. Franzelli, , 2012.

. Franzelli, , 2013.

. Jaravel, , 2017.

. Volpiani, , 2016.

. Volpiani, , 2017.

. Esclapez, , 2015.

. Wang, , 2011.

. Navarro-martinez, , 2007.

. Navarro-martinez, , p.11, 2009.

. Navarro-martinez, Dodoulas et al, p.28, 2005.

. Ge, , p.31, 2011.

A. Abou-taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni et al.,

. Eriksson, Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine, Combust. Sci. Technol, vol.188, issue.1, p.16, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01611211

N. Ansari, P. A. Strakey, G. M. Goldin, and P. Givi, Filtered density function simulation of a realistic swirled combustor, Proc. Combust. Inst, vol.35, issue.2, p.23, 2015.

S. Arrhenius, On The reaction velocity of the inversion of cane sugar by acids, In Sel. Readings Chem. Kinet, p.8, 1967.

P. Auzillon, Modélisation de la structure et de la dynamique des flammes pour la simulation aux grandes échelles, p.102, 2012.

P. Auzillon, B. Fiorina, R. Vicquelin, N. Darabiha, O. Gicquel et al., Modeling chemical flame structure and combustion dynamics in les, Proc. Combust. Inst, vol.33, issue.1, p.139, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00491238

P. Auzillon, O. Gicquel, N. Darabiha, D. Veynante, and B. Fiorina, A Filtered Tabulated Chemistry model for LES of stratified flames, Combust. Flame, vol.159, issue.8, p.11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735537

S. Ayache and E. Mastorakos, Conditional Moment Closure/Large Eddy Simulation of the Delft-III natural gas non-premixed jet flame, Flow, vol.88, p.27, 2012.

R. S. Barlow, M. J. Dunn, M. S. Sweeney, and S. Hochgreb, Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH 4/air flames, Combust. Flame, vol.159, issue.8, p.148, 2012.

J. Bibrzycki and T. Poinsot, Reduced chemical kinetic mechanisms for methane combustion in O 2 / N 2 and O 2 / CO 2 atmosphere. Work. note ECCOMET WN/CFD/10/17, CERFACS, p.51, 2010.

R. W. Bilger, Conditional Moment Closure for Turbulent Reacting Flow, Phys. Fluids a-Fluid Dyn, vol.5, issue.2, p.25, 1993.

R. W. Bilger, S. H. Stårner, and R. J. Kee, On reduced mechanisms for methane for air combustion in nonpremixed flames, Combust. Flame, vol.80, issue.2, p.13, 1990.

G. Borghesi, E. Mastorakos, and R. S. Cant, Complex chemistry References DNS of n-heptane spray autoignition at high pressure and intermediate temperature conditions, Combust. Flame, vol.160, issue.7, p.12, 2013.

T. Brauner, W. P. Jones, and A. J. Marquis, LES of the Cambridge Stratified Swirl Burner using a Sub-grid pdf Approach. Flow, vol.96, p.125, 2016.

K. Bray, M. Champion, and P. A. Libby, Systematically reduced rate mechanisms and presumed PDF models for premixed turbulent combustion, Combust. Flame, vol.157, issue.3, p.20, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00471431

K. N. Bray, M. Champion, P. A. Libby, and N. Swaminathan, Finite rate chemistry and presumed PDF models for premixed turbulent combustion, Combust. Flame, vol.146, issue.4, p.20, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00148460

K. N. Bray and J. B. Moss, A unified statistical model of the premixed turbulent flame, Acta Astronaut, vol.4, p.104, 1977.

T. Butler and P. O'rourke, A numerical method for two dimensional unsteady reacting flows, Symp. Combust, vol.16, issue.1, p.34, 1977.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput, vol.16, issue.5, p.57, 1995.
DOI : 10.2172/204262

URL : https://www.osti.gov/servlets/purl/204262

M. Cailler, N. Darabiha, and B. Fiorina, Virtual chemistry for pollutant emissions prediction. submitted, vol.90, p.89, 0192.

M. Cailler, N. Darabiha, D. Veynante, and B. Fiorina, Building-up virtual optimized mechanism for flame modeling, Proc. Combust. Inst, p.90, 2016.
DOI : 10.1016/j.proci.2016.05.028

URL : https://hal.archives-ouvertes.fr/hal-01541938

M. Cailler, R. Mercier, V. Moureau, N. Darabiha, and B. Fiorina, Prediction of CO emissions in LES of turbulent stratified combustion using virtual chemistry, 55th AIAA Aerosp. Sci. Meet, vol.88, p.91, 2017.

W. Calhoon and S. Menon, Subgrid modeling for reacting large eddy simulations, 34th Aerosp. Sci. Meet. Exhib., Number January, p.31, 1996.

S. Cao and T. Echekki, A low-dimensional stochastic closure model for combustion large-eddy simulation, J. Turbul, vol.9, issue.2, p.33, 2008.
DOI : 10.1080/14685240701790714

F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: nondynamic formulation and initial tests, Combust. Flame, vol.131, issue.1, p.120, 2002.
DOI : 10.1016/s0010-2180(02)00400-5

F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation, Combust. Flame, vol.131, issue.1-2, p.103, 2002.
DOI : 10.1016/s0010-2180(02)00401-7

M. J. Cleary and A. Y. Klimenko, A generalised multiple mapping conditioning approach for turbulent combustion, Flow, Turbul. Combust, vol.82, issue.4, p.211, 2009.
DOI : 10.1007/s10494-008-9161-3

M. J. Cleary and A. Y. Klimenko, A detailed quantitative analysis of sparse-Lagrangian filtered density function simulations in constant and variable density reacting jet flows, Phys. Fluids, vol.23, issue.11, p.30, 2011.

M. J. Cleary and A. Y. Klimenko, Multiple Mapping Conditioning: A New Modelling Framework for Turbulent Combustion, In Turbul. Combust. Model, issue.7, p.28, 2011.
DOI : 10.1007/978-94-007-0412-1_7

O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, vol.12, issue.7, p.143, 2000.
DOI : 10.1063/1.870436

P. J. Colucci, F. A. Jaberi, P. Givi, and S. B. Pope, Filtered density function for large eddy simulation of turbulent reacting flows, Phys. Fluids, vol.10, issue.2, p.18, 1998.

A. W. Cook and W. H. Cabot, A high-wavenumber viscosity for high-resolution numerical methods, J. Comput. Phys, vol.195, issue.2, p.127, 2004.
DOI : 10.2172/15003408

URL : https://www.osti.gov/servlets/purl/15003408

A. W. Cook and J. J. Riley, A subgrid model for equilibrium chemistry in turbulent flows, Phys. Fluids, vol.6, issue.8, p.20, 1994.
DOI : 10.1063/1.868111

A. Coussement, T. Schmitt, and B. Fiorina, Filtered Tabulated Chemistry for non-premixed flames, Proc. Combust. Inst, vol.35, issue.2, p.13, 2015.
DOI : 10.1016/j.proci.2014.06.010

URL : https://hal.archives-ouvertes.fr/hal-01347930

N. Darabiha, Transient behaviour of laminar counterflow hydrogenair diffusion flames with complex chemistry, Combust. Sci. Technol, vol.86, issue.16, p.95, 1992.

C. B. Devaud, I. Stankovic, and B. Merci, Deterministic Multiple Mapping Conditioning (MMC) applied to a turbulent flame in Large Eddy Simulation (LES), Proc. Combust. Inst, vol.34, issue.1, p.28, 2013.
DOI : 10.1016/j.proci.2012.06.076

N. A. Doan, N. Swaminathan, and Y. Minamoto, DNS of MILD combustion with mixture fraction variations, Combust. Flame, vol.189, p.12, 2018.
DOI : 10.1016/j.combustflame.2017.10.030

URL : https://doi.org/10.1016/j.combustflame.2017.10.030

I. A. Dodoulas and S. Navarro-martinez, Large eddy simulation of premixed turbulent flames using the probability density function approach. Flow, Turbul. Combust, vol.90, issue.3, p.23, 2013.
DOI : 10.1007/s10494-013-9446-z

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/13856/2/FTC%20Re-submission.pdf

J. A. Domaradzki and K. C. Loh, The subgrid-scale estimation model in the physical space representation, Phys. Fluids, vol.11, issue.8, p.52, 1999.

J. A. Domaradzki, K. C. Loh, and P. P. Yee, Large eddy simulations using the subgrid-scale estimation model and truncated Navier-stokes dynamics, Theor. Comput. Fluid Dyn, vol.15, issue.6, p.52, 2002.

P. Domingo and L. Vervisch, Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering, vol.41, p.39, 0191.
URL : https://hal.archives-ouvertes.fr/hal-01612346

G. Dong, Y. Chen, L. Li, Z. Wu, and R. Dibble, A skeletal gasoline flame ionization mechanism for combustion timing prediction on HCCI engines, Proc. Combust. Inst, vol.36, issue.3, p.12, 2017.

A. Donini, R. Bastiaans, J. Van-oijen, and L. De-goey, Differential diffusion effects inclusion with flamelet generated manifold for the modeling of stratified premixed cooled flames, Proc. Combust. Inst, vol.35, issue.1, p.4, 2015.

C. Duwig and L. Fuchs, Large Eddy Simulation of a H2/N2 Lifted Flame in a Vitiated Co-Flow, Combust. Sci. Technol, vol.180, issue.3, p.51, 2008.

C. Duwig, K. Nogenmyr, C. Chan, and M. J. Dunn, Large Eddy Simulations of a piloted lean premix jet flame using finite-rate chemistry, Combust. Theory Model, vol.15, issue.4, p.51, 2011.

T. Echekki, A. R. Kerstein, and J. C. Sutherland, The OneDimensional-Turbulence Model, Turbul. Combust. Model, issue.11, p.31, 2011.

L. Elliott, D. Ingham, A. Kyne, N. Mera, M. Pourkashanian et al., Reaction mechanism reduction and optimization using genetic algorithms, Ind. Eng. Chem. Res, vol.44, issue.4, p.12, 2005.

L. Esclapez, P. C. Ma, E. Mayhew, R. Xu, S. Stouffer et al., Fuel effects on lean blow-out in a realistic gas turbine combustor, Combust. Flame, vol.181, p.3, 2017.

L. Esclapez, P. C. Ma, E. Mayhew, R. Xu, S. Stouffer et al., Fuel effects on lean blow-out in a realistic gas turbine combustor, Combust. Flame, vol.181, p.11, 2017.

M. Euler, R. Zhou, S. Hochgreb, and A. Dreizler, Temperature measurements of the bluff body surface of a swirl burner using phosphor thermometry, Combust. Flame, vol.161, issue.11, p.130, 2014.

D. Farrace, K. Chung, S. S. Pandurangi, Y. M. Wright, K. Boulouchos et al., Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off, In Proc. Combust. Inst, vol.36, p.27, 2017.

A. Felden, E. Riber, and B. Cuenot, Impact of direct integration of Analytically Reduced Chemistry in LES of a sooting swirled nonpremixed combustor, Combust. Flame, vol.191, p.36, 2018.

E. Fernandez-tarrazo, A. L. Sanchez, A. Linan, and F. A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion, Combust. Flame, vol.147, issue.1, p.13, 2006.

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, N. Darabiha et al., Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF, Proc. Combust. Inst, vol.30, p.11, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00116320

B. Fiorina, O. Gicquel, and D. Veynante, Turbulent flame simulation taking advantage of tabulated chemistry self-similar properties, Proc. Combust. Inst, vol.32, p.58, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00433750

B. Fiorina, R. Mercier, G. Kuenne, A. Ketelheun, A. Avdi? et al., References, vol.213

D. Geyer, A. Dreizler, E. Alenius, C. Duwig, P. Trisjono et al., , 2015.

, Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion, Combust. Flame, vol.162, issue.11, p.25

B. Fiorina, D. Veynante, and S. Candel, Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames, Flow, Turbul. Combust, vol.16, p.49, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01219272

B. Fiorina, R. Vicquelin, P. Auzillon, N. Darabiha, O. Gicquel et al., A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame, vol.157, issue.3, p.49, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00472611

B. Franzelli, B. Fiorina, and N. Darabiha, A tabulated chemistry method for spray combustion, Proc. Combust. Inst, vol.34, issue.1, p.11, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01272971

B. Franzelli, E. Riber, and B. Cuenot, Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame, Comptes Rendus M?canique, vol.341, issue.1-2, p.36, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01272944

B. Franzelli, E. Riber, L. Y. Gicquel, and T. Poinsot, Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame, Combust. Flame, vol.159, issue.2, p.37, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00811961

B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, A two-step chemical scheme for kerosene-air premixed flames, Combust. Flame, vol.157, issue.7, p.13, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01272968

C. Fureby, Comparison of Flamelet and Finite Rate Chemistry LES for Premixed Turbulent Combustion, AIAA Aerosp. Sci. Meet. Exhib, p.25, 2007.

S. Galindo, F. Salehi, M. J. Cleary, and A. R. Masri, MMC-LES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity, In Proc. Combust. Inst, vol.36, p.30, 2017.

F. Gao and E. O'brien, A large-eddy simulation scheme for turbulent reacting flows, Phys. Fluids A Fluid Dyn, vol.5, issue.6, p.20, 1993.

A. Garmory and E. Mastorakos, Capturing localised extinction in Sandia Flame F with LES CMC, Proc. Combust. Inst, vol.33, issue.1, p.27, 2011.

A. Garmory and E. Mastorakos, Sensitivity analysis of LES CMC predictions of piloted jet flames, Int. J. Heat Fluid Flow, vol.39, p.27, 2013.

Y. Ge, M. J. Cleary, and A. Y. Klimenko, Sparse Lagrangian FDF simulations of Sandia Flame E with density coupling, Proc. Combust. Inst, vol.33, issue.1, p.30, 2011.

O. Gicquel, N. Darabiha, and D. Thévenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst, vol.28, issue.2, p.11, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00256701

A. Giusti and E. Mastorakos, Detailed chemistry LES/CMC simuReferences lation of a swirling ethanol spray flame approaching blow-off, In Proc. Combust. Inst, vol.36, p.27, 2017.

P. Givi, Model-free simulations of turbulent reactive flows, p.18, 1989.

P. Givi, Filtered density function for subgrid scale modeling of turbulent combustion, In Aiaa J, vol.44, p.18, 2006.

G. M. Goldin, Evaluation of LES Subgrid Reaction Models in a Lifted Flame, 43rd AIAA Aerosp. Sci. Meet. Exhib, p.24, 2005.

D. A. Goussis and U. Maas, Model Reduction for Combustion Chemistry, In Turbul. Combust. Model, vol.95, p.12, 2011.

F. F. Grinstein and K. Kailasanath, Three-dimensional numerical simulations of unsteady reactive square jets, p.25, 1995.

P. C. Hansen and D. P. O'leary, The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM J. Sci. Comput, vol.14, issue.6, p.198, 1993.

S. Harris, L. Elliott, D. B. Ingham, M. Pourkashanian, and C. W. Wilson, The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms, Comput. Methods Appl. Mech. Eng, vol.190, issue.8-10, p.89, 2000.

D. C. Haworth, Progress in probability density function methods for turbulent reacting flows, p.18, 2010.

F. E. Hernández-pérez, N. Mukhadiyev, X. Xu, A. Sow, B. J. Lee et al., Direct numerical simulations of reacting flows with detailed chemistry using many core/GPU acceleration, Comput. Fluids, p.4, 2018.

R. Hilbert, F. Tap, H. El-rabii, and D. Thévenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Prog. Energy Combust. Sci, vol.30, issue.1, p.12, 2004.

E. Hodzic, M. Jangi, R. Szasz, and X. Bai, Large eddy simulation of bluff body flames close to blow-off using an Eulerian stochastic field method, Combust. Flame, vol.181, p.23, 2017.

A. Irannejad, A. Banaeizadeh, and F. Jaberi, Large eddy simulation of turbulent spray combustion, Combust. Flame, vol.162, issue.2, p.23, 2015.

F. A. Jaberi, P. J. Colucci, S. James, P. Givi, and S. B. Pope, Filtered mass density function for large-eddy simulation of turbulent reacting flows, J. Fluid Mech, vol.401, p.18, 1999.

S. James, J. Zhu, and M. Anand, LES/FDF of turbulent flames using complex chemical kinetics, In AIAA Pap. No, p.24, 2006.

N. Jaouen, L. Vervisch, and P. Domingo, Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst, vol.36, issue.3, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657558

N. Jaouen, L. Vervisch, P. Domingo, and G. Ribert, Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem, Combust. Flame, vol.175, p.215, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611160

T. Jaravel, Prediction of pollutants in gas turbines using large eddy simulation, vol.16, p.37, 2016.

T. Jaravel, E. Riber, B. Cuenot, and G. Bulat, Large Eddy Simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction, Proc. Combust. Inst, vol.36, issue.3, p.38, 2017.

T. Jaravel, E. Riber, B. Cuenot, and P. Pepiot, Prediction of flame structure and pollutant formation of Sandia flame D using Large Eddy Simulation with direct integration of chemical kinetics, Combust. Flame, vol.188, p.36, 2018.

W. Jones and V. Prasad, Large Eddy Simulation of the Sandia Flame Series (D to F) using the Eulerian stochastic field method, Combust. Flame, vol.157, issue.9, p.23, 2010.

W. P. Jones, A. J. Marquis, and V. N. Prasad, LES of a turbulent premixed swirl burner using the Eulerian stochastic field method, Combust. Flame, vol.159, issue.10, p.23, 2012.

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, p.59, 2005.

M. M. Kamal, R. Zhou, S. Balusamy, and S. Hochgreb, Favre-and Reynolds-averaged velocity measurements: Interpreting PIV and LDA measurements in combustion, Proc. Combust. Inst, vol.35, issue.3, p.131, 2015.

A. R. Kerstein, Linear-eddy modeling of turbulent transport. II: Application to shear layer mixing, Combust. Flame, vol.75, issue.3-4, p.31, 1989.

A. R. Kerstein, One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows, J. Fluid Mech, vol.392, p.33, 1999.

S. H. Kim and K. Y. Huh, Second-order conditional moment closure modeling of turbulent piloted Jet diffusion flames, Combust. Flame, vol.138, issue.4, p.26, 2004.

A. Y. Klimenko, Multicomponent diffusion of various admixtures in turbulent flow, Fluid Dyn, vol.25, issue.3, p.25, 1990.
DOI : 10.1007/bf01049811

A. Y. Klimenko and S. B. Pope, The modeling of turbulent reactive flows based on multiple mapping conditioning, Phys. Fluids, vol.15, issue.7, p.28, 2003.
DOI : 10.1063/1.1575754

A. N. Kolmogorov, Equations of turbulent motion of an incompressible flow, Physics (College. Park. Md), vol.6, p.36, 1942.

A. Kronenburg, Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames, Phys. Fluids, vol.16, issue.7, p.26, 2004.
DOI : 10.1063/1.1758219

A. Kronenburg and E. Mastorakos, The conditional moment closure model, Fluid Mech. its Appl, vol.95, p.26, 2011.
DOI : 10.1007/978-94-007-0412-1_5

G. Kuenne, A. Avdi?, and J. Janicka, Assessment of subgrid inReferences terpolation for the source term evaluation within premixed combustion simulations, Combust. Flame, vol.178, p.57, 2017.

G. Kuenne, A. Ketelheun, and J. Janicka, LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry, Combust. Flame, vol.158, issue.9, p.36, 2011.
DOI : 10.1016/j.combustflame.2011.01.005

G. Kuenne, F. Seffrin, F. Fuest, T. Stahler, A. Ketelheun et al., Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation, Combust. Flame, vol.159, issue.8, p.35, 2012.

J. W. Labahn, C. B. Devaud, T. A. Sipkens, and K. J. Daun, Inverse analysis and regularisation in conditional source-term estimation modelling, Combust. Theory Model, vol.18, issue.3, p.59, 2014.
DOI : 10.1080/13647830.2014.927076

W. Layton and L. G. Rebholz, Approximate Deconvolution Models of Turbulence, p.208, 2012.
DOI : 10.1007/978-3-642-24409-4

URL : https://hal.archives-ouvertes.fr/hal-00003252

G. Lecocq, S. Richard, O. Colin, and L. Vervisch, Gradient and counter-gradient modeling in premixed flames: Theoretical study and application to the les of a lean premixed turbulent swirl-burner, Combust. Sci. Technol, vol.182, issue.7, p.17, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01672187

J. P. Legier, T. Poinsot, and D. Veynante, Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, Proc. Summer Program, p.137, 2000.

D. O. Lignell, J. H. Chen, and H. A. Schmutz, Effects of Damköhler number on flame extinction and reignition in turbulent non-premixed flames using DNS, Combust. Flame, vol.158, issue.5, p.13, 2011.

D. Linse, A. Kleemann, and C. Hasse, Probability density function approach coupled with detailed chemical kinetics for the prediction of knock in turbocharged direct injection spark ignition engines, Combust. Flame, vol.161, issue.4, p.19, 2014.

T. Lu, Y. Ju, and C. K. Law, Complex CSP for chemistry reduction and analysis, Combust. Flame, vol.126, issue.1-2, p.12, 2001.
DOI : 10.2514/6.2001-943

T. Lu and C. K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst, vol.30, issue.1, p.12, 2005.
DOI : 10.1016/j.proci.2004.08.145

T. Lu and C. K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combust. Flame, vol.154, issue.4, p.12, 2008.

T. Lu and C. K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, vol.12, p.13, 2009.
DOI : 10.1016/j.pecs.2008.10.002

U. Maas and S. B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, vol.88, issue.34, p.10, 1992.
DOI : 10.1016/0010-2180(92)90034-m

G. Maio, M. Cailler, R. Mercier, and B. Fiorina, Virtual chemistry for temperature and CO prediction in LES of non-adiabatic turbulent flames, p.217, 2019.
DOI : 10.1016/j.proci.2018.06.131

A. Massias, D. Diamantis, E. Mastorakos, and D. A. Goussis, An algorithm for the construction of global reduced mechanisms with CSP data, Combust. Flame, vol.117, issue.4, p.12, 1999.

J. Mathew, Large eddy simulation of a premixed flame with approximate deconvolution modeling, vol.52, p.40, 0191.

P. A. Mcmurthy, S. Menon, and A. R. Kerstein, A linear eddy subgrid model for turbulent reacting flows: Application to hydrogen-AIR combustion, Symp. Combust, vol.24, issue.1, p.31, 1992.

S. Meares and A. R. Masri, A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures, Combust. Flame, vol.161, issue.2, p.30, 2014.
DOI : 10.1016/j.combustflame.2013.09.016

C. Mehl, B. Fiorina, and J. Idier, Evaluation of deconvolution modelling applied to numerical combustion, Combust. Theory Model, p.192, 2017.
DOI : 10.1080/13647830.2017.1358405

URL : https://hal.archives-ouvertes.fr/hal-01653160

J. P. Mellado, S. Sarkar, and C. Pantano, Reconstruction subgrid models for nonpremixed combustion, Phys. Fluids, vol.15, issue.11, p.55, 2003.
DOI : 10.1063/1.1608008

URL : https://authors.library.caltech.edu/4163/1/MELpof03.pdf

S. Menon and A. R. Kerstein, The linear-Eddy model, Fluid Mech. its Appl, vol.95, p.31, 2011.
DOI : 10.1007/978-94-007-0412-1_10

R. Mercier, Turbulent combustion modeling for Large Eddy Simulation of non-adiabatic stratified flames, vol.125, p.161, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01246453

R. Mercier, C. Mehl, B. Fiorina, and V. Moureau, Filtered Wrinkled Flamelets model for Large-Eddy Simulation of turbulent premixed combustion. submitted, vol.86, p.85, 2018.

R. Mercier, T. Schmitt, D. Veynante, and B. Fiorina, The influence of combustion SGS submodels on the resolved flame propagation. Application to the LES of the Cambridge stratified flames, Proc. Combust. Inst, vol.35, issue.2, p.156, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219284

V. Moureau, P. Domingo, and L. Vervisch, Design of a massively parallel CFD code for complex geometries, Comptes Rendus Mécanique, vol.339, issue.2-3, p.127, 2011.
DOI : 10.1016/j.crme.2010.12.001

URL : https://hal.archives-ouvertes.fr/hal-01672172

V. Moureau, P. Domingo, and L. Vervisch, From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combust. Flame, vol.158, issue.7, p.39, 2011.
DOI : 10.1016/j.combustflame.2010.12.004

URL : https://hal.archives-ouvertes.fr/hal-01672168

S. Mukhopadhyay and J. Abraham, Influence of heat release and turbulence on scalar dissipation rate in autoigniting n-heptane/air mixtures, Combust. Flame, vol.159, issue.9, p.4, 2012.
DOI : 10.1016/j.combustflame.2012.03.015

R. Mustata, L. Valino, C. Jimenez, W. Jones, and S. Bondi, A probability density function Eulerian Monte Carlo field method for large eddy simulations: Application to a turbulent piloted methane/air diffusion flame (Sandia D), Combust. Flame, vol.145, issue.1-2, p.23, 2006.
DOI : 10.1016/j.combustflame.2005.12.002

URL : https://digital.csic.es/bitstream/10261/51108/1/accesoRestringido.pdf

S. Nambully, P. Domingo, V. Moureau, and L. Vervisch, A filteredReferences laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner, Combust. Flame, vol.161, issue.7, p.125, 2014.
DOI : 10.1016/j.combustflame.2014.01.006

S. Nambully, P. Domingo, V. Moureau, and L. Vervisch, A filteredlaminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion, Combust. Flame, vol.161, issue.7, p.139, 2014.
DOI : 10.1016/j.combustflame.2014.01.006

S. Navarro-martinez and A. Kronenburg, LES-CMC simulations of a turbulent bluff-body flame, Proc. Combust. Inst, vol.31, issue.2, p.27, 2007.
DOI : 10.1016/j.proci.2006.07.212

S. Navarro-martinez and A. Kronenburg, LES-CMC simulations of a lifted methane flame, Proc. Combust. Inst, vol.32, issue.1, p.28, 2009.
DOI : 10.1016/j.proci.2008.06.178

S. Navarro-martinez, A. Kronenburg, and F. Di-mare, Conditional moment closure for large eddy simulations, Flow, Turbul. Combust, vol.75, issue.14, p.27, 2005.
DOI : 10.1007/s10494-005-8580-7

F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids, vol.23, issue.8, p.130, 2011.
DOI : 10.1063/1.3623274

URL : https://hal.archives-ouvertes.fr/hal-00802472

P. Nilsson and X. Bai, Effects of flame stretch and wrinkling on co formation in turbulent premixed combustion, Proc. Combust. Inst, vol.29, issue.2, p.85, 2002.

J. Nocedal and S. J. Wright, Numerical Optimization, vol.43, p.59, 1999.

J. V. Oijen and L. D. Goey, Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds, Combust. Sci. Technol, vol.161, p.11, 2000.

P. J. O'rourke and F. V. Bracco, Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames, J. Comput. Phys, vol.33, issue.2, p.34, 1979.

C. Pantano and S. Sarkar, A subgrid model for nonlinear functions of a scalar, Phys. Fluids, vol.13, issue.12, p.40, 2001.

J. Park and T. Echekki, LES-ODT study of turbulent premixed interacting flames, Combust. Flame, vol.159, issue.2, p.33, 2012.

P. Pepiot-desjardins and H. Pitsch, An efficient error-propagationbased reduction method for large chemical kinetic mechanisms, Combust. Flame, vol.154, issue.1-2, p.12, 2008.

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell, vol.12, issue.7, p.107, 1990.

N. Peters, Laminar flamelet concepts in turbulent combustion, Symp. Combust, vol.21, issue.1, p.14, 1988.

N. Peters, Reducing mechanisms, p.219, 1991.

M. Philip, M. Boileau, R. Vicquelin, E. Riber, T. Schmitt et al., Large Eddy Simulations of the ignition sequence of an annular multiple-injector combustor, Proc. Combust. Inst, vol.35, issue.3, pp.3159-3166, 2015.
URL : https://hal.archives-ouvertes.fr/medihal-01837877

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, vol.14, p.174, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

W. Polifke, W. Geng, and K. Döbbeling, Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms, Combust. Flame, vol.113, issue.1-2, p.89, 1998.

S. B. Pope, A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow, Combust. Sci. Technol, vol.25, issue.5-6, p.22, 1981.

S. B. Pope, PDF methods for turbulent reactive flows, p.21, 1985.

S. B. Pope, Computations of turbulent combustion: Progress and challenges, Symp. Combust, vol.23, issue.1, p.18, 1991.

S. B. Pope, Mapping closures for turbulent mixing and reaction, Theor. Comput. Fluid Dyn, vol.2, issue.5-6, p.28, 1991.

F. Proch, P. Domingo, L. Vervisch, and A. M. Kempf, Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry, Combust. Flame, vol.180, p.146, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611182

F. Proch and A. M. Kempf, Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry, Combust. Flame, vol.161, issue.10, p.134, 2014.

V. Raman and H. Pitsch, A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry, Proc. Combust. Inst, vol.31, issue.2, p.23, 2007.

G. Ribert, O. Gicquel, N. Darabiha, and D. Veynante, Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames, Combust. Flame, vol.146, issue.4, p.58, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00114951

F. Salehi, M. Cleary, A. Masri, Y. Ge, and A. Klimenko, SparseLagrangian MMC simulations of an n-dodecane jet at engine-relevant conditions, Proc. Combust. Inst, vol.36, issue.3, p.30, 2017.

R. C. Schmidt, A. R. Kerstein, and R. Mcdermott, ODTLES: A multi-scale model for 3D turbulent flow based on one-dimensional turbulence modeling, Comput. Methods Appl. Mech. Eng, vol.199, p.31, 2010.

O. Schulz, T. Jaravel, T. Poinsot, B. Cuenot, and N. Noiray, A criterion to distinguish autoignition and propagation applied to a lifted methane-air jet flame, In Proc. Combust. Inst, vol.36, p.36, 2017.

Y. C. See and M. Ihme, Large eddy simulation of a partially-premixed gas turbine model combustor, Proc. Combust. Inst, vol.35, issue.2, p.11, 2015.

M. R. Sheikhi, T. G. Drozda, P. Givi, and S. B. Pope, Velocityscalar filtered density function for large eddy simulation of turbulent flows, Phys. Fluids, vol.15, issue.8, p.18, 2003.

M. R. Sheikhi, P. Givi, and S. B. Pope, Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows, Phys. Fluids, vol.19, issue.9, p.18, 2007.

T. Smith and S. Menon, Subgrid combustion modeling for premixed turbulent reacting flows, AIAA Aerosp. Sci. Meet. Exhib, p.31, 1998.

S. Stolz and N. A. Adams, An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids, vol.11, issue.7, p.40, 0191.
DOI : 10.1063/1.869867

S. Stolz, N. A. Adams, and L. Kleiser, An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows, Phys. Fluids, vol.13, issue.4, p.40, 2001.

S. Stolz, N. A. Adams, and L. Kleiser, The approximate deconvolution model for large-eddy simulation of compressible flows and its application to shock-turbulent-boundary-layer interaction, Phys. Fluids, vol.13, issue.10, p.40, 2001.

B. Sundaram, A. Y. Klimenko, M. J. Cleary, and Y. Ge, A direct approach to generalised multiple mapping conditioning for selected turbulent diffusion flame cases, Combust. Theory Model, vol.20, issue.4, p.30, 2016.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: Nonswirling flows, Combust. Flame, vol.159, issue.9, p.85, 0196.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, The structure of turbulent stratified and premixed methane/air flames II: Swirling flows, Combust. Flame, vol.159, issue.9, p.85, 0193.

Q. Tang, W. Zhao, M. Bockelie, and R. O. Fox, Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics, Combust. Theory Model, vol.11, issue.6, p.23, 2007.

A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Sov. Math. Dokl, vol.4, issue.4, p.57, 0197.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Math. Comput, vol.32, p.57, 1978.

T. Turanyi, Reduction of large reaction mechanisms, New J. Chem, vol.14, issue.11, p.12, 1990.

L. Valino, Field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow, Turbul. Combust, vol.60, issue.2, p.22, 1998.

O. Vermorel, P. Quillatre, and T. Poinsot, LES of explosions in ventReferences 221, 2017.

, A test case for premixed turbulent combustion models, Combust. Flame, vol.183, p.85

L. Vervisch, P. Domingo, G. Lodato, and D. Veynante, Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion, Combust. Flame, vol.157, issue.4, p.132, 2010.

D. Veynante, B. Fiorina, P. Domingo, and L. Vervisch, Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations, Combust. Theory Model, vol.12, issue.6, p.58, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00430352

D. Veynante and R. Knikker, Comparison between LES results and experimental data in reacting flows, J. Turbul, vol.7, p.132, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133251

D. Veynante and A. Trouvé, Gradient and counter-gradient scalar transport in turbulent premixed flames, J. Fluid Mech, vol.332, p.17, 1997.

J. Villermaux and L. Falk, A generalized mixing model for initial contacting of reactive fluids, Chem. Eng. Sci, vol.49, issue.24, p.21, 1994.

S. Vo, O. T. Stein, A. Kronenburg, and M. J. Cleary, Assessment of mixing time scales for a sparse particle method, Combust. Flame, vol.179, p.29, 2017.

P. S. Volpiani, T. Schmitt, and D. Veynante, Large eddy simulation of a turbulent swirling premixed flame coupling the TFLES model with a dynamic wrinkling formulation, Combust. Flame, vol.180, pp.124-135, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01865083

A. W. Vreman, R. J. Bastiaans, and B. J. Geurts, A similarity subgrid model for premixed turbulent combustion, Flow, Turbul. Combust, vol.82, issue.2, p.40, 2009.

G. Wang, M. Boileau, and D. Veynante, Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion, Combust. Flame, vol.158, issue.11, p.135, 0192.
URL : https://hal.archives-ouvertes.fr/hal-00659566

H. Wang and M. Frenklach, Detailed reduction of reaction mechanisms for flame modeling, Combust. Flame, vol.87, issue.3-4, p.12, 1991.

P. Wang and X. S. Bai, Large eddy simulation of turbulent premixed flames using level-set G-equation, Proc. Combust. Inst, vol.30, issue.1, p.37, 2005.

Q. Wang and M. Ihme, Regularized deconvolution method for turbulent combustion modeling, Combust. Flame, vol.49, p.41, 0191.

C. K. Westbrook and F. L. Dryer, Simplified reaction mechanisms for the xxidation of hydrocarbon fuels in flames, Combust. Sci. Technol, vol.27, p.13, 1981.

L. E. Whitehouse, A. S. Tomlin, and M. J. Pilling, Systematic reduction of complex tropospheric chemical mechanisms, Part I: sensitivity References and time-scale analyses, Atmos. Chem. Phys, vol.4, issue.7, p.12, 2004.

Y. Xin, C. Yoo, J. Chen, and C. Law, A DNS study of self accelerating cylindrical hydrogen air flames with detailed chemistry, Proc. Combust. Inst, vol.35, issue.1, p.4, 2015.

M. Yaldizli, K. Mehravaran, and F. A. Jaberi, Large-eddy simulations of turbulent methane jet flames with filtered mass density function, Int. J. Heat Mass Transf, vol.53, p.31, 2010.

C. S. Yoo, Z. Luo, T. Lu, H. Kim, and J. H. Chen, A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions, Proc. Combust. Inst, vol.34, issue.2, p.12, 2013.

H. Zhang and E. Mastorakos, Prediction of Global Extinction Conditions and Dynamics in Swirling Non-premixed Flames Using LES/CMC Modelling. Flow, Turbul. Combust, vol.96, issue.4, p.27, 2016.

H. Zhang and E. Mastorakos, Modelling local extinction in Sydney swirling non-premixed flames with LES/CMC, In Proc. Combust. Inst, vol.36, p.27, 2017.

R. Zhou, S. Balusamy, M. S. Sweeney, R. S. Barlow, and S. Hochgreb, Flow field measurements of a series of turbulent premixed and stratified methane/air flames, Combust. Flame, vol.160, issue.10, p.144, 2013.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGSB: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw, vol.23, issue.4, p.57, 1997.