT supi turbine associated
to WT i, and thus vsupi . This is of particular importance since, as discussed in
Subsection 4.4.2.1, vsupi directly influences the computation of v̄i, and ultimately Pi.
From numerical simulations, it appears that different minimal values of parameters
ψd(θ

W ), ψt(θW ) need to be considered according to whether the optimization prob-
lem constraints are active or not. If for the sake of simplicity we consider the only
physical constraints, this means that for any set θW value, different parameters are
required according to different wind speed v∞ ranges of values. As it will be shown
in Subsection 4.4.2.4, typically when constraints are inactive, i.e. for low v∞ values,
the required ψd, ψt values to guarantee a good-enough solution are smaller than
for the active constraints case. This implies that when constraints are inactive, less
communication is required, and convergence time can be reduced. However, as it
has been mentioned, whether constraints are active or not is not known a priori, and
it is output of the optimization problem solution itself. For this reason, we provide
here the computation technique of the neighborhood parameters in the worst case
of active constraints, as it includes the inactive one. In particular, in order to get a
problem solution that satisfies the constraints, it appears important to reduce the
model approximation due to the information relay, (see Remark 4.5). This is why
we choose to consider an infinite value for parameter ψd(θW ), ∀θW , and leave the
only ψt(θW ) parameter as degree of freedom. This means that the generic WT i

neighborhood is given by all the WTs laying within the corridor defined via ψd.
Notice that WT supi is now only determined by ψt. This is shown in Fig. 4.16b.
The computation of ψt for every possible θW in the WF is done off-line and via sim-
ulation. In particular, for every considered θW , starting from a low ψt(θ

W ) value,
the optimization is run via DPSO2, and ψt(θ

W ) value incremented until reaching
a satisfactory solution to the optimization problem. The obtained function ψt(θW )

can be thus stored in each WT, for instance, via a lookup table.

Wind Turbine Neighborhood Computation

Each WT can compute its own neighborhood based on the knowledge of ψt(θW )

and on the following assumptions.

Assumption 4.6 Each WT has knowledge of the number N of WTs in the wind
farm, and their position (xi, yi), i = 1, . . . , N with respect to a given reference frame.

Differently from DPSO1 case we consider

Assumption 4.7 Each WT measures (vi, θi), i.e. the speed and direction values of
the wind blowing in the front of their rotor plane.

Thus, according to Assumption 4.2, and to the wake model, θi ' θW , i = 1, . . . , N .
Given θW , the subroutine that the generic WT i has to perform to compute its
neighborhood is shown in Algorithm 8, where (x′i, y

′
i) values are computed via (4.5).
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Algorithm 8 Wind Turbine i Neighborhood Computation
Input: (x′i, y

′
i), i = 1, . . . , N

Output: WT supi , WT upi , WT downi

1: distance = y′i
2: WT supi = {}, WT upi = {}, WT downi = {}

LOOP Process
3: for (j = 1 to N) and (j 6= i) do
4: if |x′i − x′j | < ψt then
5: Establish communication between WT i and WT j

6: if y′j < y′i then
7: Add WT j to WT upi
8: else
9: Add WT j to WT downi

10: end if
11: if y′j < distance then
12: WT supi = j

13: distance = y′j
14: end if
15: end if
16: end for
17: return WT supi , WT upi , WT downi

Algorithm 9 Wind Farm Optimization Process
1: vi = {}, θi = {}, i = 1, . . . , N

2: Pmaxwf = Inf
LOOP Process

3: while WF is active do
4: Each WT measures wind values (vi, θi)

5: Each WT receives Pmaxwf if imposed by the grid operator
6: if vi, θi or Pmaxwf has changed then
7: Update yaw value γi = θi, i = 1, . . . , N

8: Each WT computes its communication neighborhood via Algorithm 8
9: Run DPSO2, i.e. Algorithm 10

10: Apply the optimal axial induction factors
11: end if
12: end while

4.4.2.3 DPSO2 Algorithm for Wind Farm Optimization

The wind farm optimization process employing DPSO2 algorithm is based on the
previously introduced Assumptions 4.1, 4.2, 4.6, 4.7 and, as for DPSO1 application,
on the following

Assumption 4.8 Value Pmaxwf is known by all the WTs in the wind farm.
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Algorithm 10 DPSO2 for Wind Farm Optimization Problem
Output: Local bests: li,p, p = 1, . . . , Np

Initialization :
1: Randomly initialize xi,p ∈ [0, αbetz], si,p ∈ [−s̄i, s̄i], p = 1, . . . , Np
2: bi,p = xi,p, p = 1, . . . , Np
3: Randomly initialize li,p ∈ [0, αbetz], p = 1, . . . , Np
4: Initialize vi,p = vi, p = 1, . . . , Np, being vi the measured wind speed

LOOP Process
5: for k = 1 to max_iter do
6: Send xi,p, bi,p, li,p, vi,p p = 1, . . . , Np to all WT k ∈WT downi , via Gc
7: Wait to receive xj,p, bj,p, lj,p, vj,p p = 1, . . . , Np from all WT j ∈WTupi , via Gc
8: Compose the context vectors associated to the its own particles xi,p:

xli,p , (xi,p, lj,p : j ∈WTupi ), p = 1, . . . , Np
9: Compose the context vectors associated to its own personal bests bi,p:

bli,p , (bi,p, lj,p : j ∈WTupi ), p = 1, . . . , Np
10: Compose the context vectors associated to the particles xj,p of its neighbors j ∈

WTupi : xlj,p , (xj,p, li,p, lk,p : k ∈WTupi ∧ k 6= j), p = 1, . . . , Np
11: Compose the context vectors associated to the personal bests bj,p of its neighbors

j ∈WTupi : blj,p , (bj,p, li,p, lk,p : k ∈WTupi ∧ k 6= j), p = 1, . . . , Np
12: Among the received vj,p, select vk,p where k = WT supi , for p = 1, . . . , Np
13: Compute vi,p according to the wake model, using vk,p as upstream wind value, and

xli,p as operating points, for p = 1, . . . , Np

14: Evaluate particle context vectors xli,p in Pi: P xi,p , Pi(x
l
i,p), p = 1, . . . , Np

15: Evaluate personal best context vectors bli,p in Pi:
P bi,p , Pi(b

l
i,p), p = 1, . . . , Np

16: Evaluate particle context vectors xlj,p ∀j ∈ WTupi in Pi: P x,ji,p , Pi(x
l
j,p), p =

1, . . . , Np
17: Evaluate personal best context vectors blj,p ∀j ∈ WTupi in Pi: P b,ji,p , Pi(b

l
j,p),

p = 1, . . . , Np
18: Send P x,ji,p , P

b,j
i,p , p = 1, . . . , Np to the corresponding WT j ∈WTupi , via Gc

19: Wait to receive P x,ik,p, P
b,i
k,p, p = 1, . . . , Np from the corresponding WT k ∈ WT downi ,

via Gc
20: Compute fitness function values F̃ xi,p, p = 1, . . . , Np

21: Compute fitness function values F̃ bi,p, p = 1, . . . , Np
22: Update personal bests for p = 1, . . . , Np

(
bnewi,p , F̃ b,newi,p

)
=


(
xi,p, F̃

x
i,p

)
if F̃ xi,p < F̃ bi,p(

bi,p, F̃
b
i,p

)
otherwise

23: bi,p = bnewi,p ; F̃ bi,p = F̃ b,newi,p

24: Update local bests for p = 1, . . . , Np

lnewi,p = li,p − β
(

arg min
{bi,p∈Sp}

{
F̃ bi,p

}
− li,p

)

25: li,p = lnewi,p , p = 1, . . . , Np
26: Perform PSO update (3.30), with box constraints handled via
27: end for
28: return li,p, p = 1, . . . , Np
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Table 4.5: Minimum and maximum number of direct communications.
(Cmin,Cmax)

Reduced Communication Min. Opt. Communication

θW

0 (1, 1) (7, 12)

π
4

(0, 1) (0, 9)

π
2

(1, 1) (9, 9)

The overall process is illustrated in Algorithm 9, whose main part is DPSO2 al-
gorithm, which, for the reader’s convenience, we report in this subsection in Al-
gorithm 10, and where variables are referred to the specific case of wind farm op-
timization problem (4.11). Following the discussion of Subsection 4.4.2.1, we need
to introduce a wind speed variable that allows the power function computation. In
particular, we associate a wind speed value vi,p to each particle in WT i. These
values are initialized in the WT i measured one, vi. At each iteration, each WT
i receives the wind speed variables vj,p from WTs j in its physical neighborhood
WT upi , for p = 1, . . . , Np. Then, in order to update its own wind speed values vi,p,
p = 1, . . . , Np, in Step 12, WT i selects the wind values vk,p, p = 1, . . . , Np, belong-
ing to the most upstream WT in its neighborhood, i.e. k = WT supi . The generic
value vk,p thus has the role of vsupi , introduced in Subsection 4.4.2.1. WT i values
vi,p, p = 1, . . . , Np may serve in turns as vsupi for some downstream WTs.
Once the power functions have been evaluated in the required context vectors, and
sent back to the according WTs, each WT i can compute the fitness function values
associated to its particles context vectors, F̃ xi,p, and to its personal bests context
vectors, F̃ bi,p. This is done in Steps 17, and 18 respectively. We provide here the
computation formula for F̃ xi,p. Same results hold for F̃ bi,p. F̃

x
i,p is computed according

to Deb’s rule as

F xi,p , −P xi,p −
∑

k∈WT downi

P x,ik,p

Gxi,p , P xi,p −min

{
Pe,n,

Pmaxwf

N

}
F̃ xi,p ,

{
F xi,p if Gxi,p < 0

Gxi,p otherwise

4.4.2.4 Simulation

In order to test DPSO2 algorithm, in the following we provide simulations for both
inactive and active constraints in the optimization problem. We first analyze the
former case. For this purpose we consider Horns Rev 1 wind farm, where N = 80,
and its layout is the previously shown one in Fig. 4.13. The test is carried out for a
free stream wind speed value v∞ = 7 m/s, and directions θW = 0, π/4, π/2. As a far
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(a) Reduced communication graph. (b) Optimal communication graph.

Figure 4.17: Horns Rev 1 communication graphs for (v∞, θ
W ) = (7, π2 ).

as the algorithm parameters are concerned, we associate Np = 5 particles to each
WT. Each particle has access to the information concerning a subset of particles of
dimension Nm = 2. Moreover we set the damping factor β as 0.8, (see Section 3.5
in Chapter 3). As we mentioned in Subsection 4.4.2.2, when constraints are not act-
ive, the required direct communication among the WTs can be further reduced with
respect to the active constraints case, and this can still lead to a good-enough solu-
tion. This is why, for each chosen wind direction, we aim at testing the algorithm
performance in both the case of reduced communication and minimal optimal com-
munication. By minimal optimal communication we mean the minimum values for
parameters ψd, and ψt that guarantee a near-to-optimum solution. For the sake of
simplicity though, let us set ψd = ∞, and only choose parameter ψt. This implies
that we reduce the wake model approximation due to the issue of information relay,
(see Remark 4.5), and we manage the lateral wake interference among the WTs
in the wake model via ψt. Thus, ψt is chosen in such a way that any additional
increase in its value leads to a negligible or absent improvement in the solution to
the optimal problem. In the reduced communication case instead, we set ψd, and ψt
parameters so that any WT only communicates with its immediately upstream and
downstream WT. Notice that in this case the model approximation due to informa-
tion relay is maximal. The considered communication cases represent two opposite
extreme situations as far as the model approximation is concerned.
Rather than providing ψd, and ψt values for each selected case, we give Cmin ,
mini=1,...,N (|WT upi | + |WT downi |), and Cmax , maxi=1,...,N (|WT upi | + |WT downi |),
where | · | indicates the set cardinality, as they give an idea of the required direct
communication among the WTs in the WF. This is shown in Table 4.5. An example
of communication graph Gc for θW = π/2 for both the reduced and optimal commu-
nication is given in Fig. 4.17, while an example of global best trajectories during
the run of DPSO2 for the same wind direction and both communication cases is
illustrated in Fig. 4.18. Similar trajectories are obtained for the other considered
wind directions, and this allows us to conclude on the good speed of convergence
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(a) Reduced communication case.
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(b) Optimal communication case.

Figure 4.18: Global bests trajectories during DPSO2 iterations for Horns Rev 1,
and (v∞, θ

W ) = (7, π2 ).

Table 4.6: Optimal solution and power gain for different communication settings.

Reduced Communication P Min. Opt. Communication P P gain

θW

0 90.30 MW 90.80 MW 0.56%

π
4

85.22 MW 86.20 MW 1.14%

π
2

64.56 MW 68.01 MW 5.35%

of the algorithm for the wind farm case too. The performance in terms of extrac-
ted power for the two communication graphs cases are compared and results are
reported in Table 4.6. From this it is clear that there might be situations, as for
θW = π/2, where a more extensive communication is justified by the resulting power
gains. In the same way, for other wind directions, considering a reduced commu-
nication, and thus an according more approximated wake model, does not lead to
important gain loss, and the overall algorithm speed of convergence is improved.
If for the inactive constraints case, considering an approximated wake model via

the use of both ψt and ψd parameters, leads to suboptimal yet acceptable problem
solutions, this is no longer the case when constraints are active. In particular, from
numerical simulations, it appears necessary to highly reduce or even eliminate any
model approximations due to information relay. This is why, as anticipated, for this
case, ψd is set as ∞, and the minimal required direct communication among the
WTs is managed via the only ψt parameter. As a matter of fact, this implies more
extensive communication to let the distributed optimization provide a feasible and
implementable solution. Thus, in order to quantify the needed direct communica-
tion, we first test DPSO2 algorithm for different WF sizes with equal Nx, and Ny

parameters and layout of Fig. 4.13. As for the previous inactive constraints case,
we carry out simulations for θW = 0, π/4, π/2, while we set v∞ = 15 m/s to let the
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Table 4.7: (Cmin, Cmax) for WFs of different size and v∞ = 15 m/s, i.e. with active
physical constraints.

N

25 49 81 169

θW

0 (4, 4) (6, 9) (7, 13) (15, 34)

π
4

(0, 4) (0, 7) (0, 11) (1, 24)

π
2

(4, 4) (6, 6) (8, 8) (12, 12)
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(a) Physical constraints.
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(b) Maximum allowed power constraint.

Figure 4.19: Global bests trajectories during DPSO2 iterations for Horns Rev 1,
and (v∞, θ

W ) = (15, π3 ).

physical constraints be active. For the sake of simplicity, these are the only con-
sidered active constraints. Results are illustrated in Table 4.7, where for each WF
configuration we report Cmin and Cmax associated to the selected ψt value. This is
chosen to be the minimal value letting the problem constraints be satisfied. Even-
tually we show DPSO2 convergence properties on the case of Horns Rev 1 for active
constraints. In particular, in Fig. 4.19a the global best trajectories during the run
of the algorithm are shown for the case of active physical constraints, while the case
of grid constraints is illustrated in Fig. 4.19b. In this last case the maximum power
constraint is set to Pmaxwf = 280 MW, i.e 70% of the maximum extractable one from
the wind. Both simulations are carried out for v∞ = 15 m/s, and θW = π/3, and
parameter ψt such that (Cmin, Cmax) = (0, 6). Moreover, for this last simulation
example we augmented Np to 15 as far as the associated particles to each WT are
concerned. Constraints are respected in all the aforementioned cases with obtained
power values which are not less the 99% of the maximum allowed one.
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4.5 Hierarchical Control Evaluation

4.5.1 Combining High Level Optimization and WT Controllers

In the previous sections, by comparing the power gains with respect to the clas-
sic greedy WF operating mode, we justified the interest in taking into account the
wake model when controlling a wind farm. However, as mentioned in Section 4.1,
these gains may not reflect the reality, as the high level optimization is based on
some simplified model assumptions for which the dynamics of the system are not
taken into account. For instance, it is often assumed that the local WT controllers
are able to perfectly stabilize the WTs in the optimal references provided by the
optimization step. This is generally not the case since, as we saw in Chapter 2,
controlling a WT poses a nontrivial problem itself. This is why in this section we
aim at evaluating the WF actual gains and performance by considering the whole
hierarchical architecture. In other words, the WF control is analyzed from the high
level optimization, performed in a distributed way via DPSO2, to the local WT con-
troller, which in this work is the one presented in Chapter 2. Note that the study
of this section is still based on a static wake model, i.e. any change in (v∞, θ

W ) is
supposed to cause an instantaneous change in the WF wind field.
As a first step, we need to let a proper interface between the high and low control
levels. Recall that optimization problem (4.11) provides the optimal axial induction
factor α? associated to each WT, while the WT local control is based on variables ωr,
ϑ, i.e. respectively the WT rotor angular speed, and its pitch angle. Moreover, the
optimization is based on a WT power function description that depends on a theor-
etical expression of the power coefficient, which we rename here Cthp , 4α(1− α)2.
On the other hand, the local controller is based on a power coefficient expressed as a
function of (ωr, ϑ), and the wind speed v, which is usually obtained experimentally
and provided by the WT producer as a lookup table. Recall that in Chapter 2 we
made use of CART turbine one, which we rename here Ccartp . Thus, we first set a
link between Cthp and Ccartp , by assuming the following relationship

Ccartp (λ, ϑ) = Cthp (α)η

where η ∈]0, 1[ is supposed to be a constant, and thus independent from α. This
implies that the optimal α provided by the optimization step stays unchanged as η
does not modify the WF cost function minima. In particular η is set as

η =
Ccartp (λo, ϑo)

Cthp (αbetz)

where we remind that λo, ϑo are respectively the tip speed ratio and pitch angle
operating points corresponding to the WT MPPT operating mode.
Once the optimization step is completed and α? delivered to the corresponding WT,
each wind turbine can compute its deloaded power reference to be tracked. This can
be simply done by deloading the MPPT power reference P o(v) of a certain factor,
where we remind that P o(v) is obtained from the estimated or measured wind speed
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Figure 4.20: Wind farm layout and wind values.

v. Thus, for any given v value, the deloaded optimal power reference P ? is computed
as

P ?(v) =
Cthp (α?)η

Ccartp (λo, ϑo)
P o(v)

This is tracked by the WT by means of the local controller shown in Chapter 2.
Recall that when tracking a deloaded power reference, the proposed controller ad-
ditionally allows to store a surplus of kinetic energy in the rotating masses.

4.5.2 A Wind Farm Example Test

In order to evaluate the proposed hierarchical control performance and power gain
we consider a 25-WT wind farm whose layout is shown in Fig. 4.20a. Its units
are the CART turbines introduced in Chapter 2, which we remind having Pe,n =

600 kW. In this simulation we aim at analyzing the actual WF power gain when the
system dynamics is taken into account. For this reason, we consider no active grid
constraints, and we choose a free stream wind speed value such that no nominal
power constraint is active. In Fig. 4.20b we report the free stream effective wind
speed signal v∞(t) during a time interval of 600 s. This is the estimated signal
from one of the most upstream WTs in the farm via the Kalman filter shown in
Chapter 2. The wind direction, shown in Fig. 4.20a, is set as θW = 0. Both v∞(t),
and θW are uniform along the WF length. For such WF configuration, the high
level optimization provides the optimal axial induction factors shown in Fig. 4.20a.
These happen to be equal for each WT having same y-coordinate. To such optimal
values it corresponds a theoretical power gain of ∼ 7.5% with respect to the greedy
WF operation. Fig. 4.21a shows the total WF mechanical power extracted from
the wind for both the cooperative and greedy operation, where the cooperative
one is illustrated in blue solid line, and the greedy one in red dash-dotted line.
The corresponding power gain percentage is reported in Fig. 4.21b in blue solid
line together with its average value in red dash-dotted line. This is about 5.4%.
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Figure 4.21: Wind farm greedy vs cooperative performance.
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Figure 4.22: Greedy vs cooperative power signals.

As anticipated, the theoretical gain is not attained, basically due to the WT local
controllers performance in tracking the reference optimal power signal. However,
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thanks to a good control of the WTs at local level, still a relatively good gain is
achieved, and this further motivates the wake effect phenomenon consideration when
controlling a wind farm. The energy gain deriving from the power one is shown in
Fig. 4.21c, where we report the surplus of energy delivered to the grid during the
simulation time with respect to the greedy case. Moreover, since in order to achieve
the aforementioned gain, the upstream WTs operate in deloaded mode, a surplus
of kinetic energy stored in the rotating masses can be obtained. The cumulative
surplus over the whole wind farm during the simulation is shown in Fig. 4.21d.
As stated in Chapter 2, this could be in turns used to let the WF participate to
some grid frequency control duties. Eventually, to get more insight into the wake
interaction phenomenon, we compare the power extracted from the WTs labeled
WT3, and WT12 in Fig. 4.22, for both the cooperative and greedy operation. In
particular, as expected, the most upstream WTs, such as WT3, extract less wind
power in the cooperative mode of operation. This is evidenced in Fig. 4.22a. As a
result, more power is left for the downstream WTs, such as WT12, which are thus
able to extract more power with respect to the greedy case. This fact is illustrated
in Fig. 4.22b. For both figures in Fig. 4.22, we indicate the power corresponding to
the cooperative case in blue solid line, and the greedy one in via red dash-dotted
line.

4.6 Conclusion and Future Perspectives

4.6.1 Conclusion

A hierarchical control for wind farm optimization under the effect of wake interac-
tion was presented. The control architecture is composed of two levels. The higher
one is responsible for solving a problem that is reduced to an optimization one via
some wake model approximations. A first novelty with respect to existing research
works is presented by considering the system constraints actively in the problem
formulation. This is then solved in a distributed way, which appears to be the most
natural way to treat large multi-agent systems such as the WFs.
The two proposed distributed metaheuristic optimization algorithms, DPSO1 and
DPSO2, were tested. These were chosen to treat the nonconvex WF optimization
problem. DPSO2 presented better performance in both speed of convergence and
optimality of the solution over DPSO1.
The overall system performance were then tested by also considering the local WT
controllers developed in Chapter 2. Even if it exists a gap between the theoret-
ical static optimization and the actual attainable gain when system dynamics is
considered, good performance is still achieved, and it consolidates the interest for
cooperative control of large wind farms.
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4.6.2 Future Perspectives

One main drawback of the considered distributed optimization algorithms when
applied to the WF optimization problem is the difficulty in treating problem con-
straints. If for DPSO1, in practice this issue restricts its applicability to small-size
WFs, on the other hand DPSO2 presents good scalability properties as the WF size
grows. This is obtained at the price of increasing in the number of needed direct
communications among the WTs. An interesting problem is thus represented by
finding other wake model approximations or algorithm modifications that would let
a reduced communication burden, in the same way as done when system constraints
are not active.
Another pitfall may be presented by the fact of having considered a static wake
model, in turns used to let the optimization problem formulation. This approxima-
tion is stronger as the WF size increases. Considering the wind dynamics in the WF
high level control sets an interesting problem and an opportunity for future research
work.
Eventually we conclude the chapter by recalling that in the presented control archi-
tecture, the low level control is decentralized, as the local WT controllers are not
allowed to exchange information. The optimal power references are tracked with no
additional modifications based on on-line local measurements. Since a distributed
communication among the WTs is set because of the high level optimization, better
performance could be achieved by letting the WT local controllers communicate
exploiting the existing communication graph. This case of distributed low control
level is treated in the next part.
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5.1 Preliminaries on Consensus Control

Although a particular form of consensus control technique was anticipated in
Chapter 3, we decide to devote this section to a more general introduction to

its main concepts and algorithms, as we believe they may be useful for a non-expert
reader in this control branch. The following notes are mainly based on [Ren 2008].

5.1.1 Consensus Concept Introduction

In recent years much research effort has been devoted to the area of multi-agent co-
operative control because of its wide range of applications and potential benefits. Co-
operation of a coordinated multi-agent network is sought via distributed algorithms
as they present some interesting advantages over their centralized counterpart. For
instance, as discussed in the previous chapters, they allow avoiding single point of
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failure, reducing communication and computational burden, etc. Distributed co-
ordination of multi-agent systems is based on the axiom that shared information
is a necessary condition for cooperation, [Ren 2008]. In other words, the piece of
information that has to be exchanged among the agents is the one needed to achieve
cooperation, and it is called coordination variable. This is the key to cooperation,
and it does not have to be confused with the control goal, which is in fact the one
of letting each agent coordination variable converge to a consistent value, i.e. meet
on a common one. The consensus problem is thus concerned with letting a group of
agent agree on the aforementioned variable of interest, via only neighbor-to-neighbor
communication, and with no information relay. In other words, the ultimate goal is
to impose a global system behavior via local interactions.

5.1.2 Fundamental Consensus Algorithms

Let us suppose a set ofN agents that are able to communicate on a given undirected1

graph, whose adjacency matrix is A = [aij ] ∈ RN×N , (see Appendix C for graph
theory preliminaries). The goal is to let the multi-agent system reach consensus on
a coordination variable x ∈ R, which for the sake of simplicity is here supposed to
be a scalar. Each agent disposes of a copy xi of x. Agreement on x is reached when
the set of copies of the coordination variable in the network are consistent, i.e. when
condition xi = xj , i, j = 1, . . . , N is satisfied.
If the communication network is sufficiently fast, then the update law of xi can be
described by a first-order differential equation of the form

ẋi = ui, i = 1, . . . , N (5.1)

where ui ∈ R is the distributed protocol to be chosen to let consensus. The fun-
damental consensus algorithms were initially developed on single integrator sys-
tem (5.1). If on the other hand, communication among the agents is set in discrete-
time, then similarly to what done for the continuous-time case, the local agent
update law can be described via a first-order difference equation.
The most common distributed protocol for system (5.1) is such that in closed-loop
it takes the form of

ẋi = −
∑
j∈Ni

aij(xi − xj), i = 1, . . . , N (5.2)

where Ni is the set of neighbors of agent i according to the communication network.
Intuitively, the distributed protocol in (5.2) pushes each agent state xi towards
its neighbors ones xj , j ∈ Ni. Such control is sometimes referred to as a P-like
distributed protocol, as the control action is proportional to the relative errors xi−
xj . By naming x , col(x1, . . . , xN ), then (5.2) can be written in matrix form as

ẋ = −Lx (5.3)
1The more general case of a direct graph, digraph, is beyond the interest of this work and it will

not be treated.
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where L is the Laplacian matrix associated to the communication network, (see
Appendix C). Similarly, for discrete-time communication the most simple consensus
algorithm defines the following update law

xi(k + 1) =
∑

j∈Ni∪{i}

bijxj(k)

where bij are such that
∑N

j=1 bij = 1, i = 1, . . . , N , and bij ≥ 0, i, j = 1, . . . , N ,
being 0 when there is no direct communication between the corresponding agent i,
and j. The overall system is thus described by

x(k + 1) = Dx(k) (5.4)

where D = [bij ] ∈ RN×N is row-stochastic2. Classic consensus results are then
based on analyzing conditions on the network topology under which systems (5.3),
and (5.4) reach consensus, i.e. xi − xj → 0, i, j = 1, . . . , N , and to which common
value the agents agree.
Note that consensus algorithm (5.2), and its discrete-time counterpart, let in general
every agent in the network have influence on the final common coordination variable
value. Another well-known consensus technique is concerned with letting one agent,
called leader, communicate with the remaining agents, called followers, without re-
ceiving information from them. Intuitively, if consensus is reached over the network,
then the coordination variable value on which agents agree is imposed by the leader,
as its dynamics is not influenced by the followers one. This technique, known as
leader-follower consensus, is useful when a particular desired global behavior has to
be imposed to the multi-agent system.

5.2 Discrete-time PID Consensus Control for LTI Sys-
tems

5.2.1 Related Works and Contribution

In the previous section we introduced the consensus control problem for a system of
agents whose dynamics are governed by a single integrator differential, or difference
equation. Finding a distributed protocol to solve the aforementioned problem has
been extensively treated for both single and double integrator dynamic agents, e.g.
[Ren 2008]. However, in a more general framework, general dynamics need to be
considered in order to describe the agents behavior. The consensus problem for this
case has been discussed for both continuous and discrete-time multi-agent systems.
In addition, it can be further divided in two main classes of problems, namely lead-
erless and leader-follower ones. As far as the former is concerned, the most employed

2A square matrix D = [bij ] is said to be row-stochastic if all its entries are nonnegative real
values and such that

∑N
j=1 bij = 1, i = 1, . . . , N . From this fact we know that D has an eigenvalue

in 1 with corresponding eigenvector 1. This is used to conclude on system consensus reachability.
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distributed protocol is given by a static state feedback law, also called P-like dis-
tributed control. One can cite, for instance, [Xi 2010, Li 2013b, Yang-Zhou 2014]
for the continuous-time framework, and [Li 2013b, You 2011, Su 2012, Ge 2013] for
the discrete one, where the consensus problem is led back to the one of simultan-
eously stabilizing multiple LTI systems. References [Li 2013b, Su 2012] also solve a
leader-follower problem where the leader has an autonomous time-invariant dynam-
ics. Another interesting problem is the one of finding the optimal P-like protocol gain
in order to improve consensus under system uncertainties, as in [Li 2012], and dis-
turbances as in [Oh 2014, Li 2011], for continuous time systems, and [Wang 2011b]
for discrete-time ones. The proposed approaches usually make use of some H2 or
H∞ constraints to be respected, and they are in general more involved than the one
of simultaneously stabilizing multiple systems. For instance, authors of [Li 2011]
provide necessary and sufficient conditions, for the continuous-time case to solve
the consensus problem while guaranteeing some properties on the aforementioned
norms. On the other hand, for discrete-time systems only sufficient conditions are
provided using results from robust control as in [Wang 2011b]. Dynamic distributed
controllers are also proposed for consensus achievement based on local output meas-
urements, e.g. [Li 2013b]. In the continuous-time framework, authors of [Xi 2012]
provide a controller with limited energy, while a general full order one is presented
in [Liu 2009] to achieve some H∞ performance.
Other possible structures have been explored too. Indeed, given the common P-like
controller, one can easily think of a more general PID-like structure. In continuous-
time, for instance, authors of [Carli 2008] propose a PI-like distributed algorithm
for single integrator dynamic agents, and in [Ou 2014] authors provide a PID-like
controller for general high-order SISO systems. A similar control design is ap-
plied to solve the leader-follower consensus under time-varying reference state, as
in [Ren 2007], and in its sampled-data counterpart [Cao 2009], where the authors
provide a PD-like protocol. Even though the presented literature review is far from
being exhaustive, one can remark that poorer attention has been devoted to discrete-
time dynamic protocols for general LTI MIMO systems, and this is on what we wish
to focus our attention in the sequel.
In particular, we propose a PID-like distributed controller for the aforementioned
systems, where the agents can communicate on a connected undirected graph, and
we provide two possible ways of tuning the controller parameters, based on the solu-
tion of given LMIs. This contribution has been object of our work of [Gionfra 2017a].
The approach we propose is used to solve two similar problems, namely the lead-
erless consensus under the presence of disturbances, and the leader-follower con-
sensus under a time-varying reference state. Our main results are based on the
work of [Wu 2011], which we adapted for distributed coordination purposes. The
fundamental feature of the aforesaid work is that MIMO PID parameter tuning
can be performed via LMIs, avoiding in this way, the need for solving BMIs. As
for classic control, the PID controller allows good performance despite being rather
simple. Concerning the leaderless consensus problem, for instance, it enhances the
disturbance rejection, and achieves results that a simple P-like protocol would not
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permit if the dynamics of the agents are general. Similar conclusions hold for the
leader-follower consensus problem with a time-varying reference state, where a P-like
control would undoubtedly reach lower performance.

5.2.2 Leaderless Consensus Under the Presence of Disturbances

5.2.2.1 Problem Formulation

We consider N identical agents governed by general discrete-time linear dynamics,
according to {

x+
i = Axi +B2ui +B1ωi, i = 1, . . . , N

yi = Cxi
(5.5)

where A ∈ Rn×n, B2 ∈ Rn×l, B1 ∈ Rn×h, C ∈ Rm×n, xi , xi(k) ∈ Rn and
x+
i , xi(k + 1) ∈ Rn are respectively the agent state at the current step k, and

at the next step k + 1, ui , ui(k) ∈ Rl is the agent control, ωi , ωi(k) ∈ Rh
its disturbance, and yi , yi(k) ∈ Rm is the measured output and the variable
on which agreement among the agents is sought. Moreover we require the system
to satisfy l ≥ m, i.e. to have a greater or equal number of inputs with respect
to its outputs. For the sake of leaderless consensus, a priori we do not require A
to be Schur stable. Indeed, as shown by [Ge 2013], A has a role in determining
the consensus function to which the agents converge under proper control. Here
it can be thought to be assigned by a previous control design step. The agents
can communicate on an undirected connected graph whose Laplacian matrix L has
positive minimum nonzero and maximum eigenvalues respectively equal to λL, and
λ̄L. Thus, we can address the problem of finding a distributed control law for ui such
that ‖yi/χi − yj/χj‖ is minimized for i, j = 1, . . . , N with respect to the disturbance
ω , col(ω1, . . . , ωN ), and where the weights are χi ∈ R+, i = 1, . . . , N , i.e. for the
sake of simplicity of analysis they are considered to be scalars. If error yi/χi−yj/χj =

0, i, j = 1, . . . , N , then we say that weighted consensus is achieved. By naming
D , diag(1/χ1, . . . , 1/χN), we additionally define matrix L̂ , DL, which satisfies
Lemma C.3, and whose positive minimum nonzero and maximum eigenvalues are
respectively λL̂, and λ̄L̂. In this work we focus on local controllers of the form

{
x+
ci = Acxci +Bcsi, i = 1, . . . , N

ui = Ccxci +Dcsi
(5.6)

where xci , xci(k) ∈ R2l is the agent controller state, and

Ac =

[
Il Il

0l×l 0l×l

]
2l×2l

Bc =

[
(Ki −Kd)

Kd

]
2l×m

Cc =
[
Il 0l×l

]
l×2l

Dc = [(Kp +Ki +Kd)]l×m

(5.7)
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where Kp,Ki,Kd ∈ Rl×m are gain matrices to be tuned, and where si , si(k) ∈ Rm
is defined as

si ,
N∑
j=1

aij

(
yi
χi
− yj
χj

)
(5.8)

where aij is the (i, j)-th element of the adjacency matrix A defined in Appendix C.
Thus the closed-loop system for agent i has dimension n̄ , n + 2l. As shown by
[Wu 2011], system (5.6) is a state representation of the discrete-time PID MIMO
controller, whose z-transform between si and ui is the following transfer matrix

Kp +Ki
z

z − 1
+Kd

z − 1

z
(5.9)

Refer to Appendix D.4 for an extended representation of (5.9). The problem can
be now restated as the one of finding matrices Bc, and Dc such that the effect of
disturbance ω on the weighted consensus is minimized.

Remark 5.1 Note that a more general analysis could be carried out by considering
different measured and controlled output variables for system (5.5). In particular
this is possible for all the results provided in this chapter that involve the solution of
the described LMIs in Theorem D.1 in order to impose an H∞ constraint. However,
for the sake of simplicity, this problem extension is not treated further in this work.

5.2.2.2 H∞ Weighted Output Consensus

Refer to Appendix D.1 to recall the definition of H∞-norm of a linear system. In
order to state the main result we introduce the following definition, similar to the
one given in [Wang 2015].

Definition 5.1 System (5.5) is said to achieve an H∞ weighted output consensus
with a performance index γ ∈ R+ if, for any initial condition, limk→∞ ‖yi/χi −
yj/χj‖ = 0 for i, j = 1, . . . , N when ω = 0, and the H∞ norms of the transfer

matrices, for i = 1, . . . , N , between ω and

(
yi
χi
− 1

N

N∑
j=1

yj
χj

)
are inferior to γ.

The following result is based on Theorem D.1 in Appendix D.4.

Theorem 5.1 Given N agents described by (5.5) on an undirected connected graph;
consider the distributed protocol of equations (5.6),(5.7),(5.8); then the agents achieve
H∞ weighted output consensus with performance index γ if there exist two symmetric
positive definite matrices P , P̄ ∈ Rn̄×n̄ such that the LMI conditions of Theorem D.1
are simultaneously satisfied for two LTI systems whose dynamic, input and meas-
ure matrices are respectively (A,B2, λL̂C), and (A,B2, λ̄L̂C), and they both have
controlled output matrix C, and disturbance input matrix B1.

Proof: The closed-loop dynamics for the generic agent i, by using (5.5),(5.6),
and by defining the augmented state ξi , col(xi, xci) ∈ Rn̄, and matrices C̄ ,
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[C 0m×2l], B̃ ,
[
B>1 0h×(2l)

]> is given by

ξ
+
i = Âξi + B̂

N∑
j=1

aij

(
ξi
χi
− ξj
χj

)
+ B̃ωi

yi = C̄ξi

where

Â =

[
A B2Cc
0 Ac

]
, B̂ =

[
B2DcC̄

BcC̄

] (5.10)

By naming ξ , col(ξ1, . . . , ξN ), y , col(y1, . . . , yN ), gathering together the closed-
loop agents dynamic, and performing the change of coordinates ξ̄ = (D ⊗ In̄)ξ, it
yields ξ̄+ =

(
IN ⊗ Â+DL ⊗ B̂

)
ξ̄ +

(
IN ⊗ B̃

)
ω̄

ȳ =
(
IN ⊗ C̄

)
ξ̄

(5.11)

where we named ω̄ , (D⊗Ih)ω, ȳ , (D⊗Im)y, and we used point (i) of Lemma A.3.
Similar to [Liu 2009], and [Wang 2011b], we define

ζi , ȳi −
1

N

N∑
j=1

ȳj

δi , ξ̄i −
1

N

N∑
j=1

ξ̄j

Thus ζi = C̄δi. Note that if ζi = 0 for i = 1, . . . , N then ȳi = ȳj , i.e. weighted
consensus is achieved. If we now name δ , col(δ1, . . . , δN ), and ζ , col(ζ1, . . . , ζN ),

we have that ζ =
(
IN ⊗ C̄

)
δ, and δ = ξ̄ − 1 ⊗ 1

N

∑N
j=1 ξ̄j =

(
L̄ ⊗ In̄

)
ξ̄, where L̄

satisfies the conditions of Lemma C.2. Thus ζ and ξ̄ variables are linked by relation-
ship ζ =

(
IN ⊗ C̄

) (
L̄ ⊗ In̄

)
ξ̄ =

(
L̄ ⊗ C̄

)
ξ̄. Considering the change of coordinates

δ =
(
L̄ ⊗ In̄

)
ξ̄ for system (5.11), it yields

δ+ =
(
L̄ ⊗ In̄

) (
IN ⊗ Â+ L̂ ⊗ B̂

)
ξ̄ +

(
L̄ ⊗ In̄

) (
IN ⊗ B̃

)
ω̄

=
(
L̄ ⊗ Â+ L̄L̂ ⊗ B̂

)(
δ + 1⊗ 1

N

N∑
k=1

ξ̄k

)
+
(
L̄ ⊗ B̃

)
ω̄

=
(
L̄ ⊗ Â+ L̄L̂ ⊗ B̂

)
δ +

(
L̄ ⊗ B̃

)
ω̄

where we used points (i) of Lemmas C.2, C.3, and A.3. According to the (ii) point
of Lemma C.2, we employ the orthogonal matrix U ∈ RN×N to define the change
of coordinates: δ̂ ,

(
U> ⊗ In̄

)
δ, ω̂ ,

(
U> ⊗ Ih

)
ω̄, ζ̂ ,

(
U> ⊗ Im

)
ζ, so that the
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system equations in the new coordinates are given by

δ̂+ =
(
U> ⊗ In̄

) (
L̄ ⊗ Â+ L̄L̂ ⊗ B̂

)
(U ⊗ In̄) δ̂

+
(
U> ⊗ In̄

) (
L̄ ⊗ B̃

)
ω̄

=
(

Λ̄⊗ Â+ Λ̄U>L̂U ⊗ B̂
)
δ̂ +

(
Λ̄⊗ B̃

)
ω̂

ζ̂ =
(
U> ⊗ Im

) (
IN ⊗ C̄

)
(U ⊗ In̄) δ̂ =

(
IN ⊗ C̄

)
δ̂

(5.12)

As shown in Lemma C.2, and C.3, being the last row and column of Λ̄ zeros, and
the last column of U>L̂U zero, we can split (5.12) in two by dividing the system
variables as δ̂ = col(δ̂1, δ̂2), ω̂ = col(ω̂1, ω̂2), and ζ̂ = col(ζ̂1, ζ̂2). It follows that, to
conclude on system stability, we can study the reduced order system described byδ̂+

1 =
(
IN−1 ⊗ Â+ L̂1 ⊗ B̂

)
δ̂1 +

(
IN−1 ⊗ B̃

)
ω̂1

ζ̂1 =
(
IN−1 ⊗ C̄

)
δ̂1

From Lemma C.3, it exists an invertible matrix V ∈ R(N−1)×(N−1) : V −1L̂1V ,
Λ = diag(λ1, . . . , λN−1), where 0 < λL̂ ≤ λi ≤ λ̄L̂ for i = 1, . . . , N − 1. Thus
we can define a further change of coordinates, such that δ̃1 ,

(
V −1 ⊗ In̄

)
δ̂1, ω̃1 ,(

V −1 ⊗ Ih
)
ω̂1, and ζ̃1 ,

(
V −1 ⊗ Im

)
ζ̂1. This yieldsδ̃+

1 =
(
IN−1 ⊗ Â+ Λ⊗ B̂

)
δ̃1 +

(
IN−1 ⊗ B̃

)
ω̃1

ζ̃1 =
(
IN−1 ⊗ C̄

)
δ̃1

(5.13)

Note that the transfer function matrix of (5.13) satisfies

‖Tζ̃1ω̃1
(z)‖∞ = ‖Tζ̂1ω̂1

(z)‖∞ = ‖Tζ̂ω̂(z)‖∞ = ‖Tζ̄ω̄(z)‖∞ (5.14)

It follows that we can impose an H∞ constraint on transfer matrix Tζ̄ω̄(z) by acting
on Tζ̃1ω̃1

(z). We can now separate (5.13) in N − 1 subsystems, each of them being
governed by

δ̃+
1i

=

[
x̃+

1i

x̃+
1,ci

]
=

[
(A+B2Dc(λiC)) B2Cc

Bc(λiC) Ac

][
x̃1i

x̃1,ci

]
+

[
B1

0

]
ω̃1i

ζ̃1i = Cx̃1i

(5.15)

System (5.15) can be equivalently seen as the closed-loop form of the two following
systems 

x̃+
1i

= Ax̃1i +B2ũi +B1ω̃1i

ỹ1i , (λiC)x̃1i

ζ̃1i = Cx̃1i{
x̃+

1,ci
= Acx̃1,ci +Bcỹ1i

ũi , Ccx̃1,ci +Dcỹ1i

(5.16)
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where ỹ1i , and ζ̃1i are respectively the measured and controlled output variables of
the controlled system. Thus, we can reformulate the problem as the one finding
matrices Bc, and Dc such that for i = 1, . . . , N − 1 the closed-loop system of (5.16)
is Schur stable when ω1i = 0, and to guarantee that ‖Tζ̃1i ω̃1i

(z)‖∞ < γ. A sufficient
condition to prove the existence of such a solution and a relatively simple way to
calculate the controller matrices are obtained by employing Theorem D.1. Indeed,
if we only had to stabilize one generic system i of the form of (5.16), then the
mentioned theorem could be directly applied as it states that, if it exists a symmetric
positive definite matrix Pi ∈ Rn̄×n̄ such that if the given LMI conditions are satisfied,
then closed-loop system (5.15) using controller (5.6),(5.7),(5.8) is such that

δ̃>1i(k + 1)Piδ̃1i(k + 1)− δ̃>1i(k)Piδ̃1i(k) < γ2ω̃>1i(k)ω̃1i(k)− ζ̃>1i(k)ζ̃1i(k)

which is an equivalent way to express stability condition on system (5.15) with pre-
scribedH∞ gain inferior to γ, (see recall on Bounded Real Lemma in Appendix D.2).
It is important to stress that the mentioned LMI conditions are affine in the system
matrices, variables and matrix Pi. We make use of this fact to provide sufficient con-
ditions for which it exists a controller of the considered form such that the mentioned
LMI is simultaneously verified for i = 1, . . . , N − 1. Since the generic eigenvalue
of L̂1 : λi is such that λL̂ ≤ λi ≤ λ̄L̂, then it always exists ρi ∈ R : 0 ≤ ρi ≤ 1

so that λi = ρiλL̂ + (1 − ρi)λ̄L̂. Notice that the systems to be stabilized, appear-
ing in the first set of equation in (5.16), can be seen as one single system with an
uncertain measurement matrix, whose parameter is λi. In other words, Ci , λiC,
and ∃ρi : Ci = ρiClow + (1 − ρi)Cup, where Clow , λL̂C, and Cup , λ̄L̂C, i.e.
it can be written as a convex combination of the extreme matrices Clow, and Cup.
Thus, as in [Wang 2011b], we make use of classic results of robust linear control,
and in particular by introducing an affine parameter dependent Lyapunov matrix
P (ρi) , ρiP + (1− ρi)P̄ , where P , P̄ are Lyapunov matrices solution of simultan-
eous LMI of Theorem D.1 written for respectively Clow, and Cup. See Appendix D.3
to recall classic results of robust control for LTI systems with parametric polytopic
uncertainties. Eventually, it is easy to show that if P , P̄ exist, then the control-
ler solves the problem ∀λ ∈ R : λL̂ ≤ λ ≤ λ̄L̂, and in particular for λ = λi, for
i = 1, . . . , N − 1. Such a controller is easily found from the solution of the afore-
mentioned LMI condition. Indeed among the LMI variables there are matrices Bc,
and Dc, from which it is easy to deduce the PID gain matrices Kp, Ki, and Kd by
employing relations in (5.7).

Remark 5.2 The last part of the proof gives evidence of the sufficiency of the given
conditions. This is due to the sufficiency of Theorem D.1 itself, as well as to the
fact of having imposed the stability condition for any real value between λL̂, and λ̄L̂,
while just a subset is actually required.

Remark 5.3 Note that the mentioned LMI conditions, if satisfied, guarantee that
the consensus error is minimized with respect to the disturbance. However they still
have a role in determining the common function to which the agents converge, called
consensus function.
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Remark 5.4 If the mentioned LMI has a solution, then the closed-loop multi-agent
system is guaranteed to be stable. In addition, having employed a PID structure
for the distributed controller may suggest that consensus should be reached for any
constant disturbance vector ω. Unfortunately, this is not automatically guaranteed
in the MIMO case by the mentioned LMI conditions, and in this framework it is
only verified a posteriori. Note that the MIMO PID controller is not block diagonal.
Nonetheless, if such LMI has a solution then, according to the well-known Fran-
cis3 equations, a necessary condition for the proposed controller to reject constant
exogenous signals is that l ≥ m.

5.2.2.3 Fast Weighted Consensus

In the previous subsection we saw how to tune a distributed controller such that
the closed-loop multi-agent system has a minimized additive disturbance effect on
weighted consensus reaching. This is achieved by imposing an H∞ constraint via
LMIs. There might be situations though in which different LMI conditions could be
used thus leading to a different tuning for the distributed controller. By proposing
the following definition, we aim at focusing on multi-agent system fast response with
respect to exogenous signals, such as disturbances, to achieve weighted consensus,
rather than imposing an H∞ constraint.

Definition 5.2 System (5.5) is said to achieve fast weighted consensus with per-
formance index τ ∈ R+ if for ω = 0, and any initial condition, limk→∞ ‖yi/χi −
yj/χj‖ = 0 for i, j = 1, . . . , N , and (1 − e−1)% of consensus is achieved in a max-
imum number of steps equal to dτe.

Note that the same kind of definition can be considered for sampled-data systems,
by saying that system (5.5) achieves fast weighted consensus with a time constant
inferior to τTs, where Ts is the system sampling time.
The following result is based on Theorem D.2 in the Appendix D.4.

Theorem 5.2 Given the system described by (5.5), where N agents can commu-
nicate on an undirected connected graph; consider the distributed protocol of equa-
tions (5.6),(5.7),(5.8); then the systems achieve fast weighted consensus with per-
formance index τ = −1/log(ψ), where ψ ∈ R : 0 ≤ ψ < 1, if there exist two symmetric
positive definite matrices P , P̄ ∈ Rn̄×n̄ such that the LMI conditions of Theorem D.2
are simultaneously satisfied for two LTI systems whose dynamic, input, and output
matrices are respectively (A,B2, λL̂C), and (A,B2, λ̄L̂C), and where the real con-
stants (a, b) to be set in Theorem D.2 are chosen to be (a, b) = (0, ψ).

Proof: We employ the same changes of coordinates used in the proof of The-
orem 5.1, yielding the N−1 systems of the form of (5.15), which can be alternatively

3If a dynamic LTI controller is capable of rejecting exogenous signals that can be described as
the output of an autonomous LTI exosystem (e.g. constants, ramps, etc.) from a linear system,
then it necessarily satisfies Francis equations, [Francis 1976]. These are linear matrix equations
built from the system matrices, the controller matrices, and the matrices describing the exosystem.
A necessary condition for Francis equations to have a solution is l ≥ m.
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b

Figure 5.1: FD region in the complex plane defined via parameters (a, b).

seen as the closed-loop form of the two systems appearing in (5.16), where matrices
Ac, Bc, Cc, and Dc are defined in (5.7). Thus we can formulate the control problem
as the one of finding matricesBc and Dc such that for i = 1, . . . , N−1 system (5.15)
is Schur stable when ω1i = 0. Moreover, since we are interested in speeding up
consensus reaching with respect to exogenous signals, we want to push the overall
closed-loop system eigenvalues closed to zero as much as possible. For this purpose
we invoke Theorem D.2, whose results can be directly applied to one generic sys-
tem of the form of (5.16). Here it is shown that, given two constants a ∈ R, and
b ∈ R+

0 , if there exists a symmetric positive definite matrix Pi such that the given
LMI condition in the theorem is satisfied, then system (5.16) is stable with all its
eigenvalues laying in the complex plane region defined by

FD ,
{

(<[λ],=[λ]) : (<[λ] + a)2 + =[λ]2 < b2
}

where λ is the complex variable, (see Fig. 5.1). Since the LMI condition is affine
in the system matrices, variables and Pi, exactly as done for Theorem 5.1, we em-
ploy classic results of robust control to simultaneously satisfy the mentioned LMI
for (5.16), and i = 1, . . . , N − 1, (see Appendix D.3). Eventually, in order to place
the closed-loop system eigenvalues closed to 0, we set a = 0, and b = ψ, where
ψ : 0 ≤ ψ < 1. Thus, all system eigenvalues are guaranteed to have a module
inferior to ψ. As a result, the system has the slowest time-constant inferior to
−Ts/log(ψ). In terms of number of iterations it is easy to see that such performance
is equal to a maximum value d−1/log(ψ)e of iterations. Eventually, from the LMI
solution, the PID gain matrices are found as in the previous theorem.

Note that similar concluding remarks to the ones in 5.2, 5.3, and 5.4 hold in this
case too.
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5.2.3 Leader-follower Consensus with Time-varying Reference State

5.2.3.1 Problem Formulation

The results shown in Subsection 5.2.2 can be easily applied to solve the following
leader-follower problem. Consider N+1 discrete-time linear agents, whose dynamics
are described by {

x+
0 = Ax0 +B1u0

y0 = Cx0{
x+
i = Axi +B2ui, i = 1, . . . , N

yi = Cxi

(5.17)

where A ∈ Rn×n, B1 ∈ Rn×h, B2 ∈ Rn×l, C ∈ Rm×n, x0 , x0(k) ∈ Rn is the
state of the N + 1 agent, called leader, y0 , y0(k) ∈ Rm is its measured output
and the variable on which we want the follower measured and controlled outputs
yi to converge, and u0 , u0(k) ∈ Rh is a time-varying unknown control acting
on the leader dynamics. We additionally supposed that l ≥ m. Concerning the
remaining N follower agents, system description equivalent to (5.5) holds. The
followers are assumed to communicate on an undirected connected graph whose
Laplacian matrix is L. The leader can pass information to a subset of followers. If
agent i receives information from the leader, then we set ai0 to 1, and 0 otherwise.
Thus we can define M , L + diag(a10, . . . , aN0), which is symmetric and positive
definite, [Cao 2012]. Differently from the leaderless consensus case, without loss of
generality we consider A to be Schur stable. The aim of the present problem is
indeed not the one of stabilizing each single agent, but rather to steer the follower
agents state to the leader one despite the presence of u0, which makes the leader
dynamics time-varying. Moreover, as done for the leaderless case, we consider the
general case of weighted consensus. In other words we aim at finding a distributed
control law to minimize ‖yi/χi− y0/χ0‖ for i = 1, . . . , N , where χi, χ0 ∈ R+. In order
to accomplish such objective we aim to employ the controller of form (5.6), (5.7),
where we consider a modified variable si to take into account the communication
with the leader agent, according to

si =

N∑
j=1

aij

(
yi
χi
− yj
χj

)
+ ai0

(
yi
χi
− y0

χ0

)
(5.18)

Eventually, by using D, which we recall to be D = diag(1/χ1, . . . , 1/χN), we can
additionally define M̂ , DM, which satisfies Lemmas A.1, and A.2 in Appendix A,
and it has minimum and maximum positive real eigenvalues equal to λM̂, and λ̄M̂
respectively.

Remark 5.5 Note that, similarly to Remark 5.1, a more general analysis could be
considered by taking into account different measured and controlled output matrices.
This extension is not treated in the sequel.
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5.2.3.2 H∞ Weighted Leader-follower Consensus

Intuitively the proposed controller is not capable of solving the leader-follower track-
ing problem, i.e. limk→∞ ‖yi/χi − y0/χ0‖ 6= 0 for i = 1, . . . , N , and for any vector
signal u0, because it acts as an unknown exogenous signal for the overall system
including the N + 1 agents. This is why we will focus on tuning the controller
matrices Bc, and Dc such that ‖yi/χi − y0/χ0‖ is minimized for i = 1, . . . , N .
We provide the following

Definition 5.3 System (5.17) is said to achieve an H∞ weighted output leader-
follower consensus with a performance index γ ∈ R+ if, for any initial condition,
limk→∞ ‖yi/χi − y0/χ0‖ = 0 for i = 1, . . . , N when u0 = 0, and the H∞ norms of the
transfer matrices, for i = 1, . . . , N , between u0 and yi/χi − y0/χ0 are inferior to γ.

The following result is similar to Theorem 5.1, and it is based on Theorem D.1 in
Appendix D.4.

Theorem 5.3 Given the system described by (5.17), where N follower agents can
communicate on an undirected connected graph, and one leader can communicate
with a non-empty subset of followers; consider the distributed protocol of equa-
tions (5.6),(5.7),(5.18); then the systems achieve H∞ output leader-follower con-
sensus with performance index γ if there exist two symmetric positive definite matrices
P , P̄ ∈ Rn̄×n̄ such that the LMI conditions of Theorem D.1 are simultaneously sat-
isfied for two LTI systems whose dynamic, input and measured output matrices are
respectively (A,B2, λM̂C), and (A,B2, λ̄M̂C), and they both have controlled output
matrix C, and disturbance input matrix −B1/χ0.

Proof: The proof is similar to proof of Theorem 5.1. By defining error ei ,
xi − x0χi/χ0, ξi , col(ei, xci), and ζi , Cei the closed-loop system for the generic
follower agent i is given byξ

+
i = Âξi + B̂

(
N∑
j=1

aij

(
ξi
χi
− ξj
χj

)
+ ai0

ξi
χi

)
+ χiB̃u0

ζi = C̄ξi

where Â, B̂, C̄ are defined in (5.10), and B̃ , [−B>1 /χ0 0h×2l]
>. Defining u0 ,

1N ⊗ u0, and u0 , (D ⊗ In̄)ũ0 ,we then gather the N agent equations togetherξ+ =
(
IN ⊗ Â+MD ⊗ B̂

)
ξ +

(
IN ⊗ B̃

)
ũ0

ζ =
(
IN ⊗ C̄

)
ξ

(5.19)

As done for the proof of Theorem 5.1, we consider the change of coordinates ξ̄ ,
(D ⊗ In̄)ξ, and define ū0 , (D ⊗ In̄)ũ0, ζ̄ , (D ⊗ In̄)ζ, system (5.19) can be
rewritten in the new coordinates asξ̄+ =

(
IN ⊗ Â+ M̂ ⊗ B̂

)
ξ̄ +

(
IN ⊗ B̃

)
ū0

ζ̄ =
(
IN ⊗ C̄

)
ξ̄
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From the definition of M̂ in Subsection 5.2.3.1, there exists an orthogonal matrix
U : U>M̂U , Λ = diag(λ1, . . . , λN ), where λi ∈ R : λi > 0 for i = 1, . . . , N , so
that we can define the change of coordinates ξ̄ , (U ⊗ In̄)ξ̂, ũ0 , (U ⊗ Ih)û0,
ζ̄ , (U ⊗ Im)ζ̂. By applying similar calculation as in the previous subsections, the
global system in the new coordinates isξ̂+ =

(
IN ⊗ Â+ Λ⊗ B̂

)
ξ̂ +

(
IN ⊗ B̃

)
û0

ζ̂ =
(
IN ⊗ C̄

)
ξ̂

(5.20)

As a matter of fact, it holds that

‖Tζ̂û0
(z)‖∞ = ‖Tζu0(z)‖∞

In other words, we can minimize the effect of u0 on the consensus error by acting
on system (5.20). Splitting (5.20) in N subsystems yields the following equation for
subsystem i

ξ̂+
i =

[
(A+B2Dc(λiC)) B2Cc

Bc(λiC) Ac

]
ξ̂i +

[
−B1/χ0

0

]
û0

ζ̂i = Cêi

(5.21)

where ξ̂i , col(êi, x̂ci). System (5.21) can be equivalently described as the connec-
tion of the two following systems

ê+
i = Aêi +B2ûi − B1/χ0û0

ŷi , (λiC)êi

ζ̂i = Cêi{
x̂+
ci = Acx̂ci +Bcŷi

ûi , Ccx̂ci +Dcŷi

(5.22)

The rest of the proof is equivalent to the last part of Theorem 5.1 proof, and it is
concluded by invoking Theorem D.1, whose LMI conditions have to be simultan-
eously satisfied for the two systems at the vertexes of the polytope having matrices
respectively (A,B2, λM̂C), and (A,B2, λ̄M̂C), and same controlled output, and dis-
turbance input matrices C, −B1/χ0. From the solution of the aforementioned LMIs
the controllers gains matrices are easily found as in the proof of Theorem 5.1.

Remark 5.6 Similar remarks to the ones in 5.2, and 5.4 hold for the leader-follower
consensus case too. In particular, recalling the latter, also in this case, having im-
posed a PID structure for the distributed controller is not sufficient to guarantee
rejection of constant u0 vectors in the MIMO case. A necessary condition though is
given by l ≥ m.
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5.2.3.3 Fast Weighted Leader-follower Consensus

Similar to what done for the leaderless consensus case we can consider a different
tuning for the distributed PID controller other than the one obtained from having
imposed an H∞ constraint on the transfer matrix between u0 and the consensus
error. Thus, similar to Definition 5.2, we provide the following

Definition 5.4 System (5.17) is said to achieve fast weighted leader-follower con-
sensus with performance index τ ∈ R+ when u0 = 0, if for any initial condition,
limk→∞ ‖yi/χi− y0/χ0‖ = 0 for i = 1, . . . , N , and (1− e−1)% of consensus is achieved
in a maximum number of steps equal to dτe.

The following result, similar to Theorem 5.2, is based on Theorem D.2 in the Ap-
pendix D.4.

Theorem 5.4 Given the system described by (5.17), where N follower agents can
communicate on an undirected connected graph, and one leader can communicate
with a non-empty subset of followers; consider the distributed protocol of equa-
tions (5.6),(5.7),(5.18); then the systems achieve fast leader-follower consensus with

performance index τ = − 1

log(ψ)
, where ψ ∈ R : 0 ≤ ψ < 1, if there exist two

symmetric positive definite matrices P , P̄ ∈ Rn̄×n̄ such that the LMI conditions of
Theorem D.2 are simultaneously satisfied for two LTI systems whose dynamic, input
and output matrices are respectively (A,B2, λM̂C), and (A,B2, λ̄M̂C), and where
the real constants (a, b) to be set in Theorem D.2 are chosen to be (a, b) = (0, ψ).

Proof: The proof employs the same change of coordinates as in the previous
one, so that we can restate the problem as the one of stabilizing system (5.21), for
i = 1, . . . , N ,via a PID controller whose matrices are defined in (5.7). The rest of
the proof is similar to the last part of the one of Theorem 5.2. In particular, since
system (5.21) can be seen as one system with uncertain parameter λi ∈ [λM̂, λ̄M̂],
we make use of LMI conditions of Theorem D.2, and we impose them to be simul-
taneously satisfied for two systems at the vertexes of the polytope having matrices
(A,B2, λM̂C), and (A,B2, λ̄M̂C). The proof is concluded as for Theorem 5.2.
Eventually, same remark as Remark 5.6 holds in this case too.

5.2.4 Simulation Example

First of all we carry out a numerical simulation to test the H∞ leaderless consensus
control. The case of fast leaderless consensus is not shown here as a more practical
example will be provided in the next chapter. For the sake of simplicity we consider
all consensus weights to be equal to 1, i.e. D = I. A more general example of
D 6= I is shown in the next chapter. We consider a network of 5 agents able to
communicate on a connected undirected graph as show in Fig. 5.2a. Each of them
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(a) Leaderless communication.
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(b) Leader-follower communication.

Figure 5.2: 5-agent communication graphs.
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Figure 5.3: System output trajectories for each agent and network average for γ =

0.9, when ωi(k) = 4νi(k) + ci, i = 1, . . . , 5.
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Figure 5.4: H∞ tuning: system output trajectories for each agent and network
average for γ = 0.63, when ωi(k) = ci, i = 1, . . . , 5.

is governed by (5.5), where

A =

 0.8182 0.0452 −0.0034

0 0.9888 −0.1492

0 0.1492 0.9888

 , B1 =

 0.1

0.05

0

 ,
B2 =

 1 0.4 0.2

0 1 0.5

0.5 0.5 0

 , C =

 1.2 0.8 1.4

1.4 −1.2 0.8

−0.5 0.7 1.2


(5.23)
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(a) First system output component trajector-
ies for γ = 0.9, when ωi(k) = 4νi(k) + ci,
i = 1, . . . , 5.
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(b) First system output component trajector-
ies for γ = 0.63, when ωi(k) = ci, i = 1, . . . , 5.

Figure 5.5: Zoom on first system output component for γ = 0.9 and γ = 0.63.

Note that (5.23) is not Schur stable because two of its eigenvalues lay on the unit
circle. Each agent is perturbed by a disturbance of the form ωi(k) = 4νi(k) + ci,
where νi is an aleatory variable with uniform distribution of probability in [0, 1],
and ci is some constant nonzero value. The PID gain matrices corresponding to an
H∞ performance index γ = 0.9 are

Kp =

 −0.1194 −0.0173 0.2030

0.1256 −0.1354 −0.6305

−0.6705 0.7183 1.6086

 ,Ki =

 0.0465 −0.1292 −0.0848

−0.0269 0.0419 −0.0795

−0.0459 0.0749 0.0571

 ,
Kd =

 −0.0002 0.0111 0.0102

0.0079 −0.0085 0.0081

0.0117 −0.0144 −0.0219


Fig. 5.3 shows the 5 agents trajectories, in colored dash-dotted lines, as well as
their average, in blue solid line. It is interesting to notice that for the considered
system, the aforementioned γ value is not the minimum achievable. The minimum
γ value allowing LMI feasibility is in fact, for this case, ∼ 0.63. As a matter
of fact γ influences the PID gain matrices and, ultimately, how the closed-loop
system respond to exogenous signals. Thus, there might be different optimal γ
values according to different kinds of exogenous signals, i.e. values that minimize a
particular signal influencing the consensus error. In our example, for the considered
disturbance signals, even if both 0.9, and 0.63 γ values allow problem feasibility, i.e.
in both cases the closed-loop system is Schur stable, yet a too small value of γ lets a
much slower disturbance rejection. This can be seen in Fig. 5.4, which shows worse
performance with respect to the previously illustrated system outputs in Fig. 5.3.
Moreover, in this latter simulation we considered only ωi = ci, where ci are the ones
used in the previous simulation, in order to evidence the system response to constant
disturbances when γ is too small. For the reader’s convenience we report the first
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ponent trajectories.

Figure 5.6: Fast consensus tuning: system output trajectories for each follower and
leader for step response when u0 = 20.
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Figure 5.7: H∞ tuning: system output trajectories for each follower and leader for
step response when u0 = 20.

multi-agent system output component for γ = 0.9 and γ = 0.63 in a zoomed window
in Fig. 5.5. Such behavior is not surprising as in the proposed controller, its tuning
is performed by acting on only one degree of freedom represented by γ, through
which we force the same H∞ gain to the closed-loop system for all frequencies.
Despite being rather simple, this technique is generally not optimal if some prior
knowledge of the exogenous signal is available to let a more fine tuning. Finally, by
comparing Fig. 5.3 where a random perturbation affects the system, and Fig. 5.4
where only constant disturbances are considered, it is interesting to notice how in
the former case the system disturbances distort the consensus function to which
agents converge. This gives evidence of what anticipated in Remark 5.3.
As a second simulation, we compare the two proposed PID gain tuning, namelyH∞
and fast consensus, for a leader-follower consensus problem. For this example we
consider communication graph of Fig. 5.2b, where the added agent 0 is the leader.
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Figure 5.8: Fast consensus tuning: system output trajectories for each follower and
leader for step response when u0 is time-varying.

The system dynamics is governed by equation (5.17), where

A =

 0.7711 0.4744 0.2475

0.1646 0.4487 0.1036

−0.8959 −0.8534 −0.2198

 , B1 =

 0.2

0.5

0.3


and matrices B2, and C are as in (5.23). The PID controller has the following gain
matrices as far as H∞ tuning is concerned

Kp =

 −0.1294 0.0542 0.0992

0.5981 −0.2985 −0.4420

−1.3653 0.7569 0.9839

 ,Ki =

 −0.0319 −0.0876 0.0306

−0.0456 0.0357 0.0022

−0.0173 0.0265 0.0045

 ,
Kd =

 0.0006 −0.0026 −0.0006

−0.0011 −0.0000 0.0010

0.0002 −0.0012 −0.0004


and gain matrices

Kp =

 −0.1295 0.0412 0.0863

0.6440 −0.2598 −0.4116

−1.4194 0.5845 0.8851

 ,Ki =

 0.0091 −0.1075 0.1110

−0.4595 0.0779 −0.2943

0.6309 0.1865 0.7436

 ,
Kd =

 −0.0025 0.0003 0.0011

−0.0011 0.0037 0.0002

0.0008 −0.0006 −0.0003


as far as fast consensus tuning is concerned. In order to have some insight on how
the two different kinds of tuning work on the considered leader-follower consensus
problem, we firstly test them on a classic step response example. Thus u0 is constant
and set equal to 20. According to the above discussion on the choice of γ, notice
that its selected value is not necessarily the lowest achievable. As a matter of
fact, the lowest γ value lets worse performance in this case too. Concerning the
choice of τ for fast consensus, since the only degree of freedom in the employed LMI
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is parameter ψ, allowing to push the system eigenvalues towards 0, it can cause
unwanted overshoots and oscillations for the sake of speed of convergence. As a
result, its value needs to be chosen according to the physics of the problem in order
to avoid too large stress on the controlled system. In this example, for instance,
we set ψ = 0.9 corresponding to performance index τ = 9.5, while the lowest τ
value achievable is ∼ 6.15. Results are illustrated in Fig. 5.6 concerning the fast
consensus, and in Fig. 5.7 for the H∞ one. From these, we are able to conclude that
fast consensus tuning leads to better performance in terms of rejection of constant
disturbances, as H∞ one lets the consensus error go to zero at a much slower pace.
Eventually, we test fast consensus tuning performance in the case of a time-varying
u0 signal. Results are shown in Fig. 5.8, where followers outputs are plotted against
the leader reference signal y0. In this case the chosen τ index is 6.15. The controller
shows good performance even if, as expected, consensus error cannot go to zero in
this case because of the presence of time-varying u0.

5.3 Conclusion

We presented a PID-like distributed protocol for general LTI MIMO discrete-time
agents communicating on an undirected connected graph. By employing LMIs we
showed how the controller gains can be tuned to solve two different, yet similar,
problems, namely a leaderless under system disturbances and a leader-follower under
time-varying reference state consensus problem. Treating the system disturbances in
the H∞ framework revealed good performance, whereas a gain tuning based on fast
response seems to be preferable when dealing with a leader-follower problem. Both
the employed LMI conditions, i.e. the H∞ and the fast consensus approach, allow a
simple MIMO PID controller tuning by acting on only one parameter, thus letting a
reduction in the implementation complexity. Nonetheless, the price paid for having
only one degree of freedom is that the this may itself introduce an unnecessary too
large level of conservatism. This was presented in the simulation example, where
setting the only γ value in the H∞ design does not allow to exploit prior knowledge
on system disturbances in an optimized way, and its tuning has to performed via a
trial and error approach. In future perspectives, an interesting alternative tuning
technique that may bring additional degree of freedom with only minor changes to
the control design approach, in the author’s opinion, is presented by the H∞ loop
shaping one. For instance, by adding a tunable filter on the disturbance input,
prior knowledge on the system disturbance could allow focusing on the reduction
of particular frequency ranges influence on the consensus error. Eventually another
drawback posed by the proposed control design is that our results are based on
robust control to deal with the problem of simultaneous stabilization of a given
number of systems. The given conditions are sufficient and therefore conservative.
In near future work it would be interested to study less conservative conditions when
treating the discrete-time consensus problem via LMI.
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6.1 Introduction

6.1.1 Problem Motivation

In Part II we saw that when considering the aerodynamic coupling among the wind
turbines, far from being a classic modus operandi of wind farms, the power max-

imization problem under system constraints is among the recent research interests
in new ways to exploit the wind source. In the framework of power maximization
under wake interaction, the control problem is typically handled via a first step of
optimization under the approximation of static system. As shown in Chapter 4,
this control step ascribes to a hierarchical control architecture in which it holds
position at the higher level. Its main role is to let cooperation among the WTs by
taking into account the knowledge of their physical couplings. In the case of large
WFs, this can be obtained by means of distributed algorithms, as the ones shown in
Chapter 3, since they typically let important benefits with respect to their central-
ized counterparts. As we shown in Chapter 4, the actual attainable power gain in
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such hierarchical architecture can be highly affected by the system dynamics, and
this validates the need for the design of efficient local WT controllers to support the
optimization step. Moreover, recall that the control architecture proposed in the
previous part is decentralized in the local WT controllers. In other words, once they
receive the power references, these are blindly tracked without adding any further co-
operation step among the WTs, which could allow taking into account disturbances
and local measurements to enhance the power extraction maximization. Indeed,
the optimal power references, computed according to the approximated model em-
ployed in the optimization step, are only subjected to modifications if either the free
stream wind conditions or the grid requirements change. From these considerations,
a resulting idea would be the one of letting the WTs local controllers exploit the
existing distributed communication channels, employed at the higher control level,
to add cooperation at the lower one. To move this idea forward, such cooperation
control should serve as an interface between the optimization level and the local WT
control, while being allowed to slightly modify the optimal power references around
their original value on the basis of local measurements. The purpose of adding the
aforesaid cooperation step at lower control level is mainly what motivates the work
of this part.

6.1.2 Related Works

It is important to point out that wind farm power maximization can be alternatively
seen as the problem of finding the optimal power sharing of the available wind
source among the WTs. Similar power sharing problems in the wind farm control
framework have been treated for instance in [Zhang 2013, Biegel 2013, Spudić 2015,
Baros 2017]. In [Zhang 2013], the problem of feeding a microgrid in islanded mode
via wind energy generation in order to meet the demanded power load is treated.
Even though in this case the wind turbines may not belong to a common wind farm,
the tackled problem is interesting from a power sharing perspective. In particular,
when the overall demanded power Pd is lower than the WF available one, the power
load is assigned to each WT in a simple proportional way via a prior step of WF
information discovery, which let knowledge of the demanded and available power in
a distributed way.
The remaining cited references all address a similar problem, namely the one of
letting a WF meet the required Pd, while sharing power among the WTs in order to
reduce the mechanical fatigue. These works are all based on the common assumption
that the WF operates in deloaded mode in order to have the additional degree of
freedom to share production in particular ways. However, in real plants this is not
the general case. Both the works of [Biegel 2013], and [Spudić 2015] are based on a
linearized wind turbine model. In the former one, the control problem is posed as
an LQR one, where the system inputs are chosen to be the WTs power references.
These have to satisfy an hard constraint in order to meet the required Pd value. This
is in turns eliminated by employing a suitable linear relationship among the power
references that parametrizes the feasible set. The overall control problem is then
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solved by imposing a distributed structure to the control law. In [Spudić 2015],
differently from [Biegel 2013], the optimization problem yielding the control law
is solved in a receding horizon fashion via MPC technique. This is implemented
in a distributed way by employing approaches that we previously mentioned in
Section 3.3 of Chapter 3, namely ADMM and dual decomposition technique. In both
the latter two references, fatigue reduction is achieved by minimizing a quadratic cost
function in the system variables, which in turns are related to the system mechanical
stress. Eventually, in [Baros 2017], the power constraint according to which the sum
of WT power productions has to meet Pd is coupled with the pre-assignment of a
fair load sharing condition of the form of

Pi
P oi

=
Pj
P oj

, i, j = 1, . . . , N

where N is the number of WTs in the wind farm and, Pi and P oi the generic i-th
WT power and MPPT one respectively. The aforesaid relationship makes unique
the combination of Pi, i = 1, . . . , N yielding Pd. Power sharing is then solved via
leader-follower consensus control in which a selected WT, namely the leader, has
knowledge of Pd value via communication with the grid operator.
In all the mentioned works the aerodynamic coupling among the WTs is not taken
into account in the control design. With the exception of the work in [Biegel 2013],
the wake effect is not considered in the validation step either.

6.1.3 Contribution

Our purpose is to propose a distributed control to let proper power sharing among
the WTs in order to maximize the power generation. To the author’s knowledge such
distributed control framework has never been applied to the problem here addressed,
and, despite having some common ideas concerning power sharing, it substantially
differs from the mentioned references.
Our contribution is two-fold. Firstly, an asymptotic output tracking control is ap-
plied at the WT level via FL to let the distributed problem be treated in the linear
systems framework. Moreover, this control step has to allow the WT to track a gen-
eral deloaded power reference, which is a necessary condition for wind farm power
maximization as discussed in Chapters 2 and 4. Although the local controller that
we presented in Chapter 2 allows the WT to work in the whole operating envelope
while tracking general power references, because of the MPC control step, it does
not particularly simplify the design of a distributed control law, which is the aim
of this chapter. The WT local controller here considered is in fact different from
the aforementioned one, and it is based on the work of [Boukhezzar 2005]. Here,
the authors propose an AOT-based controller for variable-speed fixed -pitch WTs
to perform power regulation in full load operation mode, i.e. pitch control is not
employed to let power tracking. This is why we modify the control design shown
therein, by proposing an approximated FL technique to let WTs track general power
references at low wind speed, as in this wind speed range deloading is performed for
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WF power maximization purposes.
As a second contribution, under the assumption of discrete-time communication
among the WTs, we first employ a leaderless distributed PID-like control technique
shown in the previous chapter to force the system to stabilize around the optimal
power sharing set points provided by the higher optimization level, under zero-mean
wind disturbances. The set power sharing problem has some common ideas with the
work of [Schiffer 2016], where weighted consensus control is employed to solve the
reactive power sharing problem in inverter-based microgrids via distributed voltage
control. Secondly, we show how, under power reference errors, the optimal WF
power sharing can be restored via a leader-follower technique. In both the leader-
less and the leader-follower cases the PID structure is justified as a simpler P-like
protocol would not allow a satisfactory disturbance rejection, as the dynamics of
the agents, i.e. the AOT-controlled WTs, are described by LTI systems with no
particular structure. Some of the results reported in the sequel have been object of
our work of [Gionfra 2017b].

6.2 Problem Formulation

6.2.1 Wind Turbine Model

The wind turbine model has been extensively presented in Section 2.2 of Chapter 2,
where a two-mass model was employed for control design and validation. Here, for
the sake of simplicity, we consider the one-mass model representation for the local
controller design. For the reader convenience we report in the following the main
system variables and equations. For further details refer to the aforesaid chapter.
Recall that the extracted power from the wind has the form of

Pr =
1

2
ρπR2v3Cp(λ, ϑ) (6.1)

where, once again, we employ the CART power coefficient shown in Fig. 2.2 in
Chapter 2 for control validation. As far as the control design is concerned though,
differently from what done in the FL+MPC design in Chapter 2, here we consider a
polynomial approximation of Cp. The differential equation describing the dynamics
of the WT rotor speed ωr is

Jtω̇r = Tr −Ktωr − Tem (6.2)

where Tr = Pr/ωr, Jt and Kt are respectively the total equivalent shaft inertia and
mass friction on the slow shaft side, and Tem = ngTg, being Tg the electromagnetic
torque of the generator and ng the gear box ratio. Moreover we neglect the first
order equation describing the dynamics of Tg (recall equation (2.11) in Chapter 2),
while, as done in Chapter 2, we consider the one used to describe the pitch angle
dynamics. In addition, we consider the pitch actuator system to be endowed with a
saturation system that can be modeled via a sigmoid function σ : R→ [ϑmin, ϑmax].
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The overall WT dynamics can be described by

τϑϑ̇s = −ϑs + ϑr

ϑ = σ(ϑs)

Jtω̇r =
Pr(ωr, ϑ, v)

ωr
−Ktωr − Tem

P = Temωr

(6.3)

where P is the electric power delivered to the grid if we neglect the generator losses.
The system inputs are Tem, and ϑr, while the wind speed v acts as a disturbance.
The feasible domain is X ,

{
(ωr, ϑ) ∈ R2 : ωr ∈ [ωr,min, ωr,max], ϑ ∈ [ϑmin, ϑmax]

}
.

6.2.2 Problem Statement

In the sequel, for consistency of notation, we add the index i to the WT variables
described in the previous subsection when referring to turbine i variables, and we
drop it when the results hold for any WT. Recall that when controlling a WT in
classic MPPT mode at low wind speed, the main control objective is to let the WT
track the constant tip-speed ratio

λo , arg max
λ

Pr(v, ϑ
o, λ) = arg max

λ
Cp(λ, ϑ

o)

being ϑo the constant value for which the maximum power extraction is attained
for any admissible wind speed value. For the considered CART turbine λo ∼= 8. It
has been shown in the previous part how, when considering the wake effect in the
optimization step of a farm of N WTs, the optimal value of Cp related to the generic
turbine i is such that C?p,i ≤ Cop , where C?p,i is the power coefficient related to the
optimal axial induction factor α?i , and Cop = Cp(λ

o, ϑo). As a matter of fact, this
implies that for any low wind speed value vi, a turbine i should track an optimal
deloaded power reference P ?i (vi), i.e. satisfying P ?i (vi) ≤ P oi (vi), where P oi is the
MPPT power value. According to the wake model employed in Chapter 4, as well
as the following

Assumption 6.1 For i = 1, . . . , N , vi is such that P ?i (vi) < Pn, where Pn is the
WT nominal power.

Then, the static optimization step needs to be run only when the wind direction
changes, as optimal values C?p,i do not depend on the wind speed value. Moreover,
we consider the following

Assumption 6.2 The average wind direction is considered to be slowly varying with
respect to the system dynamics. Thus, it is considered to be constant.

We can now formulate the control problem in two subproblems, the first of which
being
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Problem 6.1 Consider the system described by (6.3). Given an effective wind speed
signal v(t), and a time-varying reference trajectory P ref (t), verifying P ref (t) ≤
P o(t) ∀t ≥ 0, find the signals (ϑr(t), Tg(t)) ∀t ≥ 0 such that lim

t→∞
|P ref (t)−P (t)| = 0

for every initial condition (ωr(0), ϑ(0)) ∈ X such that P (0) ≤ P o(0).

Let us now assume that each local WT controller can measure, or estimate, the
effective wind speed vm,i(t) such that

vi(t) = vm,i(t) + vd,i(t), ∀t ≥ 0

Thus vd,i represents a nonmeasurable time varying disturbance for turbine i.

Assumption 6.3 We consider small zero-mean disturbances vd,i with respect to
vm,i, and slowly-varying with respect to the dynamics of (6.3).

Each WT can compute the optimal power reference, as described in Section 4.5
of Chapter 4, from its maximum available power P oi , and optimal axial induction
factor, according to

P fwi , Pi(vm,i) =
C?p,i
Cop

P oi (vm,i) (6.4)

which is optimal in nominal conditions, i.e. P ?i (vi) =
C?p,i
Cop

P oi (vi), when vd,i ≡ 0.

We can additionally require the WTs to meet an optimal relative power sharing
condition given by

Pi
χi

=
Pj
χj

i, j = 1, . . . , N (6.5)

Indeed, by naming P o∞ the maximum power that a WT can extract from the wind
if there is no wake effect, from (6.4) we have that

Pi
C?p,i

=
P oi
Cop

= νi
P o∞
Cop

, i = 1, . . . , N

Pi
νiC?p,i

=
Pj

νjC?p,j
i, j = 1, . . . , N

We name χi , νiC
?
p,i ∈ R+, and where

νi =
P oi
P o∞

=

(
vi
v∞

)3

i = 1, . . . , N

are constant values for any value of v∞ according to Assumptions 6.1, and 6.2,
being v∞ the free stream wind speed. In the sequel, in order to make the difference
with condition (6.5) clear, we will refer to (6.4) as the absolute power reference.
Once again, this is optimal if the corresponding vd,i = 0. Despite being redundant
information with respect to (6.4) in nominal conditions, as it will be made clear in
the sequel, condition (6.5) provides additional signals that can be exploited when
the system is subject to disturbances. We can now state the second subproblem.
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Problem 6.2 Given N identical WTs, allowed to communicate on an undirected
connected graph Gc; given optimal values C?p,i, and χi, i = 1, . . . , N ; find P refi (t) ∀t ≥
0, i = . . . , N such that each Pi tracks (6.4), while minimizing the error |Pi/χi−Pj/χj|,
i, j = . . . , N , under the presence of vd,i(t).

The idea behind Problem 6.2 is to exploit additional information concerning optimal
WTs relative power values in order to even out the system disturbances on the
optimal power sharing defined by the optimization step.

6.3 Control Design

6.3.1 Wind Turbine Control for Deloaded Mode

According to the optimization step, it turns out that every WT causing a reduction
of available wind power of another one, is very likely to be subject to an optimal Cp
value such that C?p,i < Cop , i.e. strictly inferior. Thus, WTs whose C?p,i verifies C

?
p,i =

Cop should simply perform classic MPPT regardless the disturbances of the system
and the other WTs operating points, and they can be controlled with classic local
controllers. In the sequel we only consider WTs that have to be strictly deloaded
with respect to their P oi .
Following [Boukhezzar 2005], the local control is composed of a first loop to control
ωr. We impose a first order dynamics to the rotor speed tracking error εω , ωref −
ωr, i.e.

ε̇ω + a0εω = 0

by choosing a0 ∈ R+. If we name w , a0ω
ref + ω̇ref , this is attained by using (6.2)

as
Tem = Tr − (Kt − a0Jt)ωr − Jtw (6.6)

Differently from [Boukhezzar 2005], we choose to regulate the power output P by
acting on the pitch angle. We impose a first order dynamics to the electric power
tracking error εp , P ref − P , i.e.

ε̇p + b0εp = 0 (6.7)

by choosing b0 ∈ R+. This is attained via FL on (6.3) by choosing the feedback
linearizing input

ϑr =
1

β(ωr, ϑs, v)

(
Ṗ ref − ωr

∂Tr
∂v

v̇ +
ωr
τϑ

∂Tr
∂ϑ

dσ

dϑs
ϑs + Jtẇωr

+

(
2(Kt − a0Jt)ωr − Tr + Jtw − ωr

∂Tr
∂ωr

)
(−a0ωr + w) + b0εp

)
(6.8)

where
∂Tr
∂ωr

,
∂Tr
∂ϑ

, and
∂Tr
∂v

are functions of (ωr, ϑ, v), and where β(ωr, ϑs, v) ,

ωr
τϑ

dσ

dϑs

∂Tr
∂ϑ

.
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As pointed out in Chapter 2, there exist points in which β = 0, called singular
points, i.e. points in which (6.8), feedback linearizing input with respect to output
P , is not defined. These points are determined by the solution of

∂Cq
∂ϑ

(ωr, ϑ, v) =
∂Cq
∂ϑ

(λ, ϑ) = 0

being Cq ,
Cp
λ
, and because

β(ωr, ϑs, v) =
ωr
2τϑ

ρπR3v2 dσ

dϑs

∂Cq
∂ϑ

(ωr, σ(ϑs), v) ∼=
ωr
2τϑ

ρπR3v2∂Cq
∂ϑ

(ωr, ϑ, v)

in the domain of interest of ϑ, and ωr, v > 0. In Fig. 6.1a the white area represents
Λ = {(λ, ϑ) : (ωr, ϑ) ∈ X ∧ β < 0}. If ωref is chosen to let λ be in a neighborhood
of λo, and ϑ > ϑo in order to deload the WT, where ϑo ' 0◦ for CART turbine, then
it is clear that β is negative-valued in the points of functioning of interest. In order
to ensure that the trajectories of the closed loop system, defined by (6.3), (6.6),
(6.8), do not pass through singular points, differently from what done in Chapter 2,
we consider a modified FL function for ϑr, by replacing the β function appearing
in (6.8) with

β̂ ,
ωr
2τϑ

ρπR3v2 dσ

dϑs

(
∂Cq
∂ϑ

(λ, ϑ)− ε(λ, ϑ)

)

ε(λ, ϑ) ,

%max

{
∂Cq
∂ϑ

(λ, ϑ), 0

}
if
∂Cq
∂ϑ

(λ, ϑ) 6= 0

ε1 otherwise

(6.9)

where ε1 is a small positive value, and % > 1 is a tunable parameter to let some
margin to have β̂ negative-valued in the system trajectories. Thus we obtain an ex-
panded negative-valued area Λ̂ =

{
(λ, ϑ) : (ωr, ϑ) ∈ X ∧ β̂ < 0

}
, shown in Fig. 6.1b.

The idea is thus to perform an approximated FL only when the system trajector-
ies come close to a singular point. Clearly, in this case, the chosen ϑr no longer
guarantees satisfaction of (6.7). Nonetheless, under proper choice of ωref , and de-
loading technique, approximation (6.9) may occur only during transients. We can
summarize the results in this subsection by stating the following

Theorem 6.1 Given system (6.3), controlled via (6.6), and (6.8), where the β func-
tion is substituted with (6.9). For any initial condition (ωr(0), ϑ(0)) ∈ Λ̂, the system
trajectories are bounded if parameters b0, ε1, and % are chosen such that ε1 > 0

is sufficiently small, % > 1, and b0 > − %
1−% . In addition, if ∃t̄ ≥ 0 such that

∂Cq
∂ϑ

(λ(t), ϑ(t)) < 0 ∀t ≥ t̄, then lim
t→∞
|P ref (t)− P (t)| = 0.

Proof: First of all, initial conditions in Λ̂ imply β̂(0) < 0, then ε1 > 0, % > 1

allow β̂(t) < 0 ∀t ≥ 0. In particular β̂(t) 6= 0 ∀t ≥ 0, thus (6.8) is well-defined. Note
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(a) Λ, white area, set of (λ, ϑ) such that
β(λ, ϑ) < 0.

(b) Λ̂, white area, set of (λ, ϑ) such that
β̂(λ, ϑ) < 0.

Figure 6.1: Singular points with and without β approximation.

that initial conditions considered in Problem 6.1 satisfy β̂(0) < 0, belonging to Λ̂

shown in Fig. 6.1b. The system dynamics in closed loop is given by

ε̇p =

(
−b0 + 1− β

β + βε

)
εp +

(
1− β

β + βε

)
ϕ(ς) (6.10)

where we named βε , β̂ − β, and ϕ(ς) the function composed of all the terms
appearing in the right factor of (6.8) deprived of the term b0εp, and being ς ,
(ωr, v, ϑs, v̇, w, ẇ, Ṗ

ref ), i.e.

ϕ(ς) , Ṗ ref − ωr
∂Tr
∂v

v̇ +
ωr
τϑ

∂Tr
∂ϑ

dσ

dϑs
ϑs + Jtẇωr

+

(
2(Kt − a0Jt)ωr − Tr + Jtw − ωr

∂Tr
∂ωr

)
(−a0ωr + w)

The term
(

1− β

β + βε

)
ϕ(ς) is bounded in the trajectories thanks to the choice of

βε, and being ϕ a continuous function on a compact set. This is compact because
the wind is limited, w, ẇ, Ṗ ref are chosen to be so, ωr is bounded thanks to (6.6),

and term
dσ

dϑs
ϑs is bounded. Thus it will be considered as a bounded input of (6.10)

to simplify the analysis. Finally system (6.10) with ϕ(ς) ≡ 0, given by

ε̇p =



(
−b0 + 1− 1

ε1

)
εp if β = 0(

−b0 + 1− 1

1− %

)
εp if β > 0

−b0εp otherwise

(6.11)

is stable if, for instance, we choose b0 > −
%

1− %
, and ε1 < 1. This can be proved

by choosing V (εp) , 1
2ε

2
p as a common Lyapunov function for the family of sys-
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tems (6.11), (see [Liberzon 2012]). Eventually, if for some t̄ ≥ 0 :
∂Cq
∂ϑ

< 0 ∀t ≥ t̄,

then (6.10) reduces to ε̇p = −b0εp, thus P → P ref for t→∞.

Remark 6.1 Concerning ωref , we make the choice to use the MPPT signal ωor =
λov
R sufficiently filtered of its high frequency components. There are different motiv-
ations to support this choice. First of all, if v varies rapidly so it does ωor , then if we
consider ωref = ωor , its variation would directly effect ϑr via (6.8), and in turns ϑ.
This fact risks to make ϑ hit the saturation constraints of the sigmoid function, and
more in general, to not let the constraints on ϑ̇ be respected, as in this framework
they are only verified a posteriori. Secondly, if ωref varies too rapidly, by empir-
ical results it turns out that the closed-loop system trajectories are more likely to
approach singular points, letting the activation of ε(λ, ϑ) defined in (6.9), and not
allowing satisfaction of (6.7). On the other hand, filtering ωor let (6.8) be defined,
i.e. it fulfils the requirement of tracking the desired deloaded power reference. The
physical explanation of this fact is that for a given deloaded P ref there exist infinite
pairs (ωr, ϑ) ∈ X that let a WT track it, (see Section 2.4 of Chapter 2), and by fil-
tering ωor , we are simply considering another possible choice of couples (ωr, ϑ) than
the one in which ωr = ωor .

Remark 6.2 The chosen deloading approach is similar to the deloading via pitch
control technique shown in Section 2.4 of Chapter 2. Differently from the one em-
ployed in the FL+MPC design, however this technique does not allow any additional
energy storage in the rotating masses.

Remark 6.3 The particular choice of ωr to deload the WT is made a priori, and
this allows to avoid reference computation for ωr by solving an optimization problem,
as done for FL+MPC control scheme of Chapter 2 in problem (2.16).

Remark 6.4 The described control approach is conceived for a WT working in strict
deloaded mode. Even though a priori it could be also employed for MPPT control, the
closed-loop system would not present a satisfactory tracking of P o power reference,
i.e. the MPPT one. This is basically due to the fact that it is impossible to track ωor ,
letting a mechanical power equal to P o, while simultaneously reproducing the same
power value P o as electric power output.

6.3.2 Disturbance Effect and Additional Local Control Settings

From now on we carry out the analysis under the following

Assumption 6.4 Trajectories of the closed-loop system described by (6.3), (6.6),

(6.8) verify
∂Cq
∂ϑ

< 0.

As previously mentioned, we assume that turbine i local controller is able to measure
vm,i such that vi = vm,i + vd,i. The effect of vd,i on the closed loop dynamics can be
thus approximated as

ε̇p,i = −b0εp,i + µ1(ζ̂i)vd,i + µ2(ζ̂i)v
2
d,i + µ3(ζ̂i)v̇d,i (6.12)
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obtained via first order Taylor expansion of the functions depending on vi, in a

neighborhood of vm,i, e.g. Tr(vi) ∼= Tr(vm,i) +
∂Tr
∂v

(vm,i)vd,i, and where ζ̂i ,

(ωr,i, ϑi, vm,i, v̇m,i). Functions µ1, µ2, µ3 are reported in Appendix B.4. Accord-
ing to Assumption 6.3 we neglect µ3(ζ̂i)v̇d,i. Moreover, by numerical simulation, the
contribution of term µ2v

2
d,i can be neglected with respect to µ1vd,i. On the compact

set on which µ1 is defined, the function satisfies µ1,min ≤ µ1 ≤ 0, thus in the sequel
we treat µ1 as a parametric uncertainty, and we drop its dependency on ζ̂i for ease
of notation. Being interested in a discrete-time communication set-up among the
WTs we shall consider system (6.12) discretized at sampling time Ts, given by[

ξi(k + 1)

Pi(k + 1)

]
=

[
0 0

−1 (1− Tsb0)

] [
ξi(k)

Pi(k)

]
+[

1

(1 + Tsb0)

]
P refi (k) +

[
0

µ1Ts

]
vd,i(k)

(6.13)

where we used Euler method, we approximated Ṗ refi
∼=

(P refi (k)− P refi (k − 1))

Ts
,

and we named ξi(k) , P refi (k − 1).
System (6.13) is required to track the optimal power reference provided by the higher
optimization step according to (6.4). For the moment, let us assume that P fwi ,
i = 1, . . . , N are not affected by wind measurement error, i.e. P fwi (vi). Because of
the presence of vd,i in (6.13), affecting the controlled WT dynamics, setting P refi =

P fwi does not guarantee Pi to asymptotically converge to P fwi , nor satisfaction of
relationship (6.5), describing the optimal relative power sharing values among the
WTs. Under the assumption of communicating WTs on an undirected connected
graph Gc, whose Laplacian matrix is L, one could think to exploit the leaderless
PID-like distributed protocols developed in Chapter 5 to reduce the effect of vd,i on
weighted consensus (6.5) among the WTs, by acting on P refi . Nonetheless, even if
the distributed PID reveals good performance in rejecting system disturbances on
the consensus error, as pointed out in Remark 5.3 in Chapter 5, still the consensus
function to which the system converges depends on the disturbance signals. As a
result, even if relative distances on power values according to (6.5) are respected
thanks to consensus control, there is no general guarantee for the power values to
reach P fwi . This is why before continuing our analysis on WF consensus control,
we introduce an additional local PI loop to system (6.13) to let convergence to
the absolute power value P fwi . Note that the two integral actions, namely the
internal loop one controlling Pi to P

fw
i , and the distributed control one controlling

Pi to satisfy condition (6.5), are not in contradiction if P fwi are measurement error
free. Indeed, by naming D , diag( 1

χ1
, · · · , 1

χN
) as done in Chapter 5, and P fw ,

col(P fw1 , . . . , P fwN ), then by construction, LDP fw = 0, which is exactly the weighted
consensus condition seek by the distributed protocol. As a consequence, in such
case of perfect information on P fwi , the distributed consensus is not required to let
condition (6.5) be satisfied, as it is already ensured by the internal PI. However, even
in this case, consensus control can be employed to enhance closed-loop performance.
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An example of the fact will be provided in Section 6.4.
The above discussion holds for the case in which the wind disturbance vd,i only
affects the system equations as shown in (6.13). However, vd,i has also a role in
the computation of P fwi , since in reality we have P fwi (vm,i) 6= P ?i (vi). In this case,
condition LDP fw = 0 generally does not hold, i.e. the power references provided
to the local WT controller may not let satisfaction of the optimal relative power
sharing. Under these circumstances, the distributed PID does have a role in forcing
weighted consensus among the WTs. Moreover, the two integral actions may come
to a conflict. In the following we decide to give priority to consensus seeking by
allowing the distributed control action modify the local error P fwi − Pi. This is
achieved by considering the dashed arrow shown in the control scheme of Fig. 6.2,
where the overall WT control is illustrated. The idea behind this choice is that
zero-mean disturbances on the local power references P fwi can be globally evened
out by enforcing relative power distances among the network of wind turbines.
By naming K l

I , and K
l
P respectively the integral, and proportional gains of the PI,

we can write (6.13) in closed-loop as xi(k + 1) = Axi(k) +B2ui(k) +BfwP
fw
i (k) +

Bwvd,i(k), where

A ,


1 0 −K l

ITs
1 0 −K l

P

(1 + Tsb0) −1
(1− Tsb0
−Kl

P (1 + Tsb0))

 , Bw ,

 0

0

µ1Ts



B2 ,

 K l
ITs
1

(1 + Tsb0)

 , Bfw ,

 K l
ITs
K l
P

(1 + Tsb0)K l
P


(6.14)

and where we named xi , col(ςi, ξi, Pi), being ςi the state of the local integral action,
P fwi a forward signal, and ui is left as a degree of freedom to let distributed control.
Note that other choices for the introduction of ui in the internal WT control loop
would have been possible.

6.3.3 Wind Farm Distributed Protocol

Leaderless Consensus

Consensus control over the WF can be employed to let satisfaction of relation-
ship (6.5) over a set of N controlled WTs of the form of (6.14). This can be done by
making use of the tools concerning leaderless consensus shown in Chapter 5. Both
Theorems 5.1, and 5.2 can be applied. This is simply obtained by choosing as A,
B2 the matrices of (6.14), C = [0 0 1], i.e. Pi is the measured and controlled
output, and B1 = [Bfw Bw], i.e. P fwi , and vd,i are both considered as disturbances
with respect to the weighted consensus. However, notice that if the H∞ approach
of Theorem 5.1 is selected, then the disturbance matrix B1 needs to be considered
as an uncertain one as it depends on µ1 via Bw. Eventually, in order to respect
Assumption 6.4, we require
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P fwi
K l
I

∫
K l
P

AOT
control

PID{Pj |j ∈ Ni}

+

+ + +

P refi

−

Pi

+

ui

+

Pi

Figure 6.2: WT control scheme: the local control is composed of an AOT step and
of a PI; the distributed control has a PID structure.

Assumption 6.5 All vd,i are such that the corresponding P refi , depending on (6.4),
on the local PI control, and on the distributed PID, is always lower than the real
maximum power that turbine i can extract from the wind.

Remark 6.5 The considered control approach relies on Assumption 6.3. In par-
ticular disturbances vd,i are supposed to be zero-mean signals. If there exist WTs
for which vd,i has not zero mean, then the corresponding absolute power reference
P fwi would be in average different from the optimal one. Unfortunately under these
circumstances, there is no hope for the optimal absolute power sharing to be satis-
fied by the only means of consensus control, even if optimal relative power sharing
condition (6.5) is satisfied. This is due to the fact that in a network of agents
communicating on an undirected graph, each of them has a role in determining the
consensus function to which they converge. Thus, WTs affected by nonzero-mean
wind disturbance would make the whole network deviate from the optimal absolute
power values in average.

Improving Performance via Multirate

We conclude the discussion on WF leaderless consensus by mentioning the possibil-
ity to enhance the presented control capabilities in rejecting disturbances by means
of the well-known multirate technique, (see e.g. [Monaco 2001, Cimino 2009]).
Without going into the details of the aforementioned digital control technique, we
propose to show a simple application to the particular case of WF control, object of
this chapter. The basic idea of multirate sampling consists in letting the control ui
of system (6.14) vary q times between two sampling instants, during the sampling
time Ts. This is attained by resampling system (6.14) at Tc , Ts/q. For the sake of
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simplicity, let us not consider disturbance matrix B1. Resampled system (6.14) is
thus described at Tc sampling time by

xi(h+ 1) = Fxi(h) +Gui(h)

where F , A
1/q, G ,

q−1∑
j=0

F j

−1

B2

and where h indicates sampling instants at Tc sampling time. Let us assume that
system (6.14) measured and controlled output is Ĉ = I ∈ R3×3. Then, recalling
Remark 5.4, a reasonable choice for Tc is q = 3. Thus, system (6.14) with multirate
evolves at the original sampling time Ts according to

xi((k + 1)Ts) = Axi(kTs) +
[
F 2G FG G

]︸ ︷︷ ︸
,B2,mr

 ui(kTs)

ui(kTs + Tc)

ui(kTs + 2Tc)

 (6.15)

where we made the dependence on Ts, and Tc explicit, for the sake of clarity.
Matrices Ĉ, and B2,mr can be now employed in Theorem 5.1, or 5.2 to compute
the MIMO PID distributed controller.

Leader-follower Consensus

As we mentioned in Remark 6.5, leaderless consensus technique fails to restore op-
timal absolute power references when some WTs in the wind farm are subject to
nonzero-mean wind measurement errors. This is due to the fact that all the WTs
communicating on the undirected graph contribute to the common consensus func-
tion. However, if the WTs being affected by nonzero-mean wind disturbances can be
detected and isolated then, for instance, the leader-follower techniques developed in
Chapter 5 can be employed to restore the optimal power references in the concerned
WTs. This could be achieved by letting the faulty WTs be follower agents, and the
unfaulty WT network serve as a leader.
If, for the sake of simplicity, we consider only one WT not to be affected by abso-
lute power reference error, and we thus let it be the only leader in the WF, then
either Theorem 5.3 or 5.4 can be applied by choosing A, B2 the matrices of (6.14),
C = [0 0 1], and B1 = Bfw. In addition to what shown in the leader-follower
development of Chapter 5, in this case either the followers and the leader are addi-
tionally subject to disturbances via matrix [Bfw Bw], i.e. P fwi , and vd,i are both
considered as disturbances with respect to the weighted consensus.

6.4 Simulations Results

In this section we test the proposed WF consensus control via some numerical simu-
lations. First of all though, we aim at showing the AOT control acting on a generic
wind turbine. Recall that the WT model is described by system (6.3). In order
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Figure 6.3: Effective wind speed.
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Figure 6.4: Wind turbine power and rotor angular speed for deloading mode.
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Figure 6.5: Wind turbine inputs for deloading mode.

to test the controller performance we consider CART power coefficient, which we
remind to be provided as a lookup table, and it is shown in Fig. 2.2 in Chapter 2.
This represents the only source of model-plant mismatch for the local AOT-based
controller, as the controller design is developed via the use of a polynomial approx-
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graph.

Figure 6.6: WF example communication graph.
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Figure 6.7: Wind farm control with no distributed protocol.

imation of Cp. Test under more realistic uncertainties are beyond the scope of this
chapter and it will not be considered further. During a time interval of 350 s the
WT is excited by the effective wind speed shown in Fig. 6.3. The WT is required
to track a deloaded power reference P ref (t) = 50%P o(t). The chosen wind speed
and deloading factor are such that P ref (t) respects Assumption 6.1. Moreover, the

closed loop system trajectories are such that
∂Cq
∂ϑ

< 0, which would let the error

|P − P ref | → 0 as t → ∞ in nominal conditions. However, even in the presence
of the uncertainty caused by Cp, good performance is reached, as it can be seen in
Fig. 6.4a. Input signals Tem, and ϑ, are shown in Fig. 6.5a, and Fig. 6.5b respect-
ively. As it can be remarked, power deloading is achieved mainly via pitch angle
control, since the rotor angular speed, illustrated in Fig. 6.4b, tracks a filtered ωor
reference which does not allow a surplus of energy storage in the rotating masses as
done in the FL+MPC design.

In the remaining simulation test we focus on the distributed control capability
in letting a WF reach weighted consensus. For the following tests we consider a
WF composed of N = 6 WTs aligned one after the other according to the wind
direction. We suppose the 6-th WT to be the last one of the row according to the
wind direction. Thus it is required to always operate in classic MPPT mode. In
the following tests, it is supposed to not intervene in the consensus control, and its
power signals will not be reported. Let us first consider the leaderless case. Here the
remaining WTs are supposed to communicate on the communication graph shown in
Fig. 6.6a. The free stream wind speed v∞ blowing in front of WT 1 is chosen to be
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Figure 6.8: Wind farm control with distributed PID.
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Figure 6.9: Wind farm control with distributed multirate PID.

the one employed in the previous simulation, and shown in Fig. 6.3. The other wind
speed signals vi, i = 2, . . . , 5 are obtained from v∞ according to the wake model
of Chapter 4, and the optimal induction factor values provided by the optimization
step. First of all, let us analyze the system response to step disturbances in the ideal
case of perfect AOT control, and in the case in which the considered wind approxim-
ation is exact. In other words, we assume each WT dynamics to be exactly described
by system (6.14), where Ts = 0.1 s. This one depicts the AOT-controlled WT with
the additional PI control loop, whose tunable parameters are set as K l

P = 0.2, and
K l
I = 0.8. Concerning the disturbance vd , col(vd,1, . . . , vd,5) acting on the sys-

tem, after a system initialization where vd = 0, we let vd = col(2, 1,−1.5, 0.5,−1)

from time t = 30 s. Moreover, we let the effect of vd on system (6.14) be max-
imum by selecting µ1 = µ1,min, as recall that µ1 ∈ [µ1,min, 0]. Even if such test
does not reproduce any real situation, it enables us to evaluate the distributed
protocol performance in rejecting disturbances. Moreover, we propose to consider
P fw = col(P fw1 , . . . , P fw5 ) as a vector of signals not corrupted by wind measure-
ment error. As mentioned in Subsection 6.3.2, in such case the distributed protocol
is note necessary to reach consensus condition (6.5) because of the presence of the
local PI control. However, we aim at showing that the employment of the additional
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distributed PID can lead to better performance. This is reported in the following.
The PID gains for the aforementioned multi-agent system are tuned via the LMI
technique of Theorem 5.2 as, for this case, it showed better performance over the
one of Theorem 5.1. These are

Kp = 0.0072, Ki = −0.0638, Kd = 0.0013

and they allow weighted consensus achievement with performance index τ = 24.5.
Results are shown on signals LDP , DP , and P , in a time window of 80 s, and where
P = col(P1, . . . , P5). Indeed recall that weighted consensus is reached if LDP = 0.
This condition can be alternatively seen as weighted power signals DP reaching a
common consensus function, or as power signals P keeping defined constant relative
distances. In Fig. 6.7 we show the results obtained via the only local PI control,
while in Fig. 6.8 we show the signals of interest obtained with the additional use of
the distributed control. Even if in both cases consensus is achieved, the use of the
distributed protocol leads to better performance, as it can be seen by comparing
Fig. 6.7a with Fig. 6.8a, and Fig. 6.7b with Fig. 6.8b.
As a second simulation we test multirate technique introduced in Subsection 6.3.3,
where we assume each agent to measure and control the whole state xi for consensus
purposes. With the choice of q = 3, the PID gain matrices tuned via Theorem 5.2
are

Kp =

 −0.1810 0.5018 −0.4645

0.3797 −1.0529 0.9745

−0.1983 0.5501 −0.5091

 · 106,

Ki =

 −0.8394 2.4028 −2.2273

1.7606 −5.0410 4.6729

−0.9198 2.6336 −2.4413

 · 105,Kd =

 0.0028 0.0049 −0.0048

0.0038 0.0003 −0.0022

0.0047 −0.0038 0.0001


referring to a MIMO controller as, in this case, the input is allowed to vary 3 times
within sampling time Ts, (see equation (6.15)). The achieved performance index is
τ = 3.5. As a result, consensus is obtained in a much faster way with respect to the
previous cases, as it can be seen in Fig. 6.9.

We conclude the leaderless consensus simulation test by analyzing the described
WF example performance when considering the whole control, i.e. from the AOT
one to the distributed PID. In such case the system is subject to two sources of
model-plant mismatch. The first one is caused by differences between the polynomial
Cp approximation used for the AOT- based controller design and the CART power
coefficient. The second one is given by the way vd,i acts on WT i. Indeed, each vd,i
affects the according WT i dynamics via the mechanical power Pr, (see equation
(6.1)). This causes an additional mismatch as recall that vd,i effect was approximated
in Subsection 6.3.2, leading to the approximated model of system (6.13). For this
simulation the PID controller is chosen to be the previously obtained SISO PID,
whose performance index is τ = 24.5. The disturbance vd affecting the system is
chosen to be the one shown in Fig. 6.10. In this case P fw is computed on the
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Figure 6.10: Wind disturbance.
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Figure 6.11: Wind farm control with distributed PID.
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Figure 6.12: Zoom on LDP and DP during WF consensus control.

available measurements vm,i. Thus, they are corrupted by measurement error. As
done for the previous simulations, we report the results by showing LDP , DP , and
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(d) WT 5 restored power.

Figure 6.13: Wind farm leader-follower control.

P . These are illustrated in Fig. 6.11, from which we can also notice that the aforesaid
model-plant mismatches, as well as temporary dissatisfaction of Assumption 6.4,
cause persistent small oscillations around the reached weighted consensus. For the
sake of clarity, LDP , and DP are also shown in a zoomed window in Fig. 6.12.
Eventually, we aim at showing how optimal absolute power references P ?i can be

restored via leader-follower consensus when some WTs in the WF are affected by
power reference error. In order to do, we consider a simple example in which only
the first WT in the row is error-free, and thus acts as the leader. In such case, we
consider the WF communication graph to be modified according to Fig. 6.6b, where
the leader, WT 1, can communicate with WT 2 and WT 5 directly. The remaining
WTs from 2 to 5 are followers and they can communicate on an undirected connected
graph. We suppose the leader vd,1 to be equal to the one shown in Fig. 6.10,
whereas the followers wind disturbances are nonzero-mean signals of the form of
vd,i = v̄d,i + ṽd,i, where ṽd,i is a zero-mean signal, and v̄d,i a constant nonzero
value. ṽd,i, i = 2, . . . , 5 are supposed to be equal to the corresponding i-th signal
in Fig. 6.10 used in the previous simulation, while v̄d,i are such that the computed
power references via (6.4) are P fw2 = 80%P ?2 , P

fw
3 = 60%P ?3 , P

fw
4 = 30%P ?4 , P

fw
5 =

40%P ?5 , i.e. without leader-follower control action they would track a non-optimal
power reference. By employing fast leader-follower weighted consensus technique,
the PID gains are Kp = 0.0082, Ki = −0.0656, and Kd = −0.0028, and they allow a
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performance index equal to τ = 24.5. Simulation results are illustrated in Fig. 6.13,
where the red dashed signals represent the original optimal power reference P ?i , and
the blue solid line the obtained power output via consensus control. We are able to
conclude that consensus control shows good performance in restoring the optimal
absolute power values. Small persistent errors are due to model-plant mismatches,
by the fact that the PID structure cannot reject general time-varying reference state,
and because wind disturbance ṽd,i also affect the system consensus function.

6.5 Conclusion and Future Perspectives

6.5.1 Conclusion

We presented a novel distributed approach to control a WF for power maximization
under the presence of wind measure disturbances. After a first higher optimization
step, which can be performed via the presented tools of Part II, the low control
level is based on two additional layers. First, the proposed AOT controller allows
a generic WT to track a general deloaded power reference. Differently from what
done in Chapter 2, the employed deloading technique is mainly based on pitch con-
trol, as the WT rotor angular speed ωr tracks a filtered ωor reference. Unfortunately
this no longer allows to store additional kinetic energy in the rotating masses when
deloading is performed. However the considered AOT-based control scheme has the
advantage of letting a simpler implementation since, a pointed out in Remark 6.3,
the rotor angular speed reference does not have to be computed by solving an optim-
ization problem. Moreover, since MPC technique is not used, this enables a simpler
problem formulation concerning the WF distributed problem.
Secondly, the PID-like weighted leaderless consensus described in Chapter 5 is em-
ployed to let the WF turbines maintain the optimal power sharing relative values
under the presence of wind disturbances. In particular, the distributed control helps
out keeping the relative optimal power sharing condition when they are zero-mean
signals. In the presence of nonzero-mean wind disturbances causing in turns an
absolute power reference error, we additionally showed how leader-follower control
technique can be used to restore the optimal absolute power sharing, if the faulty
WTs can be identified.

6.5.2 Future Perspectives

One of the main drawbacks of the presented AOT technique to control a WT is
identified in Remark 6.4 where we claim that it should not be generally applied
for classic WT MPPT operating mode. On the basis of the FL+MPC approach
of Chapter 2, it would be interesting to modify the WT P ref on-line by means of

MPC in order to impose condition
∂Cq
∂ϑ

(t) < 0 ∀t ≥ 0 in the system closed-loop
trajectories, and in turns to let AOT control in the whole operating envelope.
Concerning the proposed wind farm consensus control, in the near future, it would
be interesting to evaluate the power gain which can be achieved when considering
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the wake effect and more real world wind disturbances. Moreover, different scenarios
could be considered to see the benefits coming from the potential use of both lead-
erless and leader-follower control schemes. All in all, consensus techniques represent
a fairly new approach to control wind farms and they have the potential to lead
to a great variety of applications. For instance one can imagine to use distributed
estimation techniques to enhance wind field estimation in a wind farm by directly
employing the wake model.



General Conclusion
and Perspectives





The main objectives of the research work presented in this report are met. These
consisted in identifying some of the major issues and opportunities that are

to be considered nowadays, aiming at improving wind generation and penetration
in the electric grid, as well as suggesting and developing advanced control tools to
help the transition of wind energy generation towards its integration in the exist-
ing and future power systems. Bearing in mind the new wind farm challenges and
requirements to be met, we first translated them into control objectives, then con-
jugated them according to the system components under analysis, starting from its
foundation, i.e. the wind turbines, until reaching the system as a whole, i.e. the
wind farm. This led us to define different control levels, and for each of them we
proposed solutions that could integrate the existing system functioning while op-
timizing it whenever possible, and that could allow the introduction of new modes
of operation.
At the wind turbine level, the benefit of the proposed nonlinear controller with
respect to more classic ones is evidenced by the fact that the controlled WT is
either capable to operate in classic MPPT and power limiting mode and able to
track general deloaded power references. Moreover this is achieved by employing
one controller for the whole WT operating envelope. Tracking general deloaded
power references is essential in the perspective of integrating the frequency control
and power curtailment requirements in the WT operating modes as well as to let
possible power gains at the WF level when wake effect is considered.
As far as WF control operations are concerned, while respecting the grid active
power requirements, our main objective was to propose a distributed architecture
which could lead to improved power gains when considering the wake interaction
among the WTs. In the considered hierarchical control structure, the coordination
level is devoted to the solution of an optimization problem by considering the wake
model in its formulation. Aiming at fast convergence of such optimization problem,
while taking into consideration the system constraints, two novel distributed op-
timization algorithms were proposed in the metaheuristic optimization framework.
Testing the overall WF controller let us conclude on the interest in considering a
cooperative control solution with respect to the existing greedy ones. Perhaps the
most interesting feature of the proposed distributed optimization algorithms is that,
a priori, they could be implemented on any existing wind farm without the need for
extra mechanical equipment, under the assumption that the WTs can track general
power references. Moreover the considered architecture is scalable, resilient, and
little modifications need to be considered if wind turbines are added to or removed
from the wind farm.
Eventually, an additional WF control step was considered, in the promising frame-
work of consensus control. Here, testing the proposed distributed controller suggests
that better performance can be achieved if additional cooperation is allowed at the
WT control level. Indeed, it enables taking into account system disturbances that
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could make the WTs deviate from the optimal operating points set by the optimiz-
ation level, and reduce their effect on the WF optimization.

In future perspectives new ways to explore can be hypothesized according to the
concerned WF control level. Regarding the WT one, as the employed FL+MPC
approach showed good versatility in controlling a WT in different operating modes,
it would be worth considering further developments that could lead to conclude on
the mathematical stability of the system as well as to new applications, such as
fatigue minimization, noise reduction, etc. Moreover, in the last part of this report,
we proposed a different WT control approach based on AOT technique. Despite
presenting a suboptimal functioning with respect to the stored kinetic energy when
compared to the FL+MPC technique, AOT-based control could allow a simpler in-
tegration of new modes of functioning in the existing real world WT controllers.
This is why in the author’s opinion, tests under more realistic scenarios would be
worth considering.
Concerning the WF optimization, it would be interesting to implement the pro-
posed distributed algorithms on some experiments mocking the functioning of real
wind farms, in order to prove the real achievable power gains. Being the proposed
algorithms applicable to a class of optimization problems, one could find other new
possible applications in distributed generation and smart grids.
Consensus control for WF operations represents a fairly new application and it may
lead to promising avenues to explore. For instance, further developments could be
carried out for wind estimation purposes. This is an important task not only for
proper WF control, but it could be also useful in order to estimate the WF power
capabilities in real time for a better integration in the electric grid.
Eventually, some of the presented tools could be employed to address another lead-
ing issue in WF control, which is the fatigue reduction. Both WT and WF level
controllers could be adapted in order to integrate the system mechanical stress re-
duction.
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Appendix A

Basic Mathematical Notions and
Definitions

A.1 Positive Definite Matrix

A square matrix A ∈ Rn×n is said to be positive definite if the scalar x>Ax, where
x ∈ Rn, is positive, i.e. x>Ax > 0, for every non-zero vector x. We indicate a
positive definite matrix with the notation A � 0.
Similarly, A is said to be positive semidefinite if x>Ax ≥ 0, ∀x. In this case, we use
the notation A � 0.

A.2 Lie Derivative

A mapping f assigning to each point x ∈ X ⊆ Rn a vector of Rn, i.e. f(x) =

col(f1(x), · · · , fn(x)), is said to be a vector field defined on X . In general, we will
consider the vector fields to be smooth, i.e. having continuous partial derivatives of
any order. Given a real-valued function λ, and a vector field f , both defined on χ,
we name Lie derivative, or derivative of λ along f , the following

Lfλ(x) ,
n∑
i=1

∂λ

∂xi
fi(x) (A.1)

The result of (A.1) can be applied to another vector field g, yielding LgLfλ(x) =
∂(Lfλ(x))

∂x
g(x). Moreover, if L0

fλ(x) , λ(x), then (A.1) satisfies the recursion

Lkfλ(x) =
∂(Lk−1

f λ(x))

∂x
f(x).

A.3 Global and Local Diffeomorphism

A nonlinear change of coordinates in Rn of the form z = φ(x), where φ is a Rn-valued
function, is a global diffeomorphism if

• φ is invertible, i.e. it exists φ−1(z): φ−1(φ(x)) = x ∀x ∈ Rn.

• φ and φ−1(z) have both continuous partial derivatives for any order.

When such coordinate transformation is only defined in a neighborhood of a given
point, then it is said to be a local diffeomorphism. If the jacobian matrix of φ
computed at x0 is nonsingular, then φ(x) defines a local diffeomorphism.
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A.4 Feedback Linearization

Feedback linearization is a well-known technique to control nonlinear dynamic sys-
tems. The results of this section are mainly taken from [Isidori 2013]. No proof
is provided, as our aim is to only provide the basic notions that will be used in
this report. Notation is intentionally chosen to be the one used in the mentioned
reference.

A.4.1 Single-Input Single-Output Systems

The nonlinear system affine in the control u, given by{
ẋ = f(x) + g(x)u

y = h(x)
(A.2)

where x ∈ X ⊆ Rn, is said to have relative degree r ≤ n at a point x0 if

• LgLkfh(x) = 0 ∀x in a neighborhood of x0, and all k < r − 1.

• LgLr−1
f h(x0) 6= 0.

where Lie derivative defined in Section A.2 was used. Note that the relative degree
definition depends on mapping h. There might exist points in which the relative
degree is not defined. From a practical point of view, it is equal to the number of
times one has to differentiate the output y(t) with respect to time in order to have
the input u appearing explicitly. Indeed, from the above definition and from (A.1),
we have

ẏ =
∂h

∂x
f(x) = Lfh(x)

...

y(r−1) =
∂y(r−2)

∂x
f(x) = Lr−1

f h(x)

y(r) =
∂y(r−1)

∂x
f(x) = Lrfh(x) + LgL

r−1
f h(x)u

(A.3)

If we suppose r < n, system output h(x), together with the first r − 1 functions
of (A.3) naturally define a partial change of coordinates for system (A.2). This can
be always completed with n − r additional arbitrary functions φr+1(x), · · · , φn(x)

such that the mapping

Φ(x) = col
(
h(x), Lfh(x), . . . , Lr−1

f h(x), φr+1(x), . . . , φn(x),
)

(A.4)

is a local diffeomorphism in a neighborhood of x0. In addition, it is always possible
to choose the additional n − r functions such that Lgφi(x) = 0 ∀r + 1 ≤ i ≤ n.
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Thus, if we name z = Φ(x), then system (A.2) is described in the new coordinates
by 

ż1 = z2

· · ·
żr−1 = zr

żr = b(z) + a(z)u

żr+1 = qr+1(z)

· · ·
żn = qn(z)

y = z1

(A.5)

System (A.5) is said to be in strict normal form. More in general, if we are not able
to find additional functions such that the condition Lgφi(x) = 0 ∀r + 1 ≤ i ≤ n is
satisfied, system (A.2) can be described in normal form, which can be represented
in compact form by 

ξ̇ = Aξ +B(b(ξ, η) + a(ξ, η)u)

η̇ = q(ξ, η) + p(ξ, η)u

y = Cξ

(A.6)

where we named ξ , col(z1, · · · , zr), η , col(zr+1, · · · , zn), and where

A ,


0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

 B ,


0

0
...
0

1

 C ,


1

0
...
0

0



>

(A.7)

A.4.1.1 Case r = n: Exact Linearization

In this subsection we address the problem of transforming nonlinear system (A.2)
into a linear and controllable one, by means of the change of coordinates presented in
the previous subsection. Under the assumption of measurable state, this is achieved
by a static state feedback control of the form u = α(x) + β(x)v, where v is the
external reference input, and it is left as degree of freedom.
If system (A.2) has relative degree r = n at some point x0, then no extra functions
are needed to complete the diffeomorphism (A.4), and there will be no η coordinates.
In such situation the feedback linearizing input is given by

u =
1

a(z)
(−b(z) + v) (A.8)

which can be also expressed in the original coordinates via

u =
1

LgL
n−1
f h(x)

(−Lnfh(x) + v) (A.9)
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The closed loop system resulting from the application of (A.8) is thus linear and
controllable, as it is governed by a system that is in the canonical controllable form,
and its matrices are given by (A.7). Note that in this case of r = n, matrix A

in (A.7) has dimension n×n. On the obtained linear system one can impose a new
state feedback by acting on input v to impose local asymptotic stability. Note that
stability is in general only local if the diffeomorphism is local.

A.4.1.2 Case r < n: Input-Output Linearization

Since the relative degree depends on the output function h, more in general, the
problem of exact linearization can be posed as the one of finding a different out-
put function λ(x) such that r = n. The existence of such function is a necessary
and sufficient condition for the existence of an exact feedback linearizing input for
system (A.2). In particular, the given conditions can be interpreted as a nonlinear
version of the controllability conditions for nonlinear systems. The reader may refer
to the mentioned reference for further details. If the system happens to be feedback
linearizable still a set of partial differential equations need to be solved in order to
find λ(x). Moreover, in general, the real system output would be nonlinear in the
new coordinates. For this reason, if the system has relative degree r < n for a given
output, still one can perform a feedback linearization yielding the partially linear
system 

ξ̇ = Aξ +Bv

η̇ = q(ξ, η) +
p(ξ, η)

a(ξ, η)
(−b(ξ, η) + v)

y = Cξ

(A.10)

where the feedback linearizing input has been replaced in system (A.6). In order
to conclude on the stability of (A.10), it is useful to recall the concept of zero
dynamics. This is naturally defined in the context of the so-called problem of zeroing
the output, that is to find all pairs (x(0), u(t)), i.e. initial state and input, such that
the corresponding output is identically zero. Considering the system in its normal
form, then y(t) ≡ 0 implies ż1 = · · · żr = 0. In particular, żr = 0 imposes the input
to be

u(t) = − b(0, η(t))

a(0, η(t))
(A.11)

Thus, if the output is identically zero, then the system initial condition in the new
coordinates must be set as (ξ(0), η(0)) = (0, η0), where η0 is arbitrary, and u must
satisfy (A.11), where η(t) is the solution of

η̇ = q(0, η)− p(0, η)
b(0, η)

a(0, η)
; η(0) = η0 (A.12)

The dynamics (A.12) are called zero dynamics. In the original coordinates, the
same problem of zeroing the output provides as initial condition x(0) all the points
belonging to the manifold Z? =

{
x ∈ Rn : h(x) = · · · = Lr−1

f h(x) = 0
}

=
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{x ∈ Rn : Φ(x) = 0}, and input u?(x) = −
Lrfh(x)

LgL
r−1
f h(x)

. Thus the zero dynamics is

the dynamics of system ẋ = f(x) + g(x)u?(x) on Z?.
Without loss of generality, let us now consider x0 to be an equilibrium point for
ẋ = f(x), and that h(x0) = 0. Moreover (ξ, η) = (0, 0) at x0. The important result
linking the zero dynamics with the problem of stabilizing (A.10) is that the control
law 

u =
1

LgL
r−1
f h(x)

(−Lrfh(x) + v)

v = −c0z1 − . . .− cr−1zr

(A.13)

locally asymptotically stabilize (A.10) if η = 0 is locally asymptotically stable for
the zero dynamics (A.12), and p(s) = c0 + c1s+ . . .+ cr−1s

r−1 + sr has its roots in
the left half complex plane.

Remark A.1 Note that if the employed diffeomorphism is global and the zero dy-
namics (A.12) is globally asymptotically stable, still only local stability of the closed
loop system via (A.13) can be concluded. In order to have global stability of the closed
loop system, the zero dynamics needs to be input-to-state stable, [Khalil 2002].

Remark A.2 A stabilizing control can be found even if we do not know the explicit
expression of the normal form (A.6). We only need to know that the zero dynam-
ics is asymptotically stable. Then the control law can be described in the original
coordinates as

u =
1

LgL
r−1
f h(x)

(−Lrfh(x)− c0h(x)− . . .− cr−1L
r−1
f h(x))

A.4.2 Multi-Input Multi-Output Systems

The results of the previous subsection can be extended to MIMO systems. For
the sake of simplicity, here we shall consider the analysis of systems having equal
number of inputs and outputs m. The MIMO system to be controlled is described
by ẋ = f(x) +

m∑
i=1

gi(x)ui

yi = hi(x), i = 1, · · · ,m
(A.14)

being f(x), gi(x), i = 1, · · · ,m smooth vector fields, and hi(x), i = 1, · · · ,m are
smooth functions on an open set of Rn. As for the SISO case, the multivariable
version of the FL technique is based on the concept of relative degree and on the
consequent capability to represent (A.14) in normal form. System (A.14) is said to
have vector relative degree [r1 · · · rm] at a point x0 if

• For i = 1, · · · ,m: LgjLkfhi(x) = 0, j = 1, · · · ,m, for all k < ri− 1, and for all
x in a neighborhood of x0.
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• the m×m matrix

D(x) =

 Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

· · · · · · · · ·
Lg1L

rm−1
f h1(x) · · · LgmL

rm−1
f h1(x)

 (A.15)

is nonsingular at x0.

Note that each ri is associated to the output yi. Thus, for each i there is at least
one input uj such that the system having output yi and input uj has relative degree
ri at x0, and for any other possible input the relative degree is greater or equal to
ri. From a computational point of view, the relative degree associated to the output
yi is equal to the number of times the output can be differentiated until at least
one of the inputs appears. The relative degree allows to define a natural change of
coordinates. Indeed, if system (A.14) has vector relative degree in such a way that
r1 + · · ·+ rm < n, then, for i = 1, · · · ,m we can set

φi1(x) = hi(x)

...

φiri(x) = Lri−1
f hi(x)

(A.16)

and complete the mapping (A.16) with n−r additional arbitrary functions φr+1(x),

. . . , φn(x) such that

Φ(x) = col(φ1
1(x), . . . , φ1

r1(x), . . . , φm1 (x), . . . , φmrm(x), φr+1(x), · · · , φn(x))

defines a local diffeopmorphism at x0. We now employ the latter to perform a change
of coordinates. By naming

ξi ,

 ξi1
· · ·
ξiri

 =

 φi1(x)

· · ·
φiri(x)

 , η =

 η1

· · ·
ηn−r

 =

 φr+1(x)

· · ·
φn(x)


ξ , col(ξ1, . . . , ξm), and aij(ξ, η) , LgjL

ri−1
f hi(Φ

−1(ξ, η)) for i, j = 1, · · · ,m,
bi(ξ, η) , Lrif hi(Φ

−1(ξ, η)) for i = 1, · · · ,m, u , col(u1, . . . , um), system (A.14)
can be written in the new coordinates as

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri

ξ̇iri = bi(ξ, η) +
m∑
j=1

aij(ξ, η)uj

yi = ξi1

i = 1, · · ·m

η̇ = q(ξ, η) +

m∑
j=1

pi(ξ, η)ui = q(ξ, η) + p(ξ, η)u

(A.17)
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Note that aij are the entries of matrix (A.15). Equations (A.17) describes the normal
form associated to (A.14). As for the SISO counterpart, the feedback linearizing
input in the original coordinates is given by

u = D−1(x)(−b(x) + v) (A.18)

where b(x) , col(b1(x), . . . , bm(x)), and where v ∈ Rm is the external reference
input, left as degree of freedom. In close analogy with the results of the previ-
ous subsection, by reproducing the problem of zeroing the output, system (A.17)
dynamics reduce to

η̇ = q(0, η)− p(0, η)D−1(0, η)b(0, η) (A.19)

if col(y1, . . . , ym) is identically zero. System (A.19) is the zero dynamics of sys-
tem (A.14). If the latter has vector relative degree so that r1 + · · ·+ rm = n, then
there is no zero dynamics and the system can be exactly linearized via (A.18).

Remark A.3 If system (A.14) can be exactly linearized, then by employing in-
put (A.18), the closed loop system is decoupled in m independent channels. For
the generic channel i, vi controls only yi through a chain of ri integrators. Control
law (A.18) is thus said to solve the problem of noninteractive control.

A.4.3 Alternative Change of Coordinates

As shown, a feedback linearizing input transforms the linearizable part of a non-
linear system in a chain of integrators or, in the MIMO case, in decoupled chains
of integrators. As a consequence, once the system is linearized, often the physical
meaning of the state variables is lost. For this reason it is sometimes convenient to
find a change of coordinates that tackles the system nonlinearities while preserving
the physical meaning of the system variables. In this case, the linearized system is
no longer guaranteed to be a chain of integrators. From a mathematical point of
view, this means that FL is not confined to systems in normal form, [Khalil 2002].
Of course, a connection with the FL theory presented in the previous two subsec-
tions needs to be established. For the sake of simplicity let us consider an exactly
linearizable SISO system. Similar results hold for the MIMO case. If the system can
be feedback linearized, then it exists a local diffeomorphism Tζ(x), being x ∈ Rn,
such that in the new coordinates ζ, the system is described by

ζ̇ = Aζζ +Bζ(bζ(ζ) + aζ(ζ)u)

Note that in general the pair (Aζ , Bζ) is not necessarily the one shown in (A.7). The
pair (Aζ , Bζ) is controllable, thus it exists a nonsingular linear change of coordinates
z = Mζ such that the system described in the z coordinates is in canonical form of
controllability. In other words, MAζM

−1 = A + Bλ>, MBζ = B, where λ ∈ Rn,
and where (A,B) are the matrices in (A.7). The system can be thus written in
normal form

ż = Az +B(b(z) + a(z)u)
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where a(z) = aζ(M
−1z), b(z) = λ>z+ bζ(M

−1z). In conclusion, Tζ(x) is an altern-
ative change of coordinates leading to FL, and it is related to the one putting the
system in normal form via a nonsingular linear transformation.

A.5 Positive Invariant Set and Local Stability

We provide the following definitions for discrete time systems, as they will be used
in this context.

Definition A.1 A set X ⊆ Rn is said to be positive invariant for the discrete time
system x(k + 1) = f(x(k)) if x ∈ X implies f(x) ∈ X.

Definition A.2 A set X ⊆ Rn is said to be positive control invariant for the
discrete time system x(k + 1) = f(x(k), u(k)), where U ∈ Rm if ∀x ∈ X it exists
u ∈ U such that f(x, u) ∈ X.

Theorem A.1 The system x(k + 1) = f(x(k)), x ∈ Rn, has the origin asymptot-
ically stable with a region of attraction X, if X is positive invariant for the given
system, and if there exist two functions α1, α2 of class K∞, a positive definite func-
tion α3, and a function V : Rn → R such that ∀x ∈ X

(i) V (x) ≥ α1(|x|)
(ii) V (x) ≤ α2(|x|)

(iii) V (f(x)) ≤ V (x)− α3(|x|)
(A.20)

Where recall that a function is of class K∞ if it is continuous, strictly increasing, zero
at zero, and is unbounded, and a function is positive definite if it is continuous and
positive everywhere except at the origin. Function V is called Lyapunov function.
Condition (iii) is named descent property. On the same basis we can define a control
Lyapunov function (CLF). A function V is a CLF for x(k + 1) = f(x(k), u(k)),
where u ∈ Rm, if there exists a control law κ : Rn → Rm, such that V satisfies
conditions (A.20) for the closed loop system x(k + 1) = f(x(k), κ(x)).

A.6 Model Predictive Control

Model predictive control is a control technique widely employed in engineering prob-
lems. Probably, its main interesting feature is its capability to explicitly handle
system constraints, i.e. constraints on its inputs, state and outputs, in the design
of a control law. The following notes are mainly taken from [Rawlings 2009].

A.6.1 Concept and Implementation

A.6.1.1 Optimization Problem

MPC differs from those controllers whose control law is pre-computed off-line. In-
deed, MPC implements an implicit control law. At first instance, MPC can be seen
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as a practical way to treat a more difficult problem of optimal control. By defining
V∞(x0, u) ,

∫∞
0 l(x(t), u(t))dt, where x0, x(t) ∈ Rn, u(t) ∈ Rm, l is definite posit-

ive, the optimal control problem P(x0) consists in solving the following problem for
every initial condition x0

min
u
V∞(x0, u)

subject to ẋ = f(x, u); x(0) = x0

u ∈ U, x ∈ X

(A.21)

The latter is in general too complex to be solved in its original formulation. Its
solution, if it exists, is a function of time and state, thus describing a feedback
control law. As a matter of fact (A.21) is an infinite-dimensional problem, as the
optimization variable is a function of time. Moreover the considered time horizon
is infinite, and V∞(x0, u) is in general nonconvex if f(x, u) is nonlinear. Thus, in
MPC one considers some approximations of the original optimal control problem,
which allows to draw conclusions on the optimality of the solution as well as on the
stability of the closed-loop system having as input the argument of the solution of
a simplified version of P(x0). In particular, in the MPC approach, a discrete time
approximation of (A.21) is considered, thus leading to a finite-dimensional problem,
the horizon is reduced to a finite one, and typically a terminal region and cost are
added to the problem formulation in order to approximate the cost-to-go of the
infinite horizon formulation. Thus, let us consider the discrete time system

x+ = f(x, u), x(0) = x0

where x , x(i), u , u(i) are the state and input at current time i, and x+ , x(i+1)

is the state at the next step. f is continuous and, without loss of generality, we
consider f(0, 0) = 0. MPC is concerned with solving an optimization problem that
depends on the system condition at the current time i, (x, i). However, in the
sequel we only consider time-invariant systems and time-invariant functions in the
cost function. As a result, the optimization problem is also time-invariant, and we
refer to it with the notation PN (x), where x is the current state (x, i). This can be
formulated as follows

min
u,{u(0),...,u(N−1)}

VN (x,u) ,min
u

N−1∑
k=0

l(x(k), u(k)) + Vf (x(N))

subject to x+ = f(x, u)

u(k) ∈ U, k = 0, . . . , N − 1

x(k) ∈ X, k = 0, . . . , N − 1

x(N) ∈ Xf

where N is the horizon length, Vf and Xf are respectively the final term cost func-
tion and set. By naming φ(k, x,u) the system solution at time step k given the
initial condition x, and the input control sequence u = {u(0), . . . , u(k − 1)}, it is
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clear that the state at each time step in the horizon can be described as a function of
x, and u. For the same reason, the state constraints can be described as a function
of the mentioned variables. Let us name UN (x) , {u|(x,u) ∈ ZN}, where ZN ,
{(x,u)|u(k) ∈ U, φ(k, x,u) ∈ X, k = 0, . . . , N − 1, φ(N, x,u) ∈ Xf}, PN (x) can be
restated as

V o
N (x) , min

u
{VN (x,u)|u ∈ UN (x)} (A.22)

The latter is a problem of parametric optimization, where u is the optimization
variable, and x the parameter. We additionally name XN , {x ∈ X| UN (x) 6= ∅},
which is the state such that the couple (x,u) belongs to ZN . For the existence of a
solution to (A.22) the following assumption is usually made.

Assumption A.1 Functions f , l, Vf are continuous, and f(0, 0) = 0, l(0, 0) = 0,
Vf (0) = 0. X is closed, U,Xf are compact, and each set contains the origin.

Under such assumption, VN is continuous on ZN and ∀x ∈ XN , UN (x) is compact.
Thus, for Weierstrass theorem it exists a solution to PN (x), ∀x ∈ XN .

A.6.1.2 Receding Horizon Control

Given the system initial state x0, in the nominal case, i.e. if the system model
is perfect and there is no disturbance, then, in principle, problem (A.22) could
be solved once and off-line, providing the optimal time-varying control sequence
uoN (x0) = {uo(0, x0), uo(1, x(1)), . . . , uo(N − 1, x(N − 1))} bringing the initial state
x0 to the target set Xf in N steps. Note that, even though the system and cost
function are time-invariant, uoN (x0) is time-varying as it associates a control action
to both the system state and the time step. In such case, MPC realizes an open-loop
control. Of course, assumptions on nominal system are not realistic in practical
applications. This is why MPC is implemented in a receding horizon fashion. That
is, problem (A.22) is solved at each time step, and only the first control action
of the optimal control sequence uoN (x) is applied, i.e. uo(0, x), being x the current
state. The process reiterates by solving problem (A.22) initialized in the new current
measured (or more in general estimated) system state. As a consequence, the implicit
control law κN (x) , uo(0, x) is time-invariant, and the control is in closed-loop.

A.6.2 Nominal Stability Results

In the following we state some basic results concerning the stability properties of
nominal MPC, as they shed a light on the convergence property of the control
algorithm. We do not provide any proof. The reader may refer to the mentioned
reference for further details. The shown results are valid under the assumption that
the solution to (A.22) is globally optimal, (see Section A.7). As it is well-known, since
optimality does not imply stability, in the MPC framework the latter is attained via a
proper choice of the MPC ingredients, namely, the horizon length, and the terminal
cost function and set, Vf and Xf . Stability analysis is performed by choosing a
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Lyapunov function for the closed loop system

x+ = f(x, κN (x)) (A.23)

i.e. a function satisfying Lyapunov conditions (A.20), (see Section A.5) in the region
of attraction XN . A candidate Lyapunov function for (A.23) is the value function
V o
N (x) defined in (A.22). First of all, for the unconstrained optimal control problem,

such function satisfies the mentioned Lyapunov conditions if

Vf (f(x, u)) ≤ Vf (x)− l(x, κf (x))

That is, the terminal cost function Vf is a global control Lyapunov function for
the system to be controlled, i.e. there exists a control law κf : Rn → Rm such
that the system x+ = f(x, κf (x)) is globally asymptotically stable. Although such
condition implies global asymptotically stability for (A.23), this is attained at the
price of finding a CLF for the system we want to stabilize. Thus, κf could be
simply used instead of κN , although MPC could lead to better performance. As
previously mentioned though, the interest in employing MPC is very often related
to the possibility to treat constrained systems. For the latter, the basic stability
assumption that allows V o

N (x) to satisfy condition (iii) of (A.20) ∀x ∈ XN is the
following

Assumption A.2

min
u∈U
{Vf (f(x, u)) + l(x, u)|f(x, u) ∈ Xf} ≤ Vf (x) ∀x ∈ Xf

This assumption implies that Xf is a controlled invariant set. As far as conditions
(i), (ii) are concerned, the following assumption let them be satisfied by V o

N (x),
∀x ∈ XN .

Assumption A.3 X is bounded. Moreover, there exist functions α1, and α2 of
class K∞ such that l(x, u) ≥ α1(|x|), ∀x ∈ XN , ∀u ∈ U, and Vf (x) ≤ α2(|x|).

All in all, Assumptions A.1, A.2, A.3 let V o
N (x) satisfy Lyapunov conditions (A.20)

∀x ∈ XN .

Remark A.4 As shown, Assumption A.1 guarantees PN (x) to have solution ∀x ∈
XN . However, this is not sufficient for a stronger property, according to which, if
PN (x) is solvable at the initial condition x0, then it has a feasible solution for any
following step. This MPC feature is called recursive feasibility, and it is fundamental
in the receding horizon technique, since in this case the control action is given by
the solution of PN (x). For the nominal constrained case, recursive feasibility is
guaranteed by the fact that Xf is control invariant.
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A.7 Mathematical Optimization

An optimization problem can be described in the form

min
x
f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(A.24)

where x ∈ Rn is the optimization variable, f0 : Rn → R is the cost or objective
function, fi : Rn → R, i = 1, . . . ,m are the constraint functions. Linear and
quadratic programming (or optimization) are two important subclasses of (A.24).
In the former, functions fi, i = 0, . . . ,m are affine in the optimization variable,
while in the latter f0 is quadratic, i.e. of the form f0(x) = 1

2x
>Hx + c>x, and fi,

i = 1, . . . ,m are affine.

A.7.1 Convex Optimization

Definition A.3 A set Ω is convex if the line segment between any two points
in Ω lies in Ω, i.e. if for any x1, x2 ∈ Ω and any θ with 0 ≤ θ ≤ 1, we have
θx1 + (1− θ)x2 ∈ Ω.

An example of convex set is given by the polyhedra. A polyhedron P in a n-
dimensional space can be defined as the intersection of a finite number of halfspaces
and hyperplanes via

P ,
{
x ∈ Rn|a>j x ≤ bj , j = 1, . . . ,m, c>j x = dj , j = 1, . . . , p

}
A bounded polyhedron is called polytope.

Definition A.4 A function f : Ω → R is convex if Ω is convex and if for all
x1, x2 ∈ Ω, and θ with 0 ≤ θ ≤ 1, we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

On the basis of the two previous definitions, an optimization problem (A.24) is
convex if functions fi, i = 0, . . . ,m are convex. In general there exists no explicit
analytic solution, but efficient methods and algorithms can be employed to solve
it. These are typically gradient-based methods, i.e. they use gradient information
of the cost function to provide directions in the search space along which the cost
function decreases.

Definition A.5 A point x? is a local minimizer of the cost function f0, if there is
a neighborhood N of x? such that f0(x?) ≤ f0(x) ∀x ∈ N .

From a practical point view, an important result concerning convex optimization is
that a local minimizer of a convex optimization problem is also global.
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A.7.2 Nonlinear Optimization

When the cost function f0 or the constraint functions fi, i = 1, . . . ,m are nonlinear
and not known to be convex, we define (A.24) as a nonlinear optimization problem.
In this case, there is no general method to solve it. One typical approach is to seek
only local minimizers by adapting well-known algorithms for convex optimization.
In this case there is no guarantee in finding the globally optimal solution. Moreover,
these methods require an initial guess for the optimization variable, and this greatly
influences the optimality of the solution, [Boyd 2004].

A.8 Matrix Lemmas

Given a square real matrix A, via σ(A) we indicate its spectrum. We name C≥0 ,{
a+ ib : a ∈ R+

0 , b ∈ R, i2 = −1
}
. I is the identity matrix. Given a rectangular

matrix B ∈ Rm×n, by R(B) we indicate the range of matrix B, i.e. the span of
the columns of B. By ‖B‖∞ we indicate the H∞ norm of matrix B, given by

max
i=1,...,m

∑n
j=1 |bij |, where bij is the generic element of B. By 0 we indicate either a

vector or a matrix of proper dimension according to the situation, and with all its
entries equal to 0.
We introduce the two following lemmas.

Lemma A.1 Given two symmetric matrices A, and B of equal dimension such that
A � 0, and B � 0; then σ(AB) ⊂ C≥0.

Proof: It exists the symmetric matrix B1/2 : B1/2B1/2 = B, where B1/2 � 0,
and it exists B−1/2 : B−1/2B1/2 = B1/2B−1/2 = I. We have that AB = AB1/2B1/2 =

B−1/2
(
B1/2AB1/2

)
B1/2, thus AB is similar to B1/2AB1/2, i.e. σ(AB) ≡ σ(B1/2AB1/2).

MoreoverB1/2AB1/2 � 0 becauseA � 0 andB1/2 is symmetric. Thus σ(B1/2AB1/2) ⊂
C≥0.

Lemma A.2 Given two symmetric matrices A, and B of equal dimension; if A � 0

then AB is diagonalizable in R.

Proof: It exists the symmetric matrix A1/2 : A1/2A1/2 = A, where A1/2 � 0,
and it exists A−1/2 : A−1/2A1/2 = A1/2A−1/2 = I. We have A−1/2ABA1/2 = A1/2BA1/2,
and the latter is symmetric. Thus AB is similar to a symmetric matrix, so it is
diagonalizable in R.
We remind the definition of Kronecker product. Given two matrices A = [aij ] ∈
Rm×n, and B ∈ Rp×q, then their Kronecker product is

A⊗B ,

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq

We recall the useful lemma on Kronecker product.
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Lemma A.3 [Graham 1981] Suppose that U ∈ Rp×p, V ∈ Rq×q, X ∈ Rp×p, and
Y ∈ Rq×q. The following hold: (i) (U ⊗ V ) (X ⊗ Y ) = UX ⊗ V Y ; (ii) suppose U ,
and V invertible, then (U ⊗ V )−1 = U−1 ⊗ V −1.

A.9 Gershgorin’s Disc Theorem

Let A = [aij ] ∈ Rn×n, and let

Ri(A) ,
n∑

j=1,j 6=i
|aij |, i = 1, . . . , n

denote the deleted absolute row sums of A. Then all eigenvalues of A are located in
the union of n discs

n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)}



Appendix B

Additional Elements for Wind
Turbines

B.1 dq Transformation

These notes are mainly taken from [Hamon 2010]. For the sake of simplicity we
consider p = 1, thus ωg = ωeg, which is the electrical angular speed in the rotor
winding. The electric quantities in the stator winding have angular speed ωs. The
voltage and current relations on rotor and stator side are described by the following
equations vas

vbs
vcs

 = Rs

 ias
ibs
ics

+
d

dt

 φas
φbs
φcs

 ,
 var
vbr
vcr

 = Rr

 iar
ibr
icr

+
d

dt

 φar
φbr
φcr


where φas

φbs
φcs

 = Ls

 ias
ibs
ics

+Lm

 iar
ibr
icr

 ,
 φar
φbr
φcr

 = Lr

 iar
ibr
icr

+L>m

 ias
ibs
ics


where v, and i variables are the voltage and current quantities, subscripts a, b, c
indicate the corresponding phase quantity, and subscripts s, r are used to indicate
the stator and rotor quantities respectively. Rs, and Rr are the stator and rotor
winding resistances, Ls, and Lr constant inductance matrices, and Lm(θr(t)) is the
mutual inductance matrix depending on the angle describing the rotor electrical
quantities position with respect to the fixed stator frame, i.e.

θr(t) ,

t∫
0

ωgdt+ θr(0)

The dq-transformation is thus employed to eliminate the aforementioned dependency
of matrix Lm on θr, which is time-varying.
The dq0-reference frame is a rotating frame with respect to the fixed stator frame,
at angular speed ωdq. Thus, the dq axis angular displacement with respect to the
stator frame can expressed as function of

βdq(t) ,

t∫
0

ωdqdt+ βdq(0)
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The dq-transformation is thus given by the following rotation matrix which trans-
forms the abc-quantities in dq0-quantities

Tdq0(β) ,

√
3

2


cos(β) cos(β − 2

3π) cos(β + 2
3π)

− sin(β) − sin(β − 2
3π) − sin(β + 2

3π)
1√
2

1√
2

1√
2

 (B.1)

where β is set equal to

βs(t) ,

t∫
0

ωdqdt+ βdq(0)

for the stator quantities of interest, and equal to

βr(t) ,

t∫
0

(ωdq − ωg)dt+ βdq(0)− θr(0)

for the rotor quantities of interest. Notice that for symmetrical abc-quantities, the
0-component in the dq0-reference frame is zero because of the last row of (B.1). This
is why the 0-component is often omitted.

B.2 DFIG Working Principle and Electrical Model

The following notes are based on [Poller 2003, Arifujjaman 2010, Hamon 2010]. We
provide the differential equations describing the electrical variables involved in the
DFIG-based electric machine. These are presented in the dq frame, which is a
rotating reference at the angular speed ωdq with respect to the stationary stator
reference frame. The transformation matrix allowing the change of coordinates in
the dq frame is power invariant with respect to the chosen value of ωdq. For details
of the dq transformation see Section B.1. By proper choice of ωdq, the dynamic
system describing the stator and rotor voltages, (vds, vqs), (vdr, vqr), and currents,
(ids, iqs), (idr, iqr), is given by the following, [Arifujjaman 2010]

vds = Rsids + φ̇ds − ωsφqs
vqs = Rsiqs + φ̇qs + ωsφds

vdr = Rridr + φ̇dr − (ωs − ωeg)φqr
vqr = Rriqr + φ̇qr + (ωs − ωeg)φdr

(B.2)

where Rs, Rr are the stator and rotor resistances, (φds, φqs) the dq-axis stator flux
linkages, and (φdr, φqr) the dq-axis rotor flux linkages. The latter can be expressed
as a function of the currents via, [Arifujjaman 2010]

φds = Lssids + Lmidr

φqs = Lssiqs + Lmiqr

φdr = Lrridr + Lmids

φqr = Lrriqr + Lmiqs

(B.3)
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where Lss = Ls + Lm, and Lrr = Lr + Lm, and where Ls, Lr are the stator and
rotor inductance, and Lm the mutual inductance.
In the previous subsection we defined the electric power delivered to the grid as
Pg = Tgωg if the electric power losses are neglected. If now these are taken into
account, Pg can be more correctly described as

Pg = Ploss + Pmag + Pe

In other words, part of the active power Pg is lost in ohmic losses Ploss, and in
magnetizing power Pmag. Indeed, more in general, Pg can be described as a function
of the electric variables according to

Pg = (vdsids + vqsiqs) + (vdridr + vqriqr)

Thus, by employing (B.2), and a general value for ωdq, we have (see [Hamon 2010])

Pg = Rs(i
2
ds + i2qs) +Rr(i

2
dr + i2qr)︸ ︷︷ ︸

ohmic losses

+ φ̇dsids + φ̇qsiqs + φ̇dridr + φ̇qriqr︸ ︷︷ ︸
magnetizing power

+ ωdq(φdsiqs − φqsids) + (ωdq − ωeg)(φdriqr − φqridr)︸ ︷︷ ︸
transferred electric power

(B.4)

Thus, the power injected into the grid Pe is given by the last term of (B.4), where
we rename Pstator its first addend, and Protor its second one. Pstator, and Protor
thus represent the power flowing through the stator and rotor winding respectively.
Since, as mentioned, the expression is valid for any value of ωdq, for a choice of
ωdq = 0, and ωdq = ωeg, we have

ωdq = 0⇒ Pe = ωeg(φqridr − φdriqr)
ωdq = ωeg ⇒ Pe = ωeg(φdsiqs − φqsids)

from which we obtain the relationship

φdsiqs − φqsids = φqridr − φdriqr (B.5)

Notice that relationship (B.5) can be also verified using (B.3). By employing Pe
expression with ωdq = ωs, as well as relation (B.5) and the above definition of
Pstator, and Protor, it yields

Pe = (1− s)Pstator

B.3 Decoupling Active and Reactive Power

In DFIG-based WTs, the rotor is connected to the grid through two power electronic
converters. The rotor-side one is usually operated in a stator-flux dq reference, which
enables a power control decomposition in active component along the q-axis, and
in reactive one along the d -axis. This is obtained under the following assumptions
(see [Arifujjaman 2010])
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• The stator resistance Rs is neglected.

• The grid is stiff, i.e. the stator voltage vs, and ωs are constant.

• The magnetizing current of the stator is determined by the grid.

• The q-axis is π/2 rad ahead with respect to the d -axis in the frame rotational
sense, and ωdq = ωs.

• The stator flux vector is aligned with the stator d -axis.

The assumptions listed above result in
vds = 0

vqs = vs

φds = φs

φqs = 0

(B.6)

By plugging (B.6) in (B.2), (B.3) , it first yields the reduced order system
vdr = Rridr +

(
Lrr −

L2
m

Lss

)
didr
dt
− (ωs − ωeg)

(
Lrr −

L2
m

Lss

)
iqr

vqr = Rriqr +

(
Lrr −

L2
m

Lss

)
diqr
dt

+ (ωs − ωeg)
((

Lrr −
L2
m

Lss

)
idr +

Lmvs
Lssωs

)
from which we see that idr, and iqr can be controlled by acting on vdr, and vqr.
Secondly, the active and reactive power of the stator, Ps, and Qs reduce to

Ps = −Lmvs
Lss

iqr

Qs =
v2
s

ωsLss
− Lmvs

Lss
idr

Thus, iqr can be used to regulate Ps, and idr to regulate Qs.
Similar results hold for the grid-side converter, which is operated in an ac-voltage
dq reference frame, enabling a decoupling control for active and reactive power.
Mathematical computation are not reported here though. All in all, reactive power
control is possible through the d -axis component of the rotor-side and grid-side
converters.

B.4 Residual due to Wind Disturbance

Functions µ1, µ2, and µ3 are obtained by considering a first order Taylor approx-
imation in vm for all the functions appearing in the closed-loop WT dynamics. In
this way we can make explicit, in an approximated way, the presence of vd, which
in turns does not allow perfect cancellations via FL, and ultimately makes appear
a residual term in the closed-loop system, i.e.

ε̇p = −b0εp + µ1vd + µ2v
2
d + µ3v̇d
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We do not report the computation. However the obtained functions are

µ1 , −ωr
Jt

(
∂Tr
∂v

)2

− ωr
∂Ṫr
∂v

+ 2
ωr
Jt

(Kt − a0Jt)
∂Tr
∂v

+ a0ωr
∂Tr
∂v
− Tr
Jt

∂Tr
∂v

µ2 , − 1

Jt

(
∂Tr
∂v

)2

µ3 , −ωr
∂Tr
∂v

where functions Tr,
∂Tr
∂v

, and
∂Ṫr
∂v

are computed in the system variables and in vm.





Appendix C

Graph Theory Preliminaries

C.1 Basic Notions and Definitions

A directed graph G, called digraph, is a pair (V, E), where V = {1, . . . , N} is the set of
nodes, and E ⊆ V×V is the set of unordered pairs of nodes, named edges. Two nodes
i, j are said to be adjacent if (i, j) ∈ E . In such case the communication is supposed
to be directed from i to j. The weighted adjacency matrix A = [aij ] ∈ RN×N
associated with the digraph G, is defined by aii = 0, i.e. self-loops are not allowed,
and aij > 0 if (i, j) ∈ E . The Laplacian matrix L = [lij ] ∈ RN×N is defined
as lii =

∑
j 6=i aij and lij = −aij , i 6= j. Typically, if the adjacency matrix is

not weighted, then we simply assign aij = 1 if (i, j) ∈ E . Moreover, under the
assumption of undirected graph, (i, j) ∈ E implies that (j, i) ∈ E too. In this report
an undirected graph is always considered to be not weighted. An undirected graph
is connected if there exists a path between every pair of distinct nodes, otherwise it
is disconnected. If there exist an edge between any two nodes, the graph is said to
be complete. We provide the following basic notions

• Ni identifies the set of neighbors of node i, i.e. Ni , {j ∈ V : (j, i) ∈ E}.

• Given two nodes i, and j, the distance dist(i, j) is the length of the shortest
path between i and j.

• The eccentricity ecc(i) of a node i is the greatest distance between i and any
other j ∈ V.

• The radius r(G) of a graph is the minimum eccentricity of any node, i.e.
r(G) , min

i
ecc(i).

• The diameter d(G) of a graph is the maximum eccentricity of any node in the
graph, i.e. d(G) , max

i,j
dist(i, j).

C.2 Lemmas

Lemma C.1 [Ren 2005] The Laplacian matrix has the following properties: (i) if
A refers to an undirected graph, then L is symmetric and all its eigenvalues are
either strictly positive or equal to 0, and 1 is the corresponding eigenvector to 0; (ii)

0 is a simple eigenvalue of L if and only if the graph is connected.
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Lemma C.2 [Lin 2008] Let L̄ =
[
l̄ij
]
∈ RN×N be a Laplacian matrix such that

l̄ij = N−1/N if i = j, and l̄ij = −1/N otherwise, then the following hold: (i) the
eigenvalues of L̄ are 1 with multiplicity N − 1, and 0 with multiplicity 1. 1> and
1 are respectively the left and right eigenvector associated to eigenvalue 0; (ii) there
exists an orthogonal matrix U ∈ RN×N , i.e. U : U>U = UU> = I, and whose last
column is equal to 1/

√
N, such that for any Laplacian matrix L associated to any

undirected graph we have

U>L̄U =

[
IN−1 0(N−1)×1

01×(N−1) 0

]
, Λ̄,

U>LU =

[
L1 0(N−1)×1

01×(N−1) 0

]
where L1 ∈ R(N−1)×(N−1) is symmetric and positive definite if the graph is connected.

Moreover we deduce the following extension of Lemma C.2.

Lemma C.3 Let L ∈ RN×N be the Laplacian matrix associated to an undirected
connected graph, and let D ∈ RN×N � 0, and symmetric, then the following hold:
(i) L̂ , DL � 0, all its eigenvalues are real, and 0 is a simple eigenvalue with
associated eigenvector 1; (ii) consider the orthogonal matrix U ∈ RN×N defined in
Lemma C.2, then

U>L̂U =

[
L̂1 0(N−1)×1

∗ 0

]
where L̂1 ∈ R(N−1)×(N−1) � 0, and its eigenvalues are real.

Proof: We have that DL = D1/2(D1/2LD1/2)D−1/2, thus DL is similar to
a symmetric semi-definite positive matrix, so its eigenvalues are positive real. L̂
preserves the 0 eigenvalue, and its associated eigenvector 1, as DL1 = 0. 0 is
a simple eigenvalue as D is nonsingular, and L has one simple 0 eigenvalue by
hypothesis. The last column of U>L̂U has all its entries equal to 0 because the last
column of U is 1/

√
N. Being U>L̂U block triangular, and similar to L̂, L̂1 has all

real strictly positive eigenvalues.
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LMI-based Design

D.1 H∞ Norm of a System

In the following we recall the H∞-norm definition for a continuous-time LTI system.
A similar definition holds for discrete-time LTI systems.
Consider the following LTI MIMO system{

ẋ = Ax+Bu

y = Cx
(D.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp. System (D.1) transfer matrix is G(s) , C(sI −
A)−1B. Its singular values are defined as the square roots of eigenvalues λi of
G(jω)G?(jω), i.e.

σi(G(jω)) ,
√
λi(G(jω)G?(jω))

Moreover σi ≥ 0 ∀ω, and by naming σ̄(G(jω)), and σ(G(jω)), respectively the
largest and the smallest singular value of G(s) ∀ω, we have

σ(G(jω)) ≤ ‖G(jω)U(jω)‖2
‖U(jω)‖2

≤ σ̄(G(jω)) (D.2)

where U(jω) is the Laplace transform of u, computed in jω, and ‖ · ‖2 indicates the
L2-norm. Relationship (D.2) means that the frequency gain of a system lies between
the smallest and the largest singular values. The H∞-norm of a system represents
the maximal possible amplification between the input u and the output y. This can
be mathematically defined by employing the aforementioned singular values: Thus,
the H∞-norm of system (D.1), ‖G(s)‖∞ is

‖G(s)‖∞ , sup
ω
σ̄(G(jω))

For the discrete-time case, given a transfer matrix G(z), ‖G(z)‖∞ is given by

‖G(z)‖∞ , sup
ω∈[0,2π]

σ̄(G(ejω))

D.2 Bounded Real Lemma

In this section we report two of the equivalents set by the Bounded Real Lemma.
Given γ ∈ R+, and the system {

ẋ = Ax+Bu

y = Cx
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where x ∈ Rn, u ∈ Rm, y ∈ Rp. The following statements are equivalent

• It exists P ∈ Rn×n : P = P> � 0 such that

2x>P (Ax+Bu) < γ2u>u− y>y

• ‖Tuy(s)‖∞ < γ, being Tuy(s) , C(sI −A)−1B.

Similar results hold for the discrete-time case for which we have that, given γ ∈ R+,
and the system {

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

• It exists P ∈ Rn×n : P = P> � 0 such that

x>(k + 1)Px(k + 1)− x>(k)x(k) < γ2u>(k)u(k)− y>(k)y(k)

• ‖Tuy(z)‖∞ < γ, being Tuy(z) , C(zI −A)−1B.

D.3 Robust Control for Parametric Polytopic Uncertain-
ties

For the sake of simplicity we recall classic results of robust stability for an autonom-
ous linear system. Let us consider the following continuous-time system

ẋ = A(θ)x (D.3)

where x ∈ Rn, and θ ∈ Rp is an unknown parameter whose components θi, i =

1, . . . , p are known to be confined in the interval [θi, θ̄i]. Thus θ is is confined in a
known polytopic set whose vertexes are πi, i = 1, . . . , 2p, i.e. for a given value of θ,
there exist corresponding αi, i = 1, . . . , 2p such that

θ =

2p∑
i=1

αiπi

where
2p∑
i=1

αi = 1, αi ≥ 0

(D.4)

If A(θ) is affine in θ then, for every set value of θ, it can be described as a convex com-
bination of matrices computed at vertexes πi, Ai(πi), by using the same weights αi
corresponding to θ, given in (D.4). In other words, by naming α = col(α1, . . . , α2p),
A(θ) can be equivalently described as a function of α, i.e. A(α) belonging to

A ,

{
A(α)| A(α) =

2p∑
i=1

αiAi,

2p∑
i=1

αi = 1, αi ≥ 0

}
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In the sequel we will refer to system (D.3) by making explicit its dependency on α,
i.e.

ẋ = A(α)x (D.5)

System (D.5) is known to be robustly stable with respect to all the admissible values
of α, if there exists a Lyapunov matrix P ∈ Rn×n, such that P = P> � 0, and

A>i P + PAi < 0, i = 1, . . . , 2p (D.6)

Note that such condition is quite conservative as it employs one Lyapunov matrix
P to solve (D.6), for i = 1, . . . , 2p. Although less conservative solutions exist for
the continuous-time case, we will treat them for the discrete-time one. Consider the
following system

x(k + 1) = A(α)x(k) (D.7)

Authors of [de Oliveira 1999] showed that (D.7) is robustly stable if there exist
matrices Pi ∈ Rn×n : Pi = P>i � 0, and a matrix G ∈ Rn×n such that[

Pi A>i G
>

GAi G+G> − Pi

]
> 0, i = 1, . . . , 2p (D.8)

The key point in the stability proof is that inequality (D.8) is linear on Pi and Ai,
and this allows to consider the following parameter-dependent Lyapunov matrix to
establish stability.

P (α) =
2p∑
i=1

αiPi

This technique enables a less conservative solution thanks to the introduced extra
degree of freedom represented by G.
The aforementioned results can be applied to more general control design problems,
e.g. the one of finding a controller to impose a desired closed-loop H∞ gain. Again,
the key point that allows to consider a parameter-dependent Lyapunov matrix to
conclude on stability is that the matrix inequalities resulting from the according
considered control problem have to be affine in the system matrices at the vertexes
of the polytope, in the problem variables, and in Pi, [De Oliveira 2002].

D.4 PID for MIMO LTI Discrete-time Systems

In the following we report the two cited theorems of [Wu 2011]. For their proof
please refer to the mentioned reference. Both theorems are concerned with the
PID controller design for MIMO LTI discrete-time systems, based on the solution of
given LMIs. In particular, the first theorem is based on imposing anH∞ norm to the
closed-loop system, while the second one is concerned with constraining the closed-
loop system eigenvalues in a given region of the complex plane. This is explained in
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the following.
Consider the system of equations{

x+ = Ax+B1ω +B2u

z = C1x, y = C2x
(D.9)

where A ∈ Rn×n, B2 ∈ Rn×l, B1 ∈ Rn×h, C1 ∈ Rr×n, C2 ∈ Rm×n, x , x(k) ∈ Rn
and x+ , x(k + 1) ∈ Rn are respectively the system state at the current step k,
and at the next step k + 1, u , u(k) ∈ Rl is the control input, ω , ω(k) ∈ Rh is an
exogenous input signal, z , z(k) ∈ Rr the controlled output, and y , y(k) ∈ Rm is
the measured one. Define the matrices Ccl ,

[
C1 0r×(2l)

]
, B̃ ,

[
B>1 0h×(2l)

]>,
K ,

[
D>c B>c

]>, and
Ã ,

[
A B2Cc

02l×n Ac

]
where Ac, Bc, Cc, and Dc have the following defined structure

Ac =

[
Il Il

0l×l 0l×l

]
2l×2l

Bc =

[
(Ki −Kd)

Kd

]
2l×m

Cc =
[
Il 0l×l

]
l×2l

Dc = [(Kp +Ki +Kd)]l×m

where Kp = [kp,ij ], Ki = [ki,ij ], Kd = [kd,ij ] ∈ Rl×m. Note that the system having
the aforesaid matrices (Ac, Bc, Cc, Dc) has transfer matrix equal to

Cc(zI −Ac)−1Bc +Dc = Kp +Ki
z

z − 1
+Kd

z − 1

z
=

(
kp,11 + ki,11

z

z − 1
+ kd,11

z − 1

z

)
· · ·

(
kp,1m + ki,1m

z

z − 1
+ kd,1m

z − 1

z

)
...

. . .
...(

kp,l1 + ki,l1
z

z − 1
+ kd,l1

z − 1

z

)
· · ·

(
kp,lm + ki,lm

z

z − 1
+ kd,lm

z − 1

z

)


Assuming B2 to be of full column rank without loss of generality, there exists an
invertible Tb ∈ Rn×n : TbB2 =

[
0l×(n−l) Il×l

]>. Finally define

T ,

[
Tb 0n×2l

02l×n I2l×2l

]
Thus, we have the following theorems

Theorem D.1 Consider system (D.9). If there exists a positive definite matrix
P ∈ Rn̄×n̄, where n̄ , n+ 2l, matrices

F =

[
F11 0(n̄−q)×3l

F21 F22

]
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F22 ∈ Rq×3l, 1 ≤ q ≤ 3l, G1 , [G11 0] ∈ Rn̄×n̄, G11 ∈ Rn̄×(n̄−3l), G2 , [G21 0] ∈
Rh×n̄, G21 ∈ Rh×(n̄−3l), G3 , [G31 0] ∈ Rr×n̄, G31 ∈ Rr×(n̄−3l), H1 ∈ Rn̄×r,
H2 ∈ Rn̄×r, H3 ∈ Rh×r, H4 ∈ Rr×r, Y ∈ Rq×m, and

N1 =

[
0(n̄−q)×n 0(n̄−q)×2l

Y C2 0q×2l

]
and we further name Ψ11 , P−FT−(FT )>, Ψ21 , N>1 +(FTÃ)>−G1T+(H1Ccl)

>,
Ψ22 , −P +G1TÃ+ (G1TÃ)>+H2Ccl + (H2Ccl)

>, Ψ31 , (FTB̃)>−G2T , Ψ32 ,
G2TÃ+H3Ccl + (G1TB̃)>, Ψ33 , −γ2I +G2TB̃+ (G2TB̃)>, Ψ41 , −G3T −H>1 ,
Ψ42 , G3TÃ + H4Ccl −H>2 , Ψ43 , G3TB̃ −H>3 , and Ψ44 , I −H4 −H>4 , such
that the following LMI has a solution

Ψ11 ∗ ∗ ∗
Ψ21 Ψ22 ∗ ∗
Ψ31 Ψ32 Ψ33 ∗
Ψ41 Ψ42 Ψ43 Ψ44

 < 0

where ∗ indicates the transposed corresponding element in the subdiagonal part of the
matrix, and if exists K such that F22K = Y , then the H∞ norm of the closed-loop
system given by (D.9) and {

x+
c = Acxc +Bcy

u = Ccxc +Dcy

satisfies ‖Tzω‖∞ < γ.

Theorem D.2 Consider system (D.9). If there exists a positive definite matrix
P ∈ Rn̄×n̄, and a matrix

J =

[
J11 0(n̄−q)×3l

J21 J22

]
J22 ∈ R3l×3l, and X ∈ R3l×m, and we further name

Ω ,

[
0(n̄−3l)×n 0(n̄−3l)×2l

XC2 03l×2l

]
such that the following LMI has a solution[

bP ∗
Ω + JTÃ+ aJT b(JT + (JT )> − P )

]
> 0

and if J is nonsingular, then by choosing K = J−1
22 X, the eigenvalues of the following

matrix

Acl ,

[
(A+B2DcC2) B2Cc

BcC2 Ac

]
lie in the region FD ,

{
(<[λ],=[λ]) : (<[λ] + a)2 +=[λ]2 < b2

}
.





Bibliography

[Abdullah 2012] Majid A Abdullah, AHM Yatim, CW Tan and R Saidur. A re-
view of maximum power point tracking algorithms for wind energy systems.
Renewable and sustainable energy reviews, vol. 16, no. 5, pages 3220–3227,
2012. (Cited on pages 28 and 39).

[Abido 2002] MA Abido. Optimal power flow using particle swarm optimization.
International Journal of Electrical Power & Energy Systems, vol. 24, no. 7,
pages 563–571, 2002. (Cited on page 114).

[Ackermann 2005] Thomas Ackermann. Wind power in power systems. John Wiley
& Sons, 2005. (Cited on page 28).

[Aguirre 2007] A Hernandez Aguirre, A Muñoz Zavala, E Villa Diharce and
S Botello Rionda. COPSO: Constrained Optimization via PSO algorithm.
Center for Research in Mathematics (CIMAT). Technical report No. I-07-
04/22-02-2007, 2007. (Cited on pages 77, 78, 79, 81, 85, 90 and 91).

[Akat 2008] S Burak Akat and Veysel Gazi. Decentralized asynchronous particle
swarm optimization. In Swarm Intelligence Symposium, 2008. SIS 2008.
IEEE, pages 1–8. IEEE, 2008. (Cited on page 94).

[Ali 2014] MM Ali, Mohsen Golalikhani and Jun Zhuang. A computational study
on different penalty approaches for solving constrained global optimization
problems with the electromagnetism-like method. Optimization, vol. 63, no. 3,
pages 403–419, 2014. (Cited on page 80).

[Andersson 2008] Göran Andersson. Modelling and analysis of electric power sys-
tems. ETH Zurich, september, 2008. (Cited on pages 114 and 119).

[Arifujjaman 2010] Md Arifujjaman, MT Iqbal and John E Quaicoe. Vector control
of a DFIG based wind turbine. Istanbul University-Journal of Electrical &
Electronics Engineering; Vol 9, No 2 (2009); 1057-1066, 2010. (Cited on
pages ix, 7, 29, 36, 38, 232 and 233).

[Atashpendar 2016] Arash Atashpendar, Bernabé Dorronsoro, Grégoire Danoy and
Pascal Bouvry. A parallel cooperative coevolutionary SMPSO algorithm for
multi-objective optimization. In High Performance Computing & Simula-
tion (HPCS), 2016 International Conference on, pages 713–720. IEEE, 2016.
(Cited on page 95).

[Barakati 2009] S Masoud Barakati, Mehrdad Kazerani and J Dwight Aplevich.
Maximum power tracking control for a wind turbine system including a mat-
rix converter. IEEE Transactions on Energy Conversion, vol. 24, no. 3, pages
705–713, 2009. (Cited on page 39).



246 Bibliography

[Baros 2017] Stefanos Baros and Marija D Ilic. Distributed Torque Control of De-
loaded Wind DFIGs for Wind Farm Power Output Regulation. IEEE Trans-
actions on Power Systems, 2017. (Cited on pages xi, 10, 42, 190 and 191).

[Baroudi 2007] Jamal A Baroudi, Venkata Dinavahi and Andrew M Knight. A
review of power converter topologies for wind generators. Renewable Energy,
vol. 32, no. 14, pages 2369–2385, 2007. (Cited on pages vi and 5).

[Barreiro-Gomez 2015] Julian Barreiro-Gomez, Carlos Ocampo-Martinez, F Bianchi
and Nicanor Quijano. Model-free control for wind farms using a gradient
estimation-based algorithm. In Control Conference (ECC), 2015 European,
pages 1516–1521. IEEE, 2015. (Cited on page 130).

[Bhutta 2012] Muhammad Mahmood Aslam Bhutta, Nasir Hayat, Ahmed Uzair
Farooq, Zain Ali, Sh Rehan Jamil and Zahid Hussain. Vertical axis wind
turbine–A review of various configurations and design techniques. Renew-
able and Sustainable Energy Reviews, vol. 16, no. 4, pages 1926–1939, 2012.
(Cited on pages vi and 4).

[Biegel 2013] Benjamin Biegel, Daria Madjidian, Vedrana Spudic, Anders Rantzer
and Jakob Stoustrup. Distributed low-complexity controller for wind power
plant in derated operation. In Control Applications (CCA), 2013 IEEE In-
ternational Conference on, pages 146–151. IEEE, 2013. (Cited on pages xi,
10, 131, 190 and 191).

[Boukhezzar 2005] Boubekeur Boukhezzar and Houria Siguerdidjane. Nonlinear
control of variable speed wind turbines for power regulation. In Control Ap-
plications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on, pages
114–119. IEEE, 2005. (Cited on pages x, 8, 29, 191 and 195).

[Boukhezzar 2006a] Boubekeur Boukhezzar. Sur les stratégies de commande pour
l’optimisation et la régulation de puissance des éoliennes à vitesse variable.
PhD thesis, Université Paris Sud-Paris XI, 2006. (Cited on pages ix, 7, 33
and 35).

[Boukhezzar 2006b] Boubekeur Boukhezzar, Houria Siguerdidjane and M Maureen
Hand. Nonlinear control of variable-speed wind turbines for generator torque
limiting and power optimization. Journal of solar energy engineering, vol. 128,
no. 4, pages 516–530, 2006. (Cited on pages x and 8).

[Boukhezzar 2007] Boubekeur Boukhezzar, L Lupu, Houria Siguerdidjane and
M Hand. Multivariable control strategy for variable speed, variable pitch wind
turbines. Renewable Energy, vol. 32, no. 8, pages 1273–1287, 2007. (Cited
on pages x, 8 and 29).

[Boukhezzar 2009] Boubekeur Boukhezzar and Houria Siguerdidjane. Nonlinear
control with wind estimation of a DFIG variable speed wind turbine for power



Bibliography 247

capture optimization. Energy Conversion and Management, vol. 50, no. 4,
pages 885–892, 2009. (Cited on page 38).

[Boukhezzar 2010] Boubekeur Boukhezzar and Houria Siguerdidjane. Comparison
between linear and nonlinear control strategies for variable speed wind tur-
bines. Control Engineering Practice, vol. 18, no. 12, pages 1357–1368, 2010.
(Cited on pages ix, 8, 29 and 30).

[Boukhezzar 2011] Boubekeur Boukhezzar and Houria Siguerdidjane. Nonlinear
control of a variable-speed wind turbine using a two-mass model. IEEE Trans-
actions on Energy Conversion, vol. 26, no. 1, pages 149–162, 2011. (Cited
on pages 29, 33, 54 and 56).

[Boyd 2004] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004. (Cited on pages 82, 101 and 229).

[Burkart 2011] Ralph Burkart, Kostas Margellos and John Lygeros. Nonlinear con-
trol of wind turbines: An approach based on switched linear systems and
feedback linearization. In Decision and Control and European Control Con-
ference (CDC-ECC), 2011 50th IEEE Conference on, pages 5485–5490. IEEE,
2011. (Cited on pages 8, 29 and 33).

[Burton 2011] Tony Burton, Nick Jenkins, David Sharpe and Ervin Bossanyi. Wind
energy handbook. John Wiley & Sons, 2011. (Cited on pages vi, 4 and 33).

[Cabrera 2007] Juan C Fuentes Cabrera and Carlos A Coello Coello. Handling
constraints in particle swarm optimization using a small population size.
In Mexican International Conference on Artificial Intelligence, pages 41–51.
Springer, 2007. (Cited on page 79).

[Calazan 2013] Rogerio De Moraes Calazan, Nadia Nedjah and Luiza De Macedo
Mourelle. A cooperative parallel particle swarm optimization for high-
dimension problems on GPUs. In Computational Intelligence and 11th
Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC),
2013 BRICS Congress on, pages 356–361. IEEE, 2013. (Cited on page 95).

[Camblong 2012] Haritza Camblong, Said Nourdine, Ionel Vechiu and Gerardo
Tapia. Control of wind turbines for fatigue loads reduction and contribu-
tion to the grid primary frequency regulation. Energy, vol. 48, no. 1, pages
284–291, 2012. (Cited on page 30).

[Cao 2009] Yongcan Cao, Wei Ren and Yan Li. Distributed discrete-time coordin-
ated tracking with a time-varying reference state and limited communication.
Automatica, vol. 45, no. 5, pages 1299–1305, 2009. (Cited on page 172).

[Cao 2012] Yongcan Cao and Wei Ren. Distributed coordinated tracking with re-
duced interaction via a variable structure approach. IEEE Transactions on
Automatic Control, vol. 57, no. 1, pages 33–48, 2012. (Cited on page 180).



248 Bibliography

[Carli 2008] Ruggero Carli, Alessandro Chiuso, Luca Schenato and Sandro
Zampieri. A PI consensus controller for networked clocks synchronization.
IFAC Proceedings Volumes, vol. 41, no. 2, pages 10289–10294, 2008. (Cited
on page 172).

[Carlin 2003] Palmer W Carlin, Alan S Laxson and EB Muljadi. The history and
state of the art of variable-speed wind turbine technology. Wind Energy, vol. 6,
no. 2, pages 129–159, 2003. (Cited on pages vi and 4).

[Carpentier 1962] J Carpentier. Contribution to the economic dispatch problem.
Bulletin de la Societe Francoise des Electriciens, vol. 3, no. 8, pages 431–447,
1962. (Cited on page 113).

[Chang 2014] Tsung-Hui Chang, Angelia Nedic and Anna Scaglione. Distrib-
uted constrained optimization by consensus-based primal-dual perturbation
method. IEEE Transactions on Automatic Control, vol. 59, no. 6, pages
1524–1538, 2014. (Cited on page 85).

[Cheng 2013] Shi Cheng. Population diversity in particle swarm optimization:
Definition, observation, control, and application. University of Liverpool,
England, 2013. (Cited on page 79).

[Chu 2003] Shu-Chuan Chu, John F Roddick and Jeng-Shyang Pan. Parallel particle
swarm optimization algorithm with communication strategies. submitted to
IEEE Transactions on Evolutionary Computation, 2003. (Cited on page 94).

[Cimino 2009] Mauro Cimino and Prabhakar R Pagilla. A design technique for
multirate linear systems. IEEE Transactions on Control Systems Technology,
vol. 17, no. 6, pages 1342–1349, 2009. (Cited on page 201).

[Clerc 2006] Maurice Clerc. Stagnation analysis in particle swarm optimisation or
what happens when nothing happens. 2006. (Cited on page 77).

[Crabtree 2014] Christopher J Crabtree, Donatella Zappalá and Peter J Tavner.
Survey of commercially available condition monitoring systems for wind tur-
bines. 2014. (Cited on pages vi and 5).

[Dall’Anese 2013] Emiliano Dall’Anese, Hao Zhu and Georgios B Giannakis. Dis-
tributed optimal power flow for smart microgrids. IEEE Transactions on
Smart Grid, vol. 4, no. 3, pages 1464–1475, 2013. (Cited on pages xi, 9
and 114).

[de Alegría 2007] Iñigo Martinez de Alegría, Jon Andreu, José Luis Martín, Pedro
Ibanez, José Luis Villate and Haritza Camblong. Connection requirements
for wind farms: A survey on technical requierements and regulation. Renew-
able and Sustainable Energy Reviews, vol. 11, no. 8, pages 1858–1872, 2007.
(Cited on pages vii, 6 and 28).



Bibliography 249

[De Almeida 2007] Rogério G De Almeida and JA Peças Lopes. Participation of
doubly fed induction wind generators in system frequency regulation. IEEE
transactions on power systems, vol. 22, no. 3, pages 944–950, 2007. (Cited
on page 43).

[de Oliveira 1999] Maurício C de Oliveira, Jacques Bernussou and José C Geromel.
A new discrete-time robust stability condition. Systems & control letters,
vol. 37, no. 4, pages 261–265, 1999. (Cited on page 241).

[De Oliveira 2002] Maurıcio C De Oliveira, José C Geromel and Jacques Bernussou.
Extended H 2 and H norm characterizations and controller parametrizations
for discrete-time systems. International Journal of Control, vol. 75, no. 9,
pages 666–679, 2002. (Cited on page 241).

[Deb 2000] Kalyanmoy Deb. An efficient constraint handling method for genetic al-
gorithms. Computer methods in applied mechanics and engineering, vol. 186,
no. 2, pages 311–338, 2000. (Cited on pages 79, 80 and 114).

[Deb 2012] Kalyanmoy Deb. Optimization for engineering design: Algorithms and
examples. PHI Learning Pvt. Ltd., 2012. (Cited on page 79).

[Del Valle 2008] Yamille Del Valle, Ganesh Kumar Venayagamoorthy, Salman Mo-
hagheghi, Jean-Carlos Hernandez and Ronald G Harley. Particle swarm
optimization: basic concepts, variants and applications in power systems.
IEEE Transactions on evolutionary computation, vol. 12, no. 2, pages 171–
195, 2008. (Cited on page 84).

[Delille 2013] Gauthier Delille, Gilles Malarange and Christophe Gaudin. Analysis
of the options to reduce the integration costs of renewable generation in the
distribution networks. Part 2: A step towards advanced connection studies
taking into account the alternatives to grid reinforcement. 2013. (Cited on
pages ix, 8 and 28).

[Dung 2013] Thi Minh Dung, Tran Alain and Y Kibangou. Distributed Design
of Finite-time Average Consensus Protocols. IFAC Proceedings Volumes,
vol. 46, no. 27, pages 227–233, 2013. (Cited on pages xiii, 11, 70, 71, 72, 73
and 74).

[Ebegbulem 2016] Judith Ebegbulem. Distributed control of multi-agent systems
using extremum seeking. PhD thesis, 2016. (Cited on page 130).

[Eberhart 1995] Russell Eberhart and James Kennedy. A new optimizer using
particle swarm theory. In Micro Machine and Human Science, 1995. MHS’95.,
Proceedings of the Sixth International Symposium on, pages 39–43. IEEE,
1995. (Cited on pages 74, 75 and 84).



250 Bibliography

[ENTSO-E 2013] ENTSO-E. Network code for requirements for grid connection
applicable to all generators. European Network of Transmission System Op-
erators for Electricity, 2013. (Cited on page 28).

[Feng 2015] Ju Feng and Wen Zhong Shen. Solving the wind farm layout optimiz-
ation problem using random search algorithm. Renewable Energy, vol. 78,
pages 182–192, 2015. (Cited on page 128).

[Fleming 2015] Paul Fleming, Pieter MO Gebraad, Sang Lee, Jan-Willem Winger-
den, Kathryn Johnson, Matt Churchfield, John Michalakes, Philippe Spalart
and Patrick Moriarty. Simulation comparison of wake mitigation control
strategies for a two-turbine case. Wind Energy, vol. 18, no. 12, pages 2135–
2143, 2015. (Cited on page 128).

[Francis 1976] Bruce A Francis and W Murray Wonham. The internal model prin-
ciple of control theory. Automatica, vol. 12, no. 5, pages 457–465, 1976.
(Cited on page 178).

[Gazi 2014] Veysel Gazi and Raul Ordonez. Particle swarm optimization based dis-
tributed agreement in multi-agent dynamic systems. In Swarm Intelligence
(SIS), 2014 IEEE Symposium on, pages 1–7. IEEE, 2014. (Cited on pages x,
9 and 85).

[Ge 2013] Yanrong Ge, Yangzhou Chen, Yaxiao Zhang and Zhonghe He. State
consensus analysis and design for high-order discrete-time linear multiagent
systems. Mathematical Problems in Engineering, vol. 2013, 2013. (Cited on
pages 172 and 173).

[Gebraad 2013] Pieter MO Gebraad, Filip C van Dam and Jan-Willem van Wing-
erden. A model-free distributed approach for wind plant control. In American
Control Conference (ACC), 2013, pages 628–633. IEEE, 2013. (Cited on
page 130).

[Gebraad 2016] PMO Gebraad, FW Teeuwisse, JW Wingerden, Paul A Fleming,
SD Ruben, JR Marden and LY Pao. Wind plant power optimization through
yaw control using a parametric model for wake effects-a CFD simulation
study. Wind Energy, vol. 19, no. 1, pages 95–114, 2016. (Cited on pages xi,
xiii, 9, 11, 128, 130, 132 and 136).

[Gionfra 2016a] Nicolo Gionfra, Houria Siguerdidjane, Guillaume Sandou and
Damien Faille. Hierarchical Control of a Wind Farm for Wake Interaction
Minimization. IFAC-PapersOnLine, vol. 49, no. 27, pages 330–335, 2016.
(Cited on page 132).

[Gionfra 2016b] Nicolo Gionfra, Houria Siguerdidjane, Guillaume Sandou, Damien
Faille and Philippe Loevenbruck. Combined feedback linearization and MPC
for wind turbine power tracking. In Control Applications (CCA), 2016 IEEE
Conference on, pages 52–57. IEEE, 2016. (Cited on page 30).



Bibliography 251

[Gionfra 2017a] Nicolo Gionfra, Guillaume Sandou, Houria Siguerdidjane and
Damien Faille. A Distributed PID-like Consensus Control for Discrete-time
Multi-agent Systems. In ICINCO, 14th International Conference on Inform-
atics in Control, Automation and Robotics, 2017. (Cited on page 172).

[Gionfra 2017b] Nicolo Gionfra, Guillaume Sandou, Houria Siguerdidjane, Damien
Faille and Philippe Loevenbruck. A Distributed Consensus Control Under
Disturbances for Wind Farm Power Maximization. In Decision and Control
(CDC), 2017 IEEE 56th Annual Conference on. IEEE, 2017. (Cited on
page 192).

[Gionfra 2017c] Nicolo Gionfra, Guillaume Sandou, Houria Siguerdidjane, Philippe
Loevenbruck and Damien Faille. A novel distributed particle swarm optimiz-
ation algorithm for the optimal power flow problem. In Control Technology
and Applications (CCTA), 2017 IEEE Conference on. IEEE, 2017. (Cited
on page 114).

[Graham 1981] Alexander Graham. Kronecker products and matrix calculus with
applications. Holsted Press, New York, 1981. (Cited on page 230).

[Gros 2013] Sébastien Gros. An economic NMPC formulation for wind turbine con-
trol. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference
on, pages 1001–1006. IEEE, 2013. (Cited on page 29).

[Hamon 2010] Camille Hamon, Katherine Elkington and Mehrdad Ghandhari.
Doubly-fed induction generator modeling and control in DigSilent Power-
Factory. In Power System Technology (POWERCON), 2010 International
Conference on, pages 1–7. IEEE, 2010. (Cited on pages 29, 36, 231, 232
and 233).

[Hansen 2006] Anca D Hansen, Poul Sørensen, Florin Iov and Frede Blaabjerg.
Centralised power control of wind farm with doubly fed induction generators.
Renewable Energy, vol. 31, no. 7, pages 935–951, 2006. (Cited on pages vi
and 5).

[Hauser 1992] John Hauser, Shankar Sastry and Petar Kokotovic. Nonlinear control
via approximate input-output linearization: The ball and beam example. IEEE
transactions on automatic control, vol. 37, no. 3, pages 392–398, 1992. (Cited
on page 31).

[Heer 2014] Flavio Heer, Peyman Mohajerin Esfahani, Maryam Kamgarpour and
John Lygeros. Model based power optimisation of wind farms. In Control
Conference (ECC), 2014 European, pages 1145–1150. IEEE, 2014. (Cited on
pages xi, 10, 129 and 132).

[Heier 2014] Siegfried Heier. Wind energy conversion systems. Grid Integration
of Wind Energy: Onshore and Offshore Conversion Systems, pages 31–117,
2014. (Cited on page 33).



252 Bibliography

[Hendrickx 2012] J Hendrickx, R Jungers, A Olshevsky and G Vankeerberghen.
Diameter, optimal-time consensus, and graph eigenvalues, 2012. (Cited on
page 71).

[Herceg 2013] M. Herceg, M. Kvasnica, C.N. Jones and M. Morari. Multi-Parametric
Toolbox 3.0. In Proc. of the European Control Conference, pages 502–510,
Zürich, Switzerland, July 17–19 2013. http://control.ee.ethz.ch/~mpt.
(Cited on page 26).

[Hereford 2006] James M Hereford. A distributed particle swarm optimization al-
gorithm for swarm robotic applications. In Evolutionary Computation, 2006.
CEC 2006. IEEE Congress on, pages 1678–1685. IEEE, 2006. (Cited on
page 94).

[Herp 2015] Jürgen Herp, Uffe V Poulsen and Martin Greiner. Wind farm power
optimization including flow variability. Renewable Energy, vol. 81, pages
173–181, 2015. (Cited on pages xi, 9, 128 and 129).

[Isidori 2013] Alberto Isidori. Nonlinear control systems. Springer Science & Busi-
ness Media, 2013. (Cited on page 218).

[Jansen 2003] Thomas Jansen and R Paul Wiegand. Sequential versus parallel co-
operative coevolutionary (1+ 1) EAs. In Evolutionary Computation, 2003.
CEC’03. The 2003 Congress on, volume 1, pages 30–37. IEEE, 2003. (Cited
on page 96).

[Jensen 1983] Niels Otto Jensen. A note on wind generator interaction. 1983. (Cited
on page 127).

[Jiménez 2010] Ángel Jiménez, Antonio Crespo and Emilio Migoya. Application of
a LES technique to characterize the wake deflection of a wind turbine in yaw.
Wind energy, vol. 13, no. 6, pages 559–572, 2010. (Cited on page 136).

[Kadirkamanathan 2006] Visakan Kadirkamanathan, Kirusnapillai Selvarajah and
Peter J Fleming. Stability analysis of the particle dynamics in particle swarm
optimizer. IEEE Transactions on Evolutionary Computation, vol. 10, no. 3,
pages 245–255, 2006. (Cited on page 77).

[Katic 1986] I Katic, J Højstrup and Niels Otto Jensen. A simple model for cluster
efficiency. In European wind energy association conference and exhibition,
pages 407–410, 1986. (Cited on pages 127 and 138).

[Kennedy 2006] J Kennedy and M Clerc. Standard PSO, 2006. (Cited on page 76).

[Khalil 2002] H.K. Khalil. Nonlinear systems. Pearson Education. Prentice Hall,
2002. (Cited on pages 221 and 223).

http://control.ee.ethz.ch/~mpt


Bibliography 253

[Khezami 2010] Nadhira Khezami, Naceur Benhadj Braiek and Xavier Guillaud.
Wind turbine power tracking using an improved multimodel quadratic ap-
proach. ISA transactions, vol. 49, no. 3, pages 326–334, 2010. (Cited on
page 30).

[Knudsen 2015] Torben Knudsen, Thomas Bak and Mikael Svenstrup. Survey of
wind farm control-power and fatigue optimization. Wind Energy, vol. 18,
no. 8, pages 1333–1351, 2015. (Cited on page 126).

[Koh 2006] Byung-Il Koh, Alan D George, Raphael T Haftka and Benjamin J Fregly.
Parallel asynchronous particle swarm optimization. International Journal for
numerical methods in engineering, vol. 67, no. 4, pages 578–595, 2006. (Cited
on page 94).

[Kundur 2004] Prabha Kundur, John Paserba, Venkat Ajjarapu, Göran Andersson,
Anjan Bose, Claudio Canizares, Nikos Hatziargyriou, David Hill, Alex
Stankovic, Carson Tayloret al. Definition and classification of power sys-
tem stability IEEE/CIGRE joint task force on stability terms and definitions.
IEEE transactions on Power Systems, vol. 19, no. 3, pages 1387–1401, 2004.
(Cited on pages vii, 5 and 42).

[Kvaternik 2011] Karla Kvaternik and Lacra Pavel. Lyapunov analysis of a distrib-
uted optimization scheme. In Network Games, Control and Optimization
(NetGCooP), 2011 5th International Conference on, pages 1–5. IEEE, 2011.
(Cited on page 82).

[Larsen 2011] Gunner Chr Larsen, Helge Aagaard Madsen, Niels Troldborg,
Torben J Larsen, Pierre-Elouan Réthoré, Peter Fuglsang, Søren Ott, Jakob
Mann, Thomas Buhl, Morten Nielsenet al. TOPFARM-next generation
design tool for optimisation of wind farm topology and operation. Tech-
nical report, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for
Bæredygtig Energi, 2011. (Cited on page 128).

[Lavaei 2012] Javad Lavaei and Steven H Low. Zero duality gap in optimal power
flow problem. IEEE Transactions on Power Systems, vol. 27, no. 1, pages
92–107, 2012. (Cited on page 113).

[Li 2009] Shuhui Li, Rajab Challoo and Marty J Nemmers. Comparative study of
DFIG power control using stator-voltage and stator-flux oriented frames. In
Power & Energy Society General Meeting, 2009. PES’09. IEEE, pages 1–8.
IEEE, 2009. (Cited on page 30).

[Li 2011] Zhongkui Li, Zhisheng Duan and Guanrong Chen. On H∞ and H2 per-
formance regions of multi-agent systems. Automatica, vol. 47, no. 4, pages
797–803, 2011. (Cited on page 172).

[Li 2012] Zhongkui Li, Zhisheng Duan, Lihua Xie and Xiangdong Liu. Distributed
robust control of linear multi-agent systems with parameter uncertainties.



254 Bibliography

International Journal of Control, vol. 85, no. 8, pages 1039–1050, 2012. (Cited
on page 172).

[Li 2013a] Xiaodong Li, Ke Tang, Mohammad N Omidvar, Zhenyu Yang, Kai Qin
and Hefei China. Benchmark functions for the CEC 2013 special session and
competition on large-scale global optimization. gene, vol. 7, no. 33, page 8,
2013. (Cited on page 106).

[Li 2013b] Zhongkui Li, Wei Ren, Xiangdong Liu and Mengyin Fu. Distributed con-
tainment control of multi-agent systems with general linear dynamics in the
presence of multiple leaders. International Journal of Robust and Nonlinear
Control, vol. 23, no. 5, pages 534–547, 2013. (Cited on page 172).

[Liberzon 2012] Daniel Liberzon. Switching in systems and control. Springer Science
& Business Media, 2012. (Cited on page 198).

[Lin 2008] Peng Lin, Yingmin Jia, Junping Du and Fashan Yu. Distributed leaderless
coordination for networks of second-order agents with time-delay on switching
topology. In American Control Conference, 2008, pages 1564–1569. IEEE,
2008. (Cited on page 238).

[Lio 2017] Wai Hou Lio, Bryn Ll Jones, Qian Lu and JA Rossiter. Fundamental
performance similarities between individual pitch control strategies for wind
turbines. International Journal of Control, vol. 90, no. 1, pages 37–52, 2017.
(Cited on page 65).

[Liserre 2011] Marco Liserre, Roberto Cardenas, Marta Molinas and Jose Rodrig-
uez. Overview of multi-MW wind turbines and wind parks. IEEE Transac-
tions on Industrial Electronics, vol. 58, no. 4, pages 1081–1095, 2011. (Cited
on pages vi and 5).

[Liu 2009] Yang Liu, Yingmin Jia, Junping Du and Shiying Yuan. Dynamic output
feedback control for consensus of multi-agent systems: an H∞ approach. In
2009 American Control Conference, pages 4470–4475. IEEE, 2009. (Cited
on pages 172 and 175).

[Liu 2010] Hui Liu, Zixing Cai and Yong Wang. Hybridizing particle swarm optim-
ization with differential evolution for constrained numerical and engineering
optimization. Applied Soft Computing, vol. 10, no. 2, pages 629–640, 2010.
(Cited on page 79).

[Liu 2015] Jie Liu, Mouhacine Benosman and AU Raghunathan. Consensus-based
distributed optimal power flow algorithm. In Innovative Smart Grid Techno-
logies Conference (ISGT), 2015 IEEE Power & Energy Society, pages 1–5.
IEEE, 2015. (Cited on pages 113 and 114).



Bibliography 255

[Loukarakis 2009] Emmanouil Loukarakis, Ioannis Margaris and Panayiotis Moutis.
Frequency control support and participation methods provided by wind gener-
ation. In Electrical Power & Energy Conference (EPEC), 2009 IEEE, pages
1–6. IEEE, 2009. (Cited on pages 30 and 43).

[Ma 1995] Xin Ma, Niels Kjølstad Poulsen and Henrik Bindner. Estimation of
wind speed in connection to a wind turbine. Technical report, Informatics
and Mathematical Modelling, Technical University of Denmark, DTU, 1995.
(Cited on page 54).

[Madjidian 2011] Daria Madjidian, Karl Mårtensson and Anders Rantzer. A dis-
tributed power coordination scheme for fatigue load reduction in wind farms.
In American Control Conference (ACC), 2011, pages 5219–5224. IEEE, 2011.
(Cited on page 131).

[Magnússon 2015] Sindri Magnússon, Pradeep Chathuranga Weeraddana and Carlo
Fischione. A distributed approach for the optimal power-flow problem based
on ADMM and sequential convex approximations. IEEE Transactions on
Control of Network Systems, vol. 2, no. 3, pages 238–253, 2015. (Cited on
pages xi, 9 and 114).

[Mahdavi 2015] Sedigheh Mahdavi, Mohammad Ebrahim Shiri and Shahryar
Rahnamayan. Metaheuristics in large-scale global continues optimization:
A survey. Information Sciences, vol. 295, pages 407–428, 2015. (Cited on
page 95).

[Marden 2013] Jason R Marden, Shalom D Ruben and Lucy Y Pao. A model-
free approach to wind farm control using game theoretic methods. IEEE
Transactions on Control Systems Technology, vol. 21, no. 4, pages 1207–
1214, 2013. (Cited on pages xi, 9, 10, 130 and 131).

[Mauricio 2009] Juan Manuel Mauricio, Alejandro Marano, Antonio Gómez-
Expósito and José Luis Martínez Ramos. Frequency regulation contribution
through variable-speed wind energy conversion systems. IEEE Transactions
on Power Systems, vol. 24, no. 1, pages 173–180, 2009. (Cited on pages vii,
6 and 42).

[Minaud 2013] Antoine Minaud, Christophe Gaudin and Laurent Karsenti. Analysis
of the options to reduce the integration costs of renewable generation in the
distribution networks. part 1: Impact of pv development in france and global
analysis of considered alternatives to reinforcement. 2013. (Cited on page 28).

[Monaco 1988] S Monaco and D Normand-Cyrot. Zero dynamics of sampled nonlin-
ear systems. Systems & control letters, vol. 11, no. 3, pages 229–234, 1988.
(Cited on page 17).



256 Bibliography

[Monaco 2001] Salvatore Monaco and Dorothée Normand-Cyrot. Issues on non-
linear digital control. European Journal of Control, vol. 7, no. 2-3, pages
160–177, 2001. (Cited on page 201).

[Morren 2006] Johan Morren, Sjoerd WH De Haan, Wil L Kling and JA Ferreira.
Wind turbines emulating inertia and supporting primary frequency control.
IEEE Transactions on power systems, vol. 21, no. 1, pages 433–434, 2006.
(Cited on pages vii, 6 and 42).

[Mortensen 1998] Niels Gylling Mortensen, Lars Landberg, Ib Troen and Erik Lun-
dtang Petersen. Wind Atlas Analysis and Application program (WAsP): Vol.
1: Getting started. Technical report, Risø National Laboratory, 1998. (Cited
on page 128).

[Navarro 2015] Inaki Navarro, Ezequiel Di Mario and Alcherio Martinoli. Distrib-
uted Particle Swarm Optimization-particle allocation and neighborhood topo-
logies for the learning of cooperative robotic behaviors. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages
2958–2965. IEEE, 2015. (Cited on pages x, 9 and 85).

[Nedic 2009] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient meth-
ods for multi-agent optimization. IEEE Transactions on Automatic Control,
vol. 54, no. 1, pages 48–61, 2009. (Cited on page 82).

[Nevistic 1995] V Nevistic and M Morari. Constrained control of feedback-
linearizable systems. In Proc. 3rd European Control Conference ECC’95,
pages 1726–1731, 1995. (Cited on pages 17, 18, 19 and 30).

[Oh 2014] Kwang-Kyo Oh, Kevin L Moore and Hyo-Sung Ahn. Disturbance Attenu-
ation in a Consensus Network of Identical Linear Systems: An H∞ Approach.
IEEE Transactions on Automatic Control, vol. 59, no. 8, pages 2164–2169,
2014. (Cited on page 172).

[Olfati-Saber 2007] Reza Olfati-Saber, J Alex Fax and Richard M Murray. Con-
sensus and cooperation in networked multi-agent systems. Proceedings of the
IEEE, vol. 95, no. 1, pages 215–233, 2007. (Cited on pages 70 and 147).

[Østergaard 2007] Kasper Zinck Østergaard, Per Brath and Jakob Stoustrup. Es-
timation of effective wind speed. In Journal of Physics: Conference Series,
volume 75, page 012082. IOP Publishing, 2007. (Cited on page 54).

[Ou 2014] Lin-Lin Ou, Jun-Jie Chen, Dong-Mei Zhang, Lin Zhang and Wei-Dong
Zhang. Distributed H∞ PID feedback for improving consensus performance of
arbitrary-delayed multi-agent system. International Journal of Automation
and Computing, vol. 11, no. 2, pages 189–196, 2014. (Cited on page 172).



Bibliography 257

[Pan 2014] Feng Pan, Qianqian Zhang, Jun Liu, Weixing Li and Qi Gao. Consensus
analysis for a class of stochastic PSO algorithm. Applied Soft Computing,
vol. 23, pages 567–578, 2014. (Cited on page 77).

[Park 2015a] Jinkyoo Park and Kincho H Law. Cooperative wind turbine control
for maximizing wind farm power using sequential convex programming. En-
ergy Conversion and Management, vol. 101, pages 295–316, 2015. (Cited on
pages viii, xi, xiii, xxii, 6, 9, 11, 128, 129, 132, 133, 134, 135, 136, 137, 138
and 148).

[Park 2015b] Jinkyoo Park and Kincho H Law. Layout optimization for maximizing
wind farm power production using sequential convex programming. Applied
Energy, vol. 151, pages 320–334, 2015. (Cited on page 128).

[Park 2016] Jinkyoo Park and Kincho H Law. A data-driven, cooperative wind farm
control to maximize the total power production. Applied Energy, vol. 165,
pages 151–165, 2016. (Cited on pages xi, 9 and 130).

[Peña 2014] Alfredo Peña, Pierre-Elouan Réthoré and Ole Rathmann. Modeling
large offshore wind farms under different atmospheric stability regimes with
the Park wake model. Renewable Energy, vol. 70, pages 164–171, 2014. (Cited
on page 128).

[Penarrocha 2014] I Penarrocha, D Dolz, N Aparicio and R Sanchis. Synthesis of
nonlinear controller for wind turbines stability when providing grid support.
International Journal of Robust and Nonlinear Control, vol. 24, no. 16, pages
2261–2284, 2014. (Cited on page 30).

[Peng 2014] Qiuyu Peng and Steven H Low. Distributed Optimal Power Flow
Algorithm for Balanced Radial Distribution Networks. arXiv preprint
arXiv:1404.0700, 2014. (Cited on pages xi, 9 and 114).

[Perdana 2008] Abram Perdana. Dynamic models of wind turbines. Chalmers Uni-
versity of Technology, 2008. (Cited on page 29).

[Petru 2002] Tomas Petru and Torbjörn Thiringer. Modeling of wind turbines for
power system studies. IEEE transactions on Power Systems, vol. 17, no. 4,
pages 1132–1139, 2002. (Cited on page 32).

[Poller 2003] Markus A Poller. Doubly-fed induction machine models for stability
assessment of wind farms. In Power Tech Conference Proceedings, 2003
IEEE Bologna, volume 3, pages 6–pp. IEEE, 2003. (Cited on pages 29, 36
and 232).

[Popovici 2006] Elena Popovici and Kenneth De Jong. Sequential versus parallel co-
operative coevolutionary algorithms for optimization. In Evolutionary Com-
putation, 2006. CEC 2006. IEEE Congress on, pages 1610–1617. IEEE, 2006.
(Cited on pages 95, 96 and 99).



258 Bibliography

[Potter 1994] Mitchell A Potter and Kenneth A De Jong. A cooperative coevolu-
tionary approach to function optimization. In International Conference on
Parallel Problem Solving from Nature, pages 249–257. Springer, 1994. (Cited
on page 95).

[Pulido 2004] Gregorio Toscano Pulido and Carlos A Coello Coello. A constraint-
handling mechanism for particle swarm optimization. In Evolutionary Com-
putation, 2004. CEC2004. Congress on, volume 2, pages 1396–1403. IEEE,
2004. (Cited on page 79).

[Ramtharan 2007] G Ramtharan, Nick Jenkins and JB Ekanayake. Frequency sup-
port from doubly fed induction generator wind turbines. IET Renewable
Power Generation, vol. 1, no. 1, pages 3–9, 2007. (Cited on pages 30 and 43).

[Rawlings 2009] James Blake Rawlings and David Q Mayne. Model predictive con-
trol: Theory and design. Nob Hill Pub., 2009. (Cited on pages 22, 23
and 224).

[Ren 2005] Wei Ren and Randal W Beard. Consensus seeking in multiagent systems
under dynamically changing interaction topologies. IEEE Transactions on
automatic control, vol. 50, no. 5, pages 655–661, 2005. (Cited on page 237).

[Ren 2007] Wei Ren. Multi-vehicle consensus with a time-varying reference state.
Systems & Control Letters, vol. 56, no. 7, pages 474–483, 2007. (Cited on
page 172).

[Ren 2008] Wei Ren and Randal W Beard. Distributed consensus in multi-vehicle
cooperative control. Springer, 2008. (Cited on pages 169, 170 and 171).

[Rivera 2001] Wilson Rivera. Scalable parallel genetic algorithms. Artificial intelli-
gence review, vol. 16, no. 2, pages 153–168, 2001. (Cited on pages 84 and 94).

[Sandou 2008] Guillaume Sandou, Gilles Duc and Dominique Beauvois. Optimisa-
tion par essaim particulaire du réglage d’un correcteur H-infini. In 5ème Con-
férence Internationale Francophone d’Automatique, pages CD–ROM, 2008.
(Cited on page 75).

[Schiffer 2016] Johannes Schiffer, Thomas Seel, Jörg Raisch and Tevfik Sezi.
Voltage stability and reactive power sharing in inverter-based microgrids with
consensus-based distributed voltage control. IEEE Transactions on Control
Systems Technology, vol. 24, no. 1, pages 96–109, 2016. (Cited on page 192).

[Schutte 2004] Jaco F Schutte, Jeffrey A Reinbolt, Benjamin J Fregly, Raphael T
Haftka and Alan D George. Parallel global optimization with the particle
swarm algorithm. International journal for numerical methods in engineering,
vol. 61, no. 13, pages 2296–2315, 2004. (Cited on page 94).



Bibliography 259

[Sedlaczek 2005] Kai Sedlaczek and Peter Eberhard. Constrained particle swarm
optimization of mechanical systems. Proceedings of the 6th WCSMO, Rio
de Janeiro, Brazil, 2005. (Cited on page 80).

[Soleimanzadeh 2010] Maryam Soleimanzadeh and Rafael Wisniewski. Wind speed
dynamical model in a wind farm. In Control and Automation (ICCA), 2010
8th IEEE International Conference on, pages 2246–2250. IEEE, 2010. (Cited
on pages 128 and 129).

[Soleimanzadeh 2012] Maryam Soleimanzadeh, Rafael Wisniewski and Stoyan
Kanev. An optimization framework for load and power distribution in wind
farms. Journal of Wind Engineering and Industrial Aerodynamics, vol. 107,
pages 256–262, 2012. (Cited on page 129).

[Spudic 2010] Vedrana Spudic, M Jelavic, M Baotic and Nedjeljko Peric. Hierarch-
ical wind farm control for power/load optimization. The science of making
torque from wind (Torque2010), 2010. (Cited on page 129).

[Spudić 2015] Vedrana Spudić, Christian Conte, Mato Baotić and Manfred Mor-
ari. Cooperative distributed model predictive control for wind farms. Op-
timal Control Applications and Methods, vol. 36, no. 3, pages 333–352, 2015.
(Cited on pages xi, 10, 190 and 191).

[Su 2012] Youfeng Su and Jie Huang. Two consensus problems for discrete-time
multi-agent systems with switching network topology. Automatica, vol. 48,
no. 9, pages 1988–1997, 2012. (Cited on page 172).

[Sun 2013] Andy X Sun, Dzung T Phan and Soumyadip Ghosh. Fully decentralized
AC optimal power flow algorithms. In Power and Energy Society General
Meeting (PES), 2013 IEEE, pages 1–5. IEEE, 2013. (Cited on pages xi, 9
and 114).

[Sundhar Ram 2012] S Sundhar Ram, A Nedić and Venugopal V Veeravalli. A
new class of distributed optimization algorithms: Application to regression of
distributed data. Optimization Methods and Software, vol. 27, no. 1, pages
71–88, 2012. (Cited on pages 82 and 84).

[Syai’in 2012] Mat Syai’in, Kuo Lung Lian, Nien-Che Yang and Tsai-Hsiang Chen.
A distribution power flow using particle swarm optimization. In Power and
Energy Society General Meeting, 2012 IEEE, pages 1–7. IEEE, 2012. (Cited
on page 114).

[Tarnowski 2009] Germán Claudio Tarnowski, Philip Carne Kjar, Poul E Sorensen
and Jacob Ostergaard. Variable speed wind turbines capability for temporary
over-production. In Power & Energy Society General Meeting, 2009. PES’09.
IEEE, pages 1–7. IEEE, 2009. (Cited on page 30).



260 Bibliography

[Thomsen 2006] Sven Creutz Thomsen. Nonlinear control of a wind turbine. Mas-
ter’s thesis, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby,
Denmark, 2006. (Cited on pages 29, 33, 46 and 47).

[Tian 2014] Jie Tian, Chi Su, M Soltani and Zhe Chen. Active power dispatch
method for a wind farm central controller considering wake effect. In Indus-
trial Electronics Society, IECON 2014-40th Annual Conference of the IEEE,
pages 5450–5456. IEEE, 2014. (Cited on page 129).

[Tomlin 1998] CJ Tomlin and S Shankar Sastry. Switching through singularities.
Systems & control letters, vol. 35, no. 3, pages 145–154, 1998. (Cited on
page 20).

[Trelea 2003] Ioan Cristian Trelea. The particle swarm optimization algorithm: con-
vergence analysis and parameter selection. Information processing letters,
vol. 85, no. 6, pages 317–325, 2003. (Cited on page 77).

[Ulbig 2015] Andreas Ulbig, Theodor S Borsche and Göran Andersson. Analyzing
Rotational Inertia, Grid Topology and their Role for Power System Stability.
IFAC-PapersOnLine, vol. 48, no. 30, pages 541–547, 2015. (Cited on pages vii
and 6).

[van den Bergh 2002] Frans van den Bergh and Andries P Engelbrecht. A new loc-
ally convergent particle swarm optimiser. In Systems, Man and Cybernetics,
2002 IEEE International Conference on, volume 3, pages 6–pp. IEEE, 2002.
(Cited on page 77).

[Van den Bergh 2004] Frans Van den Bergh and Andries Petrus Engelbrecht. A
cooperative approach to particle swarm optimization. IEEE transactions on
evolutionary computation, vol. 8, no. 3, pages 225–239, 2004. (Cited on
pages 95, 97, 100 and 104).

[Venne 2009] Philippe Venne and X Guillaud. Impact of wind turbine controller
strategy on deloaded operation. In Integration of Wide-Scale Renewable Re-
sources Into the Power Delivery System, 2009 CIGRE/IEEE PES Joint Sym-
posium, pages 1–1. IEEE, 2009. (Cited on page 40).

[Venter 2006] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Parallel
Particle Swarm Optimization Algorithm Accelerated by Asynchronous Eval-
uations. JACIC, vol. 3, no. 3, pages 123–137, 2006. (Cited on page 94).

[Venter 2010] Gerhard Venter and RT Haftka. Constrained particle swarm optim-
ization using a bi-objective formulation. Structural and Multidisciplinary
Optimization, vol. 40, no. 1, pages 65–76, 2010. (Cited on page 80).

[Wakasa 2015a] Yuji Wakasa and Sosuke Nakaya. Distributed particle swarm op-
timization using an average consensus algorithm. In Decision and Control



Bibliography 261

(CDC), 2015 IEEE 54th Annual Conference on, pages 2661–2666. IEEE,
2015. (Cited on pages x, 9, 80, 84, 85, 92, 95 and 96).

[Wakasa 2015b] Yuji Wakasa and Sho Yamasaki. Distributed Particle Swarm Op-
timization Based on Primal-Dual Decomposition Architectures. In Proceed-
ings of the ISCIE International Symposium on Stochastic Systems Theory
and its Applications, volume 2015, pages 97–101. The ISCIE Symposium on
Stochastic Systems Theory and Its Applications, 2015. (Cited on pages x, 9,
80, 85, 95 and 96).

[Wang 2010] Jing Wang and Nicola Elia. Control approach to distributed optimiza-
tion. In Communication, Control, and Computing (Allerton), 2010 48th An-
nual Allerton Conference on, pages 557–561. IEEE, 2010. (Cited on page 83).

[Wang 2011a] Jing Wang and Nicola Elia. A control perspective for centralized and
distributed convex optimization. In Decision and Control and European Con-
trol Conference (CDC-ECC), 2011 50th IEEE Conference on, pages 3800–
3805. IEEE, 2011. (Cited on pages 82 and 83).

[Wang 2011b] Liyong Wang and Lixin Gao. H∞ Consensus Control for Discrete-
Time Multi-Agent Systems with Switching Topology. Procedia Engineering,
vol. 15, pages 601 – 607, 2011. (Cited on pages 172, 175 and 177).

[Wang 2014] Shu Wang and Peter Seiler. Gain scheduled active power control for
wind turbines. In AIAA Atmospheric Flight Mechanics Conference, 2014.
(Cited on page 30).

[Wang 2015] Xiaoping Wang and Jinliang Shao. Consensus for Discrete-Time Mul-
tiagent Systems. Discrete Dynamics in Nature and Society, 2015. (Cited on
page 174).

[Wannakarn 2010] P Wannakarn, S Khamsawang, S Pothiya and S Jiriwibhakorn.
Optimal power flow problem solved by using distributed Sobol particle swarm
optimization. In Electrical Engineering/Electronics Computer Telecommu-
nications and Information Technology (ECTI-CON), 2010 International Con-
ference on, pages 445–449. IEEE, 2010. (Cited on page 114).

[Weise 2012] Thomas Weise, Raymond Chiong and Ke Tang. Evolutionary optimiz-
ation: Pitfalls and booby traps. Journal of Computer Science and Technology,
vol. 27, no. 5, pages 907–936, 2012. (Cited on page 97).

[Weiss 2017] Avishai Weiss, Claus Danielson, Karl Berntorp, Ilya Kolmanovsky and
Stefano Di Cairano. Motion planning with invariant set trees. In Con-
trol Technology and Applications (CCTA), 2017 IEEE Conference on, pages
1625–1630. IEEE, 2017. (Cited on page 26).



262 Bibliography

[Wiegand 2003] R Paul Wiegand. An analysis of cooperative coevolutionary al-
gorithms. PhD thesis, George Mason University Virginia, 2003. (Cited on
pages 95 and 97).

[Wu 2011] Zhizheng Wu, Azhar Iqbal and Foued Ben Amara. LMI-based multivari-
able PID controller design and its application to the control of the surface
shape of magnetic fluid deformable mirrors. IEEE Transactions on Control
Systems Technology, vol. 19, no. 4, pages 717–729, 2011. (Cited on pages 172,
174 and 241).

[Xi 2010] Jianxiang Xi, Ning Cai and Yisheng Zhong. Consensus problems for high-
order linear time-invariant swarm systems. Physica A: Statistical Mechanics
and its Applications, vol. 389, no. 24, pages 5619–5627, 2010. (Cited on
page 172).

[Xi 2012] Jianxiang Xi, Zongying Shi and Yisheng Zhong. Output consensus analysis
and design for high-order linear swarm systems: partial stability method.
Automatica, vol. 48, no. 9, pages 2335–2343, 2012. (Cited on page 172).

[Yang-Zhou 2014] CHEN Yang-Zhou, GE Yan-Rong and Ya-Xiao ZHANG. Par-
tial stability approach to consensus problem of linear multi-agent systems.
Acta Automatica Sinica, vol. 40, no. 11, pages 2573–2584, 2014. (Cited on
page 172).

[Yang 2008] Zhenyu Yang, Ke Tang and Xin Yao. Large scale evolutionary optim-
ization using cooperative coevolution. Information Sciences, vol. 178, no. 15,
pages 2985–2999, 2008. (Cited on page 95).

[Yingcheng 2011] Xue Yingcheng and Tai Nengling. Review of contribution to
frequency control through variable speed wind turbine. Renewable Energy,
vol. 36, no. 6, pages 1671–1677, 2011. (Cited on pages x, 8, 30, 43 and 44).

[You 2011] Keyou You and Lihua Xie. Network topology and communication data
rate for consensusability of discrete-time multi-agent systems. IEEE Trans-
actions on Automatic Control, vol. 56, no. 10, pages 2262–2275, 2011. (Cited
on page 172).

[Žertek 2012a] A Žertek, G Verbič and M Pantoš. Optimised control approach for
frequency-control contribution of variable speed wind turbines. IET Renew-
able power generation, vol. 6, no. 1, pages 17–23, 2012. (Cited on pages 30
and 43).

[Zertek 2012b] Andraž Zertek, Gregor Verbic and Miloš Pantos. A novel strategy
for variable-speed wind turbines’ participation in primary frequency control.
IEEE Transactions on sustainable energy, vol. 3, no. 4, pages 791–799, 2012.
(Cited on pages x, 8, 42, 43 and 45).



Bibliography 263

[Zhang 2006] Fu Zhang and B Fernandez-Rodriguez. Feedback linearization control
of systems with singularities: a ball-beam revisit. In Proc. of the Int. Conf.
on Complex Systems, 2006. (Cited on page 20).

[Zhang 2013] Wei Zhang, Yinliang Xu, Wenxin Liu, Frank Ferrese and Liming Liu.
Fully distributed coordination of multiple DFIGs in a microgrid for load shar-
ing. IEEE Transactions on Smart Grid, vol. 4, no. 2, pages 806–815, 2013.
(Cited on pages 131 and 190).

[Zhang 2014] Ruiliang Zhang and James Kwok. Asynchronous distributed ADMM
for consensus optimization. In International Conference on Machine Learn-
ing, pages 1701–1709, 2014. (Cited on page 83).



Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 

Titre : Stratégies de commande distribuée pour l’optimisation de la production des fermes éoliennes 

Mots clés : ferme éolienne, effet de sillage, pilotage de puissance active, contrôle-commande 
distribué, optimisation métaheuristique distribuée, systèmes multi-agents 

Résumé : Les travaux de thèse s’intéressent au 
réglage de la puissance active injectée dans le 
réseau, ce qui représente aujourd'hui l'une des 
problématiques principales du pilotage des parcs 
éoliens participant à la gestion du réseau. Dans le 
même temps, l'un des buts reste de maximiser la 
puissance extraite du vent en considérant les effets 
de couplage aérodynamique entre les éoliennes. 
La structure du contrôle-commande choisie est de 
type hiérarchisée et distribuée. Dans la première 
partie de la thèse, les travaux portent sur la 
commande de la turbine d'une éolienne autour des 
points de fonctionnement classiques mais 
également autour des points à puissance extraite 
réduite. En fait, cela relève d’une condition de 
fonctionnement nécessaire pour l'atteinte des 
objectifs imposés au pilotage d'un parc éolien.  
Dans la deuxième partie, le problème du contrôle à  

l'échelle d'un parc est posé sous la forme d'une 
optimisation distribuée parmi les turbines. Deux 
nouveaux algorithmes d'optimisation 
métaheuristique sont proposés et leur performance 
testée sur différents exemples de parcs éoliens. Les 
deux algorithmes s'appuient sur la méthode 
d'optimisation par essaim particulaire, qui est ici 
modifiée et adaptée pour les cas d'application aux 
systèmes multi agents. L'architecture de contrôle-
commande globale est enfin évaluée en considérant 
les dynamiques des turbines contrôlées. Les 
simulations effectuées montrent des gains 
potentiels significatifs en puissance. 
Finalement, dans la troisième partie de la thèse, 
l'introduction d'une nouvelle étape de coopération 
au niveau des contrôleurs locaux des turbines, par 
l'utilisation de la technique de contrôle par 
consensus, permet d'améliorer les performances du 
système global. 
 

 

 

Title : Distributed control strategies for wind farm power production optimization 

Keywords : wind farm, wake effect, active power control, distributed control, distributed 
metaheuristic optimization, multi-agent systems 

Abstract : In this PhD work we focus on the wind 
farm (WF) active power control since some of the 
new set grid requirements of interest can be 
expressed as specifications on its injection in the 
electric grid. Besides, one of our main objectives 
is related to the wind farm power maximization 
problem under the presence on non-negligible 
wake effect. The chosen WF control architecture 
has a two-layer hierarchical distributed structure. 
First of all, the wind turbine (WT) control is 
addressed. Here, a nonlinear controller lets a WT 
work in classic zones of functioning as well as 
track general deloaded power references. This last 
feature is a necessary condition to accomplish the 
WF control specifications. Secondly, the high 
level WF control problem is formulated as an 
optimization problem distributed among the WTs. 
 

Two novel distributed optimization algorithms are 
proposed, and their performance tested on 
different WF examples. Both are based on the 
well-known particle swarm optimization 
algorithm, which we modify and extend to be 
applicable in the multi-agent system framework. 
Finally, the overall WF control is evaluated by 
taking into account the WTs controlled dynamics. 
Simulations show potential significant power 
gains. Eventually, the introduction of a new 
control level in the hierarchical structure between 
the WF optimization and the WTs controllers is 
proposed. The idea is to let further cooperation 
among the WT local controllers, via a consensus-
based technique, to enhance the overall system 
performance. 
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