.. , Existing and proposed control design of the considered furnace, p.56

M. Overview-on-distributed, , p.62

M. Furnace-zone, , p.68

M. Distributed and .. , 71 5.3.2 Observer design for output feedback, p.72

M. Non-cooperative-distributed, , p.78

M. Serial-cooperative-distributed, , p.82

M. Centralized and B. , , p.84

.. Simulation-results, 86 5.4.2 Control of walking beam reheating furnace . . . . . . . . . . . . . . . . . . . . . . . . 89

.. Industrial-results, , p.91

C. , , p.97

, 6 Slab temperature control 99

.. Problem, 100 6.1.1 Qualitative control objectives and constraints, p.100

. Quantitative and C. Objectives, 103 6.1.2.1 Constraint of zone temperature set-points, p.105

.. , 107 6.2.2 Continuous-time problem, MPC strategy applied to slab temperature control, p.113

.. Discrete-time-problem, , p.114

P. and .. , , p.116

.. Optimization, 120 6.3.1 Simulation-based optimization 121 6.3.2 Direct search methods Pattern search methods, p.127

A. and .. , , p.130

S. Adopted-optimization, , p.132

.. Numerical, , p.135

.. Hot-rolling-of-steel-slabs, , p.14

.. , Hierarchical cascade structure of control system, p.16

.. , Lateral view of a walking beam slab reheating furnace

.. , Top view of a walking-beam slab reheating furnace, p.20

.. , Example of path-time diagram of slabs

.. , Heating curve of a slab with respect to its position, p.22

.. , Instrumented bloom with thermal box before charging into the furnace, p.23

.. , Energy flows in a walking-beam reheating furnace, p.24

.. , Simplified geometry of walking beam reheating furnace, p.31

P. Geometry and .. Of-slab-i, , p.31

.. , Temperature profile of 2n + 1 points inside a slab, p.34

R. Heat-exchange-between-slabs and E. , , p.36

.. , Assumption of local radiation for a slab i residing in zone j, p.37

.. , Overheating of slab due to stops; waste of energy, p.41

.. , Grid-point discretization for one-dimensional heat conduction problem, p.42

.. , Variation of temperature with time for three different schemes, p.44

.. , Radiation exchange between different surfaces, p.44

, Averaged slab temperature from validation experiment of the dynamical furnace model, p.47

.. , Heating trajectory of slab inside reheating furnace, p.57

.. , Hierarchical cascaded structure of reheating furnace, p.57

.. Averaging-technique-of-current-furnace-control, , p.58

.. Mpc-structure-for-walking-beam-reheating-furnace, , p.59

.. Model-predictive-control-principles, , p.61

M. Structure-of-decentralized, , p.62

M. Structure-of-centralized, , p.63

M. Structure-of-distributed, , p.64

.. , Controllable zones of walking-beam reheating furnace, p.65

.. Imposed-space-between-slabs, , p.65

.. Step-signal-of-zone-preheating, , p.66

.. , Step signal of zone heating 1, p.66

.. Input-coupling-of-furnace-zones, , p.68

.. Output-coupling-of-furnace-zones, , p.69

.. Validation, , p.70

.. Validation, , p.70

O. Structure, , p.72

A. , , p.76

M. Communication-between and .. , , p.77

.. Diagram, , p.83

M. Results-of-non-cooperative-distributed,

M. Results-of-cooperative-distributed, , p.88

. Output and M. Signals-under-centralized, , p.88

I. Number, , p.89

.. Performance, , p.89

.. Input-power-of-furnace-zones, , p.90

Z. and .. , , p.91

, Transient behavior of zone temperature controlled by PID controllers and distributed MPC, p.92

, Overshoot effect of temperature controlled by distributed MPC and PID controllers, p.93

. Histogram and .. Slab-temperature-errors, , p.93

.. , Variations of temperature set-points calculated by level 2, p.94

.. Utilization-of-automatic-mode, , p.94

O. Power-demands, , p.95

C. Specific, , p.96

.. , 31 histogram of specific energy consumption, p.96

.. Oxygen-ratio-inside-the-furnace, , p.97

.. Feedback-in-hierarchical-structure, , p.99

.. , Cascaded closed-loop of the furnace control system with MPC strategy, p.100

, Variation of desired final slab temperatures in an operation of the considered furnace, p.102

S. Variation and L. Width,

.. Constraints-on-slab-temperature-trajectory, , p.105

.. , Constraints on final slab temperature profile, p.106

.. Constraints-on-inhomogeneity-of-slab-temperature, , p.107

, Distinction between S in (? ) and S 1 (? ) for furnace operation during prediction horizon ?, ? + ?t P 108

.. , MPC applied for slab temperature control: a) at time ? , b) at time ? + ?? s, p.110

, Heating of consecutive slabs that have big difference on desired final temperature, p.116

, Variation of weighting coefficient on final slab temperature error according to slab position, p.118

.. , Different stages of heating process, p.118

, Variation of weighting coefficient on temperature gradient according to slab position, p.118

.. , Weighting coefficients according to slab position and time, p.119

.. Architecture-of-the-furnace-control-system, , p.121

.. , Simulation-based calculation of the existing level 2 of the furnace, p.122

.. , Example of search pattern in ? 2 with a given step length parameter ? k, p.124

3. , , p.127

.. , Reflection of worst vertex on the centroid of the opposite face in ? 2 and ? 3, p.128

.. , ) fail to replace best vertex x k and the edges adjacent to x k is reduced to continue the algorithm, Reflections, issue.1 2 5, p.128

, Reflection, expansion, and contraction moves of Nedlder-Mead simplex method, p.129

.. , Reducing of the simplex when reflection, expansion, contraction moves fail to replace the best vertex x k, p.129

.. , Rosenbock's method in problem of dimension 2, p.131

P. , , p.131

.. , Simulation-based optimization of the MPC strategy, p.132

.. , Software-based simulation environment, p.135

S. Thickness, , p.136

L. Width, , p.136

.. , Residence time of slabs 1 to 399, p.137

.. , Residence time of slabs 400 to 783, p.138

.. , Position-time diagram of slabs 179 to 189, p.138

.. , Position-time diagram of slabs 506 to 606, p.139

.. , Desired final temperature of slabs 1 to 399, p.140

.. , Desired final temperature of slabs 400 to 783, p.140

S. Averaged-final, , p.141

S. Averaged-final, , p.141

C. Power-of-the-furnace and .. , , p.142

.. , Temperature set-point of soaking zone calculated by MPC controller compared to that of the existing controller, p.143

.. , Temperature set-point of zone heating 2 calculated by MPC controller compared to that of the existing controller, p.143

.. , Temperature set-point of zone heating 1 calculated by MPC controller compared to that of the existing controller, p.144

.. , Temperature set-point of zone preheating calculated by MPC controller compared to that of the existing controller, p.144

.. , Final temperature of slabs 1 to 202, p.145

.. , Final temperature of slabs 203 to 404, p.146

.. , Final temperature of slabs 405 to 606, p.147

.. , Final temperature of slabs 607 to 783, p.148

, Histogram of error of final slab temperature: MPC controller; Existing controller, p.148

.. Final-temperature-gradient-of-slabs, , p.149

.. , Histogram of final slab temperature gradients, p.149

=. Temperature-trajectory-of-slab-j and .. , , p.150

9. , , p.151

=. Temperature-trajectory-of-slab-j and .. , , p.151

.. , , p.152

=. Temperature-trajectory-of-slab-j and .. , , p.152

4. , , p.153

=. Temperature-trajectory-of-slab-j and .. , , p.154

6. , , p.154

=. Temperature-trajectory-of-slab-j and .. , , p.155

6. , , p.155

=. Temperature-trajectory-of-slab-j and .. , , p.156

6. , , p.156

.. , Average temperature trajectory of 900 slabs, p.157

.. , Average temperature gradient of 900 slabs, p.157

.. Fuel-consumption-of-controllable-zones, , p.158

F. , Total fuel consumption of the, p.158

.. Predefined-scheduling-table-of-slabs, , p.163

.. , Simulation diagram of scheduling optimization, p.170

M. Implementation-diagram-of and .. , , p.171

.. , Discharging time interval of events j = 1 to j = 450, p.171

.. , Discharging time interval of events j = 451 to j = 900, p.172

.. , Average final temperature of slabs j = 1 to j = 450, p.172

.. , Average final temperature of slabs j = 451 to j = 900, p.173

. Histogram and .. Slab-temperature-error, , p.173

.. Final-slab-temperature-gradient, , p.174

.. Histogram-of-final-temperature-gradient, , p.174

.. , Furnace throughput rate measured at discharging events j = 1 to j = 450, p.175

.. , Furnace throughput rate measured at discharging events j = 451 to j = 923, p.175

.. , Average temperature of slab number 570, p.176

.. , Average temperature gradient of slab number 570, p.177

O. Reheating-time, , p.177

P. Continuous, , p.179

.. , Temperature trajectory of the strip through different zones, p.180

P. Continuous-galvanizing, , p.181

P. Temperature-control-of-furnace-with and .. , , p.182

.. Hot-blast-stoves-with-blast-furnace, , p.183

.. , Internal structure of hot blast stoves, p.184

.. , blast air, waste gas) and the solid (refractory layers) at different levels of a hot blast stove, p.185

S. Hot, , p.185

?. and .. , 1 Trial points of coordinate search in ? 2 for a given step length 196 B.2 All possible trial steps for coordinate search in ? 2 ;? : f (x i k ) ? f (x k )

.. , List of Tables 3.1 System of equations for radiative heat transfer inside reheating furnace, p.45

M. Classification-of-distributed and .. , , p.91

-. , 104 6.2 Constraints of slab temperature profile, Constraints on zone temperature set, p.107

. Correspondence and D. Continuous, , p.115

, Difference between steady-state model used in furnace observer and set-point optimizer, p.122

. Average and .. Power-of-the-furnace, , p.142

.. Average-zone-temperature-set-points, , p.145

.. , Deviation of final slab temperature from the desired value, p.147

.. Inhomogeneity, , p.158

, Final slab temperature and temperature gradient with MPC strategy and the existing controller, p.174

. Production-rate and .. Energy-consumption-indicators, , p.176

S. Assaf, M. Chen, and J. Katzberg, Steel scheduling optimization for IPSCO's rolling mill and reheat furnace, IEEE WESCANEX 95. Communications, Power, and Computing. Conference Proceedings, pp.294-299, 1995.
DOI : 10.1109/WESCAN.1995.494044

W. Al-gherwi, H. Budman, and A. Elkamel, A robust distributed model predictive control algorithm, Journal of Process Control, vol.21, issue.8, pp.1127-1137, 2011.
DOI : 10.1016/j.jprocont.2011.07.002

D. Auzinger, M. Lichtenwagner, M. Rosenthaler, and A. H. Schutti, Process for the optimized operation of a reheating furnace, EP Patent App. EP20, p.40020371, 2005.

]. P. Bar and . Barr, Examining reheating furnace thermal response to mill delays, Proceedings of Materials Science and Technology, 2003.

J. [. Balbis, M. J. Balderud, and . Grimble, Nonlinear predictive control of steel slab reheating furnace, 2008 American Control Conference, pp.1679-1684, 2008.
DOI : 10.1109/ACC.2008.4586733

K. J. Burnham, A. Dunoyer, and S. Marcroft, Bilinear controller with PID structure, Computing & Control Engineering Journal, vol.10, issue.2, pp.63-69, 1999.
DOI : 10.1049/cce:19990205

J. S. Broughton, M. Mahfouf, and D. A. Linkens, A Paradigm for the Scheduling of a Continuous Walking Beam Reheat Furnace Using a Modified Genetic Algorithm, Materials and Manufacturing Processes, vol.1, issue.5, pp.607-614, 2007.
DOI : 10.1007/BFb0027177

G. G. Botte, J. A. Ritter, and R. E. White, Comparison of finite difference and control volume methods for solving differential equations, Computers & Chemical Engineering, vol.24, issue.12, pp.2633-2654, 2000.
DOI : 10.1016/S0098-1354(00)00619-0

URL : http://www.che.sc.edu/faculty/white/2000Cmoparison of finite difference and control volume methods Botte Ritter and White.pdf

D. [. Banerjee, S. Sanyal, I. K. Sen, and . Puri, A methodology to control direct-fired furnaces, International Journal of Heat and Mass Transfer, vol.47, issue.24, pp.475247-5256, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.06.023

S. Chen and S. Abraham, Modification of reheat furnace practices through comprehensive process modeling, Iron & steel technology, vol.5, issue.8, pp.66-79, 2008.
DOI : 10.1201/9781420072938-c9

W. H. Chen, Y. C. Chung, and J. L. Liu, Analysis on energy consumption and performance of reheating furnaces in a hot strip mill, International Communications in Heat and Mass Transfer, vol.32, issue.5, pp.695-706, 2005.
DOI : 10.1016/j.icheatmasstransfer.2004.10.019

E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, Distributed model predictive control, Control Systems, vol.22, issue.1, pp.44-52, 2002.

C. Young, W. Cho, C. G. Hyun-kwon, and . Cassandras, Optimal control for steel annealing processes as hybrid systems, Proceedings of the 39th IEEE Conference on, pp.540-545, 2000.

D. W. Clarke, C. Mohtadi, and P. S. Tuffs, Generalized predictive control???Part I. The basic algorithm, Automatica, vol.23, issue.2, pp.137-148, 1987.
DOI : 10.1016/0005-1098(87)90087-2

C. Z. Chen, B. Xu, H. Zhang, J. Shao, and . Zhang, Advanced control of walking-beam reheating furnace, 2003.

D. Dewar, K. Brown, and D. Smith, Computerized reheating furnace control at bsc, ravenscraig works, SCANHEATING D-Proceedings of the 2nd Ioteãtional Conference on Heatin?InHeatin?Inclyding Detection and Conditioning of Surface Defects on Hot Material. Hot Charging and Hot Direct Rolling, 1988.

]. B. Dcm-+-92, E. Doss, H. Chu, R. Mason, I. Ruiz et al., Steel process furnace burner control using acoustic pyrometry, Proceedings of the International Gas Research Conference, pp.2231-2240, 1992.

G. Dutta and R. Fourer, A survey of mathematical programming applications in integrated steel plants. Manufacturing & Service Operations Management, pp.387-400, 2001.

R. [. Djoko and . Piernot, Control of slab reheating furnace

H. Ezure, Y. Seki, N. Yamaguchi, and H. Shinonaga, Development of a simulator to calculate an optimal slab heating pattern for reheat furnaces, Electrical Engineering in Japan, vol.120, issue.3, pp.42-53, 1997.
DOI : 10.1002/(SICI)1520-6416(199708)120:3<42::AID-EEJ5>3.0.CO;2-R

]. P. Fbf-+-83, A. Fontana, A. Boggiano, G. Furinghetti, C. Cabras et al., An advanced computer control system for reheat furnaces, Iron Steel Eng, vol.60, issue.8, pp.55-62, 1983.

G. Facco, M. E. Petersen, R. J. Schurko, and N. T. Ferguson, State-of-the-art slab reheating furnaces at dofasco, Iron Steel Eng, vol.67, issue.1, pp.27-36, 1990.

P. Brian, . Flannery, H. Wiliam, . Press, A. Saul et al., Numerical recipes in c. Press Syndicate of the University of Cambridge, 1992.

L. Ferrand, P. Reynes, and F. L. Duigou, Simulation tools make new furnace technology, Revue de M??tallurgie, vol.103, issue.2, pp.67-75, 2006.
DOI : 10.1051/metal:2006156

L. Ferrand, P. Reynes, and F. L. Duigou, Simulation tools make new furnace technology, Revue de M??tallurgie, vol.103, issue.2, pp.67-75, 2006.
DOI : 10.1051/metal:2006156

]. S. Fuk-+-10, K. Fujii, K. Urayama, J. I. Kashima, T. Imura et al., Machine-based modeling of conveyor-type flowshops with application to scheduling and temperature control in slab reheating furnace, Control Applications (CCA) IEEE International Conference on, pp.2059-2064, 2010.

G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design, 2001.

. F. Gsr-+-98a-]-d, M. Garcia, R. Sierra, A. Rodriguez, R. Campes et al., Development of scalable real-time observers for continuous reheating furnaces based on mathematical modeling techniques, Industry Applications Conference Thirty-Third IAS Annual Meeting, pp.2207-2216, 1998.

. F. Gsr-+-98b-]-d, M. Garcia, R. Sierra, A. Rodriguez, R. Campes et al., Development of scalable real-time observers for continuous reheating furnaces based on mathematical modeling techniques, Industry Applications Conference Thirty-Third IAS Annual Meeting, pp.2207-2216, 1998.

S. [. Han, M. Y. Baek, and . Kim, Transient radiative heating characteristics of slabs in a walking beam type reheating furnace, International Journal of Heat and Mass Transfer, vol.52, issue.3-4, pp.1005-1011, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2008.07.030

]. S. Hck10a, D. Han, C. Y. Chang, and . Kim, A numerical analysis of slab heating characteristics in a walking beam type reheating furnace, International Journal of Heat and Mass Transfer, vol.53, pp.19-203855, 2010.

]. S. Hck10b, D. Han, C. Y. Chang, and . Kim, A numerical analysis of slab heating characteristics in a walking beam type reheating furnace, International Journal of Heat and Mass Transfer, issue.19, pp.533855-3861, 2010.

M. [. Hsieh, S. T. Huang, C. H. Lee, and . Wang, Numerical modeling of a walking-beam-type slab reheating furnace. Numerical Heat Transfer, pp.966-981, 2008.
DOI : 10.1080/10407780701789831

R. Hooke and T. A. Jeeves, `` Direct Search'' Solution of Numerical and Statistical Problems, Journal of the ACM, vol.8, issue.2, pp.212-229, 1961.
DOI : 10.1145/321062.321069

M. Honner, Z. Vesely, and M. Svantner, Exodus stochastic method application in the continuous reheating furnace control system, Scandinavian Journal of Metallurgy, vol.24, issue.4, pp.328-337, 2004.
DOI : 10.1115/1.3597511

F. Hollander and S. P. Zuurbier, Design, development and performance of online computer control in 3-zone reheating furnace, 1982.

P. Frank and . Incropera, Fundamentals of heat and mass transfer, 2011.

Z. A. Icev, J. Zhao, and M. J. Stankovski, Supervisory-plus-regulatory control design for efficient operation of industrial furnaces, 2004.

]. L. Jij09 and . Jiji, , 2009.

S. [. Jang and . Kim, An estimation of a billet temperature during reheating furnace operation, International journal of control automation and systems, vol.5, issue.1, p.43, 2007.

A. Jakli?, T. Kolenko, and B. Zupan?i?, The influence of the space between the billets on the productivity of a continuous walking-beam furnace, Applied Thermal Engineering, vol.25, issue.5-6, pp.783-795, 2005.
DOI : 10.1016/j.applthermaleng.2004.07.012

J. H. Jang, D. E. Lee, M. Y. Kim, and H. G. Kim, Investigation of the slab heating characteristics in a reheating furnace with the formation and growth of scale on the slab surface, International Journal of Heat and Mass Transfer, vol.53, issue.19-20, pp.534326-4332, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.05.061

A. [. Joly and . Raudin, Control of slab reheating furnace

L. [. Keplinger, K. Doppelbauer, and . Wallner, Automation system for reheating furnaces at hutta sendzimira, polland. Methallurgical Plant and Technology International, 1997.

J. G. Kim, K. Y. Huh, and I. T. Kim, Three-dimensional analysis of the walking-beam-type slab reheating furnace in hot strip mills. Numerical Heat Transfer: Part A: Applications, pp.589-609, 2000.

M. Y. Kim, A heat transfer model for the analysis of transient heating of the slab in a directfired walking beam type reheating furnace, International Journal of Heat and Mass Transfer, pp.503740-3748, 2007.

H. S. Ko, J. S. Kim, T. W. Yoon, M. Lim, D. R. Yang et al., Modeling and predictive control of a reheating furnace, American Control Conference Proceedings of the 2000, pp.2725-2729, 2000.

T. Kolda, R. Lewis, and V. Torczon, Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods, SIAM Review, vol.45, issue.3, pp.385-482, 2003.
DOI : 10.1137/S003614450242889

URL : http://www.cs.wm.edu/~va/research/sirev.pdf

M. K. Knoop and J. A. Moreno-pérez, Nonlinear PI-controller design for a continuous-flow furnace via continuous gain scheduling, Journal of Process Control, vol.4, issue.3, pp.143-147, 1994.
DOI : 10.1016/0959-1524(94)85006-2

. [. Kang, S. Lorente, and A. Bejan, Constructal architecture for heating a stream by convection, International Journal of Heat and Mass Transfer, vol.53, issue.9-10, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2009.12.006

A. Kusters and G. A. Van-ditzhuijzen, MIMO system identification of a slab reheating furnace, Proceedings of IEEE International Conference on Control and Applications CCA-94, pp.1557-1563, 1994.
DOI : 10.1109/CCA.1994.381484

, Bibliography, vol.205

L. Lopez, M. W. Carter, and M. Gendreau, The hot strip mill production scheduling problem: A tabu search approach, European Journal of Operational Research, vol.106, issue.2-3, pp.317-335, 1998.
DOI : 10.1016/S0377-2217(97)00277-4

]. W. Lcoie85 and . Lankford, United States Steel Corporation, Association of Iron, and Steel Engineers. The Making, shaping, and treating of steel, 1985.

B. Leden, A control system for fuel optimization of reheating furnaces, Scand. J. Metall, vol.15, issue.1, pp.16-24, 1986.

]. B. Led86b and . Leden, A program for temperature analysis in steel plants, Scandinavian journal of metallurgy, vol.15, pp.215-223, 1986.

]. W. Lev96 and . Levine, The control handbook, 1996.

S. [. Leifgen, L. Ganesaratnam, and . Croce, A new concept for the control of reheating furnace for slabs, Proceedings of the 1 st International Conference on Energy Efficiency and CO 2 Reduction in the Steel Industry, EECR STEEL

Z. Li, Computer simulation of the push-type slab reheating furnace, 1986.

M. A. Luersen and R. Le-riche, Globalized nelder-mead method for engineering optimization. Computers and structures 82, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00299048

P. Laurinen and J. Röning, An adaptive neural network model for predicting the post roughing mill temperature of steel slabs in the reheating furnace, Journal of Materials Processing Technology, vol.168, issue.3, pp.423-430, 2005.
DOI : 10.1016/j.jmatprotec.2004.12.002

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions, SIAM Journal on Optimization, vol.9, issue.1, pp.112-147, 1998.
DOI : 10.1137/S1052623496303470

R. M. Lewis, V. Torczon, and M. W. Trosset, Direct search methods: then and now, Journal of Computational and Applied Mathematics, vol.124, issue.1-2, pp.191-207, 2000.
DOI : 10.1016/S0377-0427(00)00423-4

R. M. Lewis, V. Torczon, and M. W. Trosset, Direct search methods: then and now, Journal of Computational and Applied Mathematics, vol.124, issue.1-2, 2000.
DOI : 10.1016/S0377-0427(00)00423-4

A. Mårtensson, Energy efficiency improvement by measurement and control: A case study of reheating furnaces in the steel industry, 1992.

K. I. Mckinnon, Convergence of the Nelder--Mead Simplex Method to a Nonstationary Point, SIAM Journal on Optimization, vol.9, issue.1, pp.148-158, 1998.
DOI : 10.1137/S1052623496303482

J. M. Maestre and R. R. Negenborn, Distributed model predictive control made easy, 2014.
DOI : 10.1007/978-94-007-7006-5

A. [. Marino, D. Pignotti, and . Solis, Control of pusher furnaces for steel slab reheating using a numerical model, Latin American applied research, vol.34, issue.4, pp.249-255, 2004.

J. Nash, Non-cooperative games, Annals of mathematics, pp.286-295, 1951.

J. A. Nelder and R. Mead, A simplex method for function minimization. The computer journal, pp.308-313, 1965.
DOI : 10.1093/comjnl/7.4.308

]. J. Nob75 and . Noble, The zone method: explicit matrix relations for total exchange areas, International Journal of Heat and Mass Transfer, vol.18, issue.2, pp.261-269, 1975.

. M. Nrad-+-12a-]-x, P. Nguyen, D. Rodriguez-ayerbe, A. Dumur, F. Mouchette et al., Distributed model predictive control of steel slab reheating furnace, Proceedings of the IFAC Workshop on Automation in the Mining, Mineral and Metal Industries, 2012.

. M. Nrad-+-12b-]-x, P. Nguyen, D. Rodriguez-ayerbe, A. Dumur, F. Mouchette et al., Distributed Model Predictive Control of Steel Slab Reheating Furnace, Proceedings of the IFAC Workshop on Automation in the Mining, Mineral and Metal Industries, 2012.

L. Nazareth and P. Tseng, Gilding the lily: A variant of the nelder-mead algorithm based on golden-section search, Computational Optimization and Applications, vol.22, issue.1, pp.133-144, 2002.
DOI : 10.1023/A:1014842520519

]. E. Nvws, P. Nederkoorn, J. Van-wilgen, and . Schuurmans, Nonlinear model predictive control of walking beam furnaces, Proceedings of the 1 st International Conference on Energy Efficiency and CO 2

, Reduction in the Steel Industry, EECR STEEL

]. S. Pat80 and . Patankar, Numerical heat transfer and fluid flow, 1980.

I. [. Price, D. Coope, and . Byatt, A Convergent Variant of the Nelder???Mead Algorithm, Journal of Optimization Theory and Applications, vol.7, issue.1, pp.5-19, 2002.
DOI : 10.1145/355934.355936

G. Poquet and A. Dujin, Pour les ménages, la recherche du confort prime encore, sur les économies dénergie, Consomation et modes de vie, 2010.

H. E. Pike-jr and S. J. Citron, Optimization studies of a slab reheating furnace, Automatica, vol.6, issue.1, pp.41-50, 1970.
DOI : 10.1016/0005-1098(70)90073-7

]. M. Pow64 and . Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives. The computer journal, pp.155-162, 1964.

J. C. Price, Temperature control for slab reheat furnaces, Iron Steel Eng, vol.57, issue.9, pp.59-62, 1980.

C. M. Petersen, K. L. Sørensen, and R. V. Vidal, Inter-process synchronization in steel production . The international journal of production research, pp.1415-1425, 1992.

L. M. Pedersen and B. Wittenmark, On the reheat furnace control problem, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), pp.3811-3815, 1998.
DOI : 10.1109/ACC.1998.703359

L. Rixin and N. Baolin, Mathematical model for dynamic operation and optimum control of pusher type slab reheating furnace, Industrial Heating, vol.59, issue.3, pp.60-62, 1992.

]. H. Ros60 and . Rosenbrock, An automatic method for finding the greatest or least value of a function, The Computer Journal, vol.3, issue.3, pp.175-184, 1960.

J. B. Rawlings and B. T. Stewart, Coordinating multiple optimization-based controllers: New opportunities and challenges, Journal of Process Control, vol.18, issue.9, pp.839-845, 2008.
DOI : 10.1016/j.jprocont.2008.06.005

J. L. Roth, H. Sierpinski, J. Chabanier, and J. M. Germe, Computer control of slab furnaces based on physical models, Iron Steel Eng, vol.63, issue.8, pp.41-47, 1986.

]. K. Sch96 and . Scholey, A transient, three-dimensional, thermal model of a billet reheating furnace, 1996.

]. A. Sgw-+-11, K. Steinboeck, D. Graichen, T. Wild, A. Kiefer et al., Model-based trajectory planning, optimization, and open-loop control of a continuous slab reheating furnace, Journal of Process Control, vol.21, issue.2, pp.279-292, 2011.

]. F. She94 and . Shenvar, Walking beam furnace supervisory control at inland's 80-in. hot strip mill, 1994.

W. G. Spendley, G. R. Hext, and F. R. Himsworth, Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation, Technometrics, vol.39, issue.4, pp.441-461, 1962.
DOI : 10.1214/aoms/1177707047

. I. Sii-+-99-]-s, T. Sugiyama, M. Ishii, Y. Ishioka, T. Hino et al., Schedule-free heating in preheating furnace, NKK technical review, issue.80, pp.35-45, 1999.

A. Steinboeck and A. Kugi, Optimized pacing of continuous reheating furnaces, Control Conference (ECC), 2013 European, pp.4454-4459, 2013.
DOI : 10.3182/20110828-6-it-1002.01639

, Soc] ASM Heat Trating Society. To achieve vision 2020: An r&d plan for the heat treating community

H. Sibarani and Y. Samyudia, Robust nonlinear slab temperature control design for an industrial reheating furnace, Computer Aided Chemical Engineering, vol.18, pp.811-816, 2004.
DOI : 10.1016/S1570-7946(04)80201-3

D. Staalman, The funnel model for accurate slab temperature in reheating furnaces. La revue de Métallurgie, 2004.

A. Steinböck, Model-based control and optimization of a continuous slab reheating furnace, steinboeck, vol.12, 2011.

Y. Sakamoto, Y. Tonooka, and Y. Yanagisawa, Estimation of energy consumption for each process in the japanese steel industry: a process analysis. Energy conversion and management, pp.1129-1140, 1999.

R. J. Schurko, C. Weinstein, M. K. Hanne, and D. J. Pellecchia, Computer control of reheat furnace: A comparison of strategies and application, 1987.

D. [. Steinboeck, A. Wild, and . Kugi, Feedback Tracking Control of Continuous Reheating Furnaces, Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), pp.11744-11749, 2011.
DOI : 10.3182/20110828-6-IT-1002.01639

A. Steinboeck, D. Wild, and A. Kugi, Nonlinear model predictive control of a continuous slab reheating furnace, Control Engineering Practice, vol.21, issue.4, pp.495-508, 2013.
DOI : 10.1016/j.conengprac.2012.11.012

D. [. Steinboeck, T. Wild, A. Kiefer, and . Kugi, A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media, International Journal of Heat and Mass Transfer, vol.53, issue.25-26, pp.535933-5946, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.07.029

D. [. Steinboeck, T. Wild, A. Kiefer, and . Kugi, A fast simulation method for 1D heat conduction, Mathematics and Computers in Simulation, vol.82, issue.3, pp.392-403, 2011.
DOI : 10.1016/j.matcom.2010.10.016

J. [. Tang, A. Liu, Z. Rong, and . Yang, A review of planning and scheduling systems and methods for integrated steel production, European Journal of Operational Research, vol.133, issue.1, pp.1-20, 2001.
DOI : 10.1016/S0377-2217(00)00240-X

V. J. Torczon, Multi-directional search: a direct search algorithm for parallel machines, 1989.

V. Torczon, On the Convergence of Pattern Search Algorithms, SIAM Journal on Optimization, vol.7, issue.1, pp.1-25, 1997.
DOI : 10.1137/S1052623493250780

]. G. Tot04 and . Totten, Heat treating in 2020: what are the most critical issues and what will the future look like? Heat Treatment of Metals, pp.1-3, 2004.

]. W. Tri03 and . Trinks, Industrial furnaces, 2003.

P. Tseng, Fortified-Descent Simplicial Search Method: A General Approach, SIAM Journal on Optimization, vol.10, issue.1, pp.269-288, 1999.
DOI : 10.1137/S1052623495282857

. Vb-]-f and . Vanden-berghen,

G. A. Van-ditzhuijzen, D. Staalman, and A. Koorn, Identification and model predictive control of a slab reheating furnace, Proceedings of the International Conference on Control Applications, pp.361-366, 2002.
DOI : 10.1109/CCA.2002.1040213

A. N. Venkat, Distributed Model Predictive Control: Theory and Applications, 2006.

T. Veslocki, Automatic slab heating control at inland's 80-in. hot strip mill, Iron Steel Eng, vol.63, issue.12, pp.47-54, 1986.

B. Vinsonneau, D. P. Goodair, and K. J. Burnham, Hierarchical Supervisory Control and Plant Monitoring Applied to Industrial Furnaces Incorporating a priori Knowledge, 18th International Conference on Systems Engineering (ICSEng'05), pp.118-123, 2005.
DOI : 10.1109/ICSENG.2005.44

F. Vode, A. Jaklic, T. Kokalj, and D. Matko, A Furnace Control System for Tracing Reference Reheating Curves, steel research international, vol.27, issue.7, p.364, 2008.
DOI : 10.1016/j.applthermaleng.2006.07.033

]. A. Wö and . Wörk, Optimal control of slab reheating furnaces, Proceedings of the IFAC Symposion on the control of distributed parameter systems

T. [. Wang, S. Chai, C. Guan, and . Shao, Hybrid optimization setpoint strategy for slab reheating furnace temperature, American Control Conference Proceedings of the 1999, pp.4082-4086, 1999.

R. Westdorp, Development and simulation of a control strategy for a reheating furnace, Journal A, vol.29, issue.2, pp.11-16, 1988.

F. [. Wick and . Koster, Estimation of temperature profiles of slabs in a reheat furnace by using the Kalman filter, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404), pp.613-617, 1999.
DOI : 10.1109/CACSD.1999.808717

M. H. Wright, Nelder, mead, and the other simplex method, Documenta Mathematica, issue.7, 2010.

Z. Wang, Q. Wu, and T. Chai, Optimal-setting control for complicated industrial processes and its application study, Control Engineering Practice, vol.12, issue.1, pp.65-74, 2004.
DOI : 10.1016/S0967-0661(02)00316-7

A. A. Waelen, B. Young, and W. Yu, Adaptive Supervisory Control of an Industrial Steel Slab Reheating Furnace, Chemical Product and Process Modeling, 2009.
DOI : 10.2202/1934-2659.1449

Y. Y. Yang and Y. Z. Lu, Development of a computer control model for slab reheating furnaces, Computers in Industry, vol.7, issue.2, pp.145-154, 1986.
DOI : 10.1016/0166-3615(86)90036-9

Y. Y. Yang and Y. Z. Lu, Dynamic model based optimization control for reheating furnaces, Computers in Industry, vol.10, issue.1, pp.11-20, 1988.
DOI : 10.1016/0166-3615(88)90044-9

N. Yoshitani, Y. Naganuma, and T. Yanai, Optimal Slab Heating Control for Reheating Furnaces, 1991 American Control Conference
DOI : 10.23919/ACC.1991.4791959

, American Control Conference, pp.3030-3035, 1991.

N. Yoshitani, T. Ueyama, and M. Usui, Optimal slab heating control with temperature trajectory optimization, Proceedings of IECON'94, 20th Annual Conference of IEEE Industrial Electronics, pp.1567-1572, 1994.
DOI : 10.1109/IECON.1994.398048

L. Chen, J. Xu, J. Wang, H. Zhang, and . Shao, The modeling and control of a reheating furnace, American Control Conference Proceedings of the 2002, pp.3823-3828, 2002.

C. Zhang, T. Ishii, and S. Sugiyama, Numerical modeling of the thermal performance of regenerative slab reheat furnaces. Numerical Heat Transfer, Part A Applications, pp.613-631, 1997.

Y. Zhang and S. Li, Networked model predictive control based on neighbourhood optimization for serially connected large-scale processes, Journal of Process Control, vol.17, issue.1, pp.37-50, 2007.
DOI : 10.1016/j.jprocont.2006.08.009

B. Zhang, L. Xu, J. Wang, and H. Shao, Optimization of combustion control based on fuzzy logic, Fuzzy Systems The 10th IEEE International Conference on, pp.1080-1083, 2001.

*. +. ,

<. %<, 8 -1 9 7 < % " 9, 77997.