, Key World Energy Statistics, p.82, 2014.

, EIA projects world energy consumption will increase 56% by 2040 -Today in Energy -U.S. Energy Information Administration (EIA), 2013.

D. Weisser, A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies, In: Energy, vol.32, issue.9, pp.1543-1559, 2007.

D. R. Olander, Fundamental aspects of nuclear reactor fuel elements, 1976.

J. Noirot, L. Desgranges, and J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, Journal of Nuclear Materials, vol.372, pp.318-339, 2008.

V. V. Rondinella and T. Wiss, The high burn-up structure in nuclear fuel, Materials Today, vol.13, pp.24-32, 2010.

T. Wiss, Properties of the high burnup structure in nuclear light water reactor fuel, Radiochimica Acta, vol.105, 2017.

H. Kleykamp, The chemical state of the fission products in oxide fuels, Journal of Nuclear Materials, vol.131, issue.2, pp.221-246, 1985.

J. Bruno and R. C. Ewing, Spent Nuclear Fuel". In: Elements, vol.2, issue.6, pp.343-349, 2006.

F. Lemoine, P. Baron, and . Blanpain, Key parameters for the High Burnup Structure formation thresholds in oxide fuels, p.14, 2010.

J. Nigon and G. L. Bastard, Fabrication des combustibles au plutonium pour les REP et REB. Text. Archive Location: 2003 Library Catalog: www.techniquesingenieur.fr Publisher: Editions T.I. -Techniques de l'Ingénieur, 2003.

C. Guéneau, Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems, Journal of Nuclear Materials, vol.419, pp.145-167, 2011.

L. R. Morss, The Chemistry of the Actinide and Transactinide Elements, 2006.

R. K. Edwards and A. E. Margin, Phase Relations in the Uranium-Uranium Dioxide System at High Temperatures, Thermodynamics. Vol. II. Proceedings of the Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic, 1966.

J. K. Fink, Thermophysical properties of uranium dioxide, Journal of Nuclear Materials, vol.279, issue.1, pp.1-18, 2000.

R. E. Latta and R. E. Fryxell, Determination of solidus-liquidus temperatures in the UO 2+x system (-0.50<x<0.20), Journal of Nuclear Materials, vol.35, issue.2, pp.195-210, 1970.

C. Guéneau, Liquid immiscibility in a (O,U,Zr) model corium, Journal of Nuclear Materials, vol.254, issue.2-3, pp.158-174, 1998.

S. D. Conradson, Local Structure and Charge Distribution in the (UO 2 -U 4 O 9 ) System, Inorganic Chemistry 43.22 (, pp.6922-6935

D. A. Andersson, Density Functional Theory Calculations of UO 2 Oxidation: Evolution of UO 2+x , U 4 O 9-y , U 3 O 7 , and U 3 O 8, Inorganic Chemistry, vol.52, pp.2769-2778, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913699

B. Belbeoch, J. C. Boivineau, and P. Perio, Changements de structure de l oxyde U 4 O 9, Journal of Physics and Chemistry of Solids, vol.28, pp.1267-1275, 1967.

D. J. Bevan, I. E. Grey, and B. T. Willis, The crystal structure of ?-U 4 O 9?y, Journal of Solid State Chemistry, vol.61, issue.1, pp.1-7, 1986.

R. I. Cooper and B. T. Willis, Refinement of the structure of ?-U 4 O 9, Acta Crystallographica Section A: Foundations of Crystallography, vol.60, issue.4, pp.322-325, 2004.

L. Desgranges, Structural Changes in the Local Environment of Uranium Atoms in the Three Phases of U 4 O 9, Inorganic Chemistry, vol.55, pp.7485-7491, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01501878

A. Soulié, Clusters of Oxygen Interstitials in UO 2+x and ?-U 4 O 9 : Structure and Arrangements, Inorganic Chemistry, vol.58, pp.12678-12688, 2019.

L. Desgranges, Refinement of the ?-U 4 O 9 Crystalline Structure: New Insight into the U 4 O 9 -U 3 O 8 Transformation, Inorganic Chemistry, vol.50, pp.6146-6151, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639190

M. Baichi, Thermodynamics of the O-U system: III -Critical assessment of phase diagram data in the U-UO 2+x composition range, Journal of Nuclear Materials, vol.349, issue.1, pp.57-82, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00141058

F. Grønvold, High temperature X-ray study of uranium oxides in the UO 2 -U 3 O 8 region, Journal of Inorganic and Nuclear Chemistry, vol.1, issue.6, pp.357-370, 1955.

P. E. Blackburn, Oxygen Dissociation Pressures over Uranium Oxides, The Journal of Physical Chemistry, vol.62, pp.897-902, 1958.

G. C. Allen and N. R. Holmes, A mechanism for the UO 2 to ?-U 3 O 8 phase transformation, Journal of Nuclear Materials, vol.223, issue.3, pp.231-237, 1995.

H. R. Hoekstra and S. Siegel, The uranium-oxygen system: U 3 O 8 UO 3, Journal of Inorganic and Nuclear Chemistry, vol.18, pp.154-165, 1961.

L. Nowicki, Polytypic arrangements of cuboctahedral oxygen clusters in U 3 O 7, Journal of Physics and Chemistry of Solids, vol.61, pp.1789-1804, 2000.
URL : https://hal.archives-ouvertes.fr/in2p3-00013499

L. Desgranges, Neutron Diffraction Study of the in Situ Oxidation of UO 2, Inorganic Chemistry, vol.48, pp.7585-7592, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439258

N. Brincat, Density functional theory calculations of defective UO 2 at U 3 O 7 stoichiometry, Journal of Nuclear Materials, vol.467, issue.2, pp.724-729, 2015.

G. Leinders, Assessment of the U 3 O 7 Crystal Structure by X-ray and Electron Diffraction, Inorganic Chemistry, vol.55, pp.9923-9936, 2016.

N. A. Brincat, Ab Initio Investigation of the UO 3 Polymorphs: Structural Properties and Thermodynamic Stability, Inorganic Chemistry, vol.53, pp.12253-12264, 2014.

L. Casillas-trujillo, Comparison of bonding and charge density in ?-UO 3 , ?-UO 3 and La 6 UO 12, Physical Review Materials, vol.1, issue.6, p.65404, 2017.

I. Grenthe, Chemical thermodynamics of uranium, vol.61, 2004.

H. R. Hoekstra, S. Santoro, and . Siegel, The low temperature oxidation of UO 2 and U 4 O 9, p.13, 1961.

R. Venkata-krishnan, Solubility studies and thermal expansion coefficient of uranium-lanthanum mixed oxide system, Journal of Nuclear Materials, vol.403, pp.25-31, 2010.

D. Prieur, Aliovalent Cation Substitution in UO 2 : Electronic and Local Structures of U 1-y La y O 2±x Solid Solutions, Inorganic Chemistry, vol.57, pp.1535-1544, 2018.

R. M. Rojas, Structural study of the rhombohedral fluorite-related RIII phase U 1?y La y O 2±x , 0.56 y 0.67, Journal of Solid State Chemistry, vol.112, issue.2, pp.322-328, 1994.

R. Lorenzelli and B. Touzelin, Sur le système UO 2 -CeO 2 ;étude cristallographiqueà haute température, Journal of Nuclear Materials, vol.95, issue.3, pp.290-302, 1980.

T. L. Markin, R. S. Street, and E. C. Crouch, The uranium-cerium-oxygen ternary phase diagram, Journal of Inorganic and Nuclear Chemistry, vol.32, issue.1, pp.59-75, 1970.

A. D. Murray and B. T. Willis, A neutron diffraction study of anion clusters in nonstoichiometric uranium dioxide, Journal of Solid State Chemistry, vol.84, issue.1, pp.52-57, 1990.

R. Venkata-krishnan, Synthesis, characterization and thermal expansion measurements on uranium-cerium mixed oxides, Journal of Nuclear Materials, vol.414, issue.3, pp.393-398, 2011.

J. W. Mcmurray, Thermodynamic reassessment of U-Gd-O system, Journal of Nuclear Materials, vol.452, issue.1, pp.397-406, 2014.

K. Une and M. Oguma, Oxygen potentials of (U, Gd)O 2±x solid solutions in the temperature range 1000-1500 ? C, Journal of Nuclear Materials, vol.115, pp.84-90, 1983.

A. Nakamura, Thermodynamic Study of U 1-y Gd y O 2+x by Solid State EMF Measurements, Zeitschrift für Physikalische Chemie, vol.207, pp.223-243, 1998.

T. B. Lindemer and A. L. Sutton, Study of Nonstoichiometry of (U 1-z Gd z O 2±x ), Journal of the American Ceramic Society, vol.71, pp.553-561, 1988.

R. I. Barabash, Cation and vacancy disorder in U (1?y) Nd y O 2 alloys, Journal of Materials Research, vol.30, pp.3026-3040, 2015.

S. M. Lee, Measurement of the oxygen partial pressure and thermodynamic modeling of the U-Nd-O system, Journal of Nuclear Materials, vol.473, pp.272-282, 2016.

J. Wadier, Phase diagrams and thermodynamic properties of the uraniumneodymium-oxygen system, 1973.

F. Lebreton, Synthèse et caractérisation d'oxydes mixtes d'uranium et d'américium, 2014.

T. L. Markin and R. S. Street, The uranium-plutonium-oxygen ternary phase diagram, Journal of Inorganic and Nuclear Chemistry, vol.29, issue.9, pp.2265-2280

A. Komeno, Phase separation behaviour of (U 0.7 Pu 0.3 ) O 2?x (1.92<x<2.00) based fuels containing actinides and/or lanthanides, IOP Conference Series: Materials Science and Engineering, vol.9, p.12016, 2010.

T. Truphémus, Structural studies of the phase separation in the UO 2 -PuO 2 -Pu 2 O 3 ternary system, Journal of Nuclear Materials, vol.432, issue.1, pp.378-387, 2013.

G. Leinders, Accurate lattice parameter measurements of stoichiometric uranium dioxide, Journal of Nuclear Materials, vol.459, pp.135-142, 2015.

G. Baldinozzi, L. Desgranges, and C. Petot, A statistical approach of the thermodynamic properties of UO 2 at high temperature, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.327, pp.68-73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084008

S. D. Conradson, Charge distribution and local structure and speciation in the (UO) 2+x and (PuO) 2+x binary oxides for x<0.25, Journal of Solid State Chemistry. f-element Spectroscopy and Coordination Chemistry, vol.178, issue.2, pp.521-535, 2005.

K. O. Kvashnina, Chemical State of Complex Uranium Oxides, Physical Review Letters, vol.111, p.253002, 2013.

B. T. Willis, Structures of UO 2 , UO 2+x andU 4 O 9 by neutron diffraction, Journal de Physique, vol.25, pp.431-439, 1964.
URL : https://hal.archives-ouvertes.fr/jpa-00205799

B. T. Willis, Positions of the Oxygen Atoms in UO 2.13, Nature, vol.197, pp.755-756, 1963.

B. T. Willis, Crystallographic studies of anion-excess uranium oxides, Journal of the Chemical Society, vol.2, issue.83, p.1073, 1987.

K. Naito, T. Tsuji, and T. Matsui, An electrical conductivity and X-ray study of a high-temperature transition in U 4 O 9, Journal of Nuclear Materials -J NUCL MATER, vol.48, pp.58-66, 1973.

L. Desgranges, Influence of the U 3 O 7 domain structure on cracking during the oxidation of UO 2, Journal of Nuclear Materials, vol.402, pp.167-172, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00772188

B. O. Loopstra, The structure of ?-U 3 O 8, Acta Crystallographica Section B, vol.26, pp.656-657, 1970.

B. O. Loopstra, The phase transition in ?-U 3 O 8 at 210 ? C, Journal of Applied Crystallography, vol.3, issue.2, pp.94-96, 1970.

R. J. Konings, The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides, 2014.

G. E. Moore and K. K. Kelley, High-temperature heat contents of uranium, uranium dioxide and uranium trioxide, Journal of the American Chemical Society, vol.69, pp.2105-2107

J. B. Conway and R. A. Hein, Enthalpy of uranium dioxide to 2350 ? C, Journal of Nuclear Materials (Netherlands), vol.15, 1965.

A. E. Ogard and J. A. Leary, High temperature heat content and heat capacity of uranium dioxide and uranium dioxide-plutonium dioxide solid solutions, LA-DC, vol.8620

R. A. Hein, P. N. Flagella, and J. B. Conway, High-Temperature Enthalpy and Heat of Fusion of UO 2, Journal of the American Ceramic Society, vol.51, pp.291-292, 1968.

R. A. Hein, L. H. Sjodahl, and R. Szwarc, Heat content of uranium dioxide from 1200 to 3100 K, Journal of Nuclear Materials, vol.25, issue.1, pp.99-102, 1968.

L. Leibowitz, L. W. Mishler, and M. G. Chasanov, Enthalpy of solid uranium dioxide from 2500 K to its melting point, Journal of Nuclear Materials, vol.29, issue.3, pp.356-358, 1969.

D. R. Fredrickson and M. G. Chasanov, Enthalpy of uranium dioxide and sapphire to 1500 K by drop calorimetry, The Journal of Chemical Thermodynamics, vol.2, issue.5, pp.623-629, 1970.

K. C. Mills, Heat capacity and enthalpy of UO 2 and gadolinia-doped UO 2, Thermochimica Acta, vol.139, pp.107-120, 1989.

Y. Takahashi and A. Masami, High-temperature heat-capacity measurements on (U, Gd)O 2 by drop calorimetry and DSC, Journal of Nuclear Materials, vol.201, pp.108-114, 1993.

F. Grønvold, Thermodynamics of the UO 2+x phase I. Heat capacities of UO 2.017 and UO 2.254 from 300 to 1000 K and electronic contributions, The Journal of Chemical Thermodynamics, vol.2, issue.5, pp.665-679, 1970.

C. Ronchi, Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity, Journal of Applied Physics, vol.85, issue.2, pp.776-789, 1998.

J. P. Hiernaut, G. J. Hyland, and C. Ronchi, Premelting transition in uranium dioxide, International Journal of Thermophysics, vol.14, pp.259-283, 1993.

D. I. Marchidan and M. Ciopec, Enthalpy of uranium to 1500 K by drop calorimetry, The Journal of Chemical Thermodynamics, vol.8, issue.7, pp.691-701, 1976.

C. Ronchi, A Universal Laser-Pulse Apparatus for Thermophysical Measurements in Refractory Materials at Very High Temperatures, International Journal of Thermophysics, vol.20, pp.987-996, 1999.

M. Amaya, K. Une, and K. Minato, Heat capacity measurements on unirradiated and irradiated fuel pellets, Journal of Nuclear Materials. 10th Int. Symp. on Thermodynamics of Nuclear Materials, vol.294, issue.1, pp.1-7, 2001.

C. Ronchi, Laboratory Measurement of the Heat Capacity of Urania up to 8000 K: I. Experiment, Nuclear Science and Engineering, vol.113, issue.1, pp.1-19, 1993.

C. Ronchi and G. J. Hyland, Analysis of recent measurements of the heat capacity of uranium dioxide, Journal of Alloys and Compounds. International Conference on Actinides, pp.159-168, 1994.

M. T. Hutchings, High-temperature studies of UO 2 and ThO 2 using neutron scattering techniques, Journal of the Chemical Society, vol.2, pp.1083-1103, 1987.

M. T. Hutchings, Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques, Journal of Physics C: Solid State Physics, vol.17, pp.3903-3940, 1984.

K. Clausen, Investigation of oxygen disorder, thermal parameters, lattice vibrations and elastic constants of UO 2 and ThO 2 at temperatures up to 2930 K", In: Revue de Physique Appliquee, vol.19, pp.719-722, 1984.

D. Labroche, C. Dugne, and . Chatillon, Thermodynamics of the O-U system. I -Oxygen chemical potential critical assessment in the UO2-U3O8 composition range, Journal of Nuclear Materials, vol.312, issue.1, pp.21-49, 2003.

H. Sano, Solubility of Oxygen in Neodymium, In: Shigen-to-Sozai, vol.115, pp.49-53, 1999.

G. Dottavio, Characterising the U-Nd-O miscibility gap by an experimental and a theoretical approach, Journal of Nuclear Materials, vol.458, pp.394-405, 2015.

I. Warshaw and R. Roy, Polymorphism of rare earth sesquioxides, The Journal of Physical Chemistry, vol.65, issue.11, pp.2048-2051, 1961.

R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol.25, issue.5, pp.925-946, 1969.

J. Coutures, Etude a haute température des systèmes formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phases, Journal of Solid State Chemistry, vol.17, issue.1, pp.171-182, 1400.

P. Aldebert and J. P. Traverse, Etude par diffraction neutronique des structures de haute temperature de La 2 O 3 et Nd 2 O 3, Materials Research Bulletin, vol.14, issue.3, pp.303-323, 1979.

M. Zinkevich, Thermodynamics of rare earth sesquioxides, Progress in Materials Science, vol.52, pp.597-647, 2007.

O. A. Mordovin, N. I. Timofeeva, and L. N. Drozdova, Determining the melting temperatures of rare-earth oxides, In: Izv. Akad. Nauk SSSR, vol.3, pp.187-196, 1967.

W. A. Lambertson and F. H. Gunzel, Refractory oxides melting points. AECD-3465

T. Noguchi and M. Mizuno, Freezing points of lanthanides oxides measured with a solar furnace, Solar Energy, vol.11, pp.90-94, 1967.

J. Coutures, R. Verges, and M. Foex, Etude a haute temperature des systemes formes par le sesquioxyde de neodyme avec les sesquioxydes d'yttrium et d'ytterbium, Materials Research Bulletin, vol.9, pp.1603-1611, 1974.

M. Mizuno, Solidification Point Measurements for Oxides in Several Kinds of Atmospheres with a Solar Furnace, Yogyo Kyokaishi, vol.89, pp.488-494, 1981.

J. P. Coutures, The Al 2 O 3 -Nd 2 O 3 Phase Diagram, Journal of the American Ceramic Society, vol.68, pp.105-107, 1985.

B. Granier and S. Heurtault, Density of Liquid Rare-Earth Sesquioxides, Journal of the American Ceramic Society, vol.71, pp.466-468, 1988.

E. H. Cordfunke and R. J. Konings, The enthalpies of formation of lanthanide compounds: II. Ln 3+ (aq), Thermochimica Acta, vol.375, issue.1, pp.51-64, 2001.

L. Merli, F. Rorif, and J. Fuger, The Enthalpies of Solution of Lanthanide Metals in Hydrochloric Acid at Various Concentrations. Relevance to Nuclear Waste Long Term Storage, Radiochimica Acta, vol.82, 1998.

E. Huber and C. Holley, The Heat of Combustion of Neodymium, Journal of the American Chemical Society, vol.74, pp.5530-5531, 1952.

G. C. Fitzgibbon, D. Pavone, and C. E. Holley, Enthalpy of formation of Nd 2 O 3 -hexagonal, Journal of Chemical & Engineering Data, vol.13, pp.547-548, 1968.

A. T. Dinsdale, SGTE data for pure elements, Calphad 15, vol.4, pp.317-425, 1991.

J. O. Blomeke and W. T. Ziegler, The Heat Content, Specific Heat and Entropy of La 2 O 3 , Pr 6 O 11 and Nd 2 O 3 Between 30 and 900 ? C, Journal of the American Chemical Society, vol.73, pp.5099-5102, 1951.

L. B. Pankratz, E. G. King, and K. K. Kelley, High-temperature heat contents and entropies of sesquioxides of europium, gadolinium, neodymium, samarium and yttrium. BM-RI-6033, Bureau of Mines, 1961.

H. W. Goldstein, E. F. Neilson, and P. N. Walsh, David White: The Heat Capacities Yttrium Oxide(Y 2 O 3 ) Lanthanum Oxide (La 2 O 3 ), and Neodymium Oxide (Nd 2 O 3 ) from 16 to 300K, The Journal of Physical Chemistry, vol.63, issue.9, pp.1445-1449, 1959.

B. H. Justice and E. F. Westrum, Thermophysical properties of the lanthanide oxides. Heat capacities, thermodynamic properties, and some energy levels of lanthanum (III) and neodymium (III) oxides from 5 to 350 K, In: The Journal of Physical Chemistry, vol.67, issue.2, pp.339-345, 1963.

J. F. Haefling and A. H. Daane, The immiscibility limits of uranium with the rare-earth metals, Trans. Met. Soc. AIME, vol.215, 1959.

L. Desgranges, Miscibility Gap in the U-Nd-O Phase Diagram: a New Approach of Nuclear Oxides in the Environment?, In: Inorganic Chemistry, vol.51, pp.9147-9149, 2012.

W. A. Lambertson and M. H. Mueller, Uranium oxide phase equilibrium systems

, U 3 O 8 -TiO 2, 1954.

C. Keller and A. Boroujerdi, Phasengleichgewichte in den systemen UO 2 -UO 3 -NdO 1,5 und NpO 2+x NdO 1,5, Journal of Inorganic and Nuclear Chemistry, vol.34, pp.1187-1193

R. Venkata-krishnan, Solubility studies and thermophysical properties of uranium-neodymium mixed oxides system, Ceramics International, vol.40, issue.3, pp.4395-4405, 2014.

G. Dottavio, Existence of a miscibility gap in uranium neodymium oxide materials used as nuclear fuels simulants, Progress in Nuclear Energy 72, pp.22-26, 2014.

R. J. Hawkins and C. B. Alcock, A study of cation diffusion in UO 2+x and ThO 2 using alpha-ray spectrometry, Journal of Nuclear Materials, vol.26, issue.1, pp.112-122, 1968.

X. Han and B. J. Heuser, Radiation enhanced diffusion of Nd in UO 2, Journal of Nuclear Materials, vol.466, pp.588-596, 2015.

X. Han, Radiation enhanced diffusion of neodymium in single crystal thin film UO 2, p.69

M. Tetenbaum, Some aspects of the high temperature vaporization behavior and valence effects in actinide-oxide rare-earth-oxide systems

U. ,

U. , CONF-770662-2, 1977.

K. Une and M. Oguma, Oxygen potentials of (U,Nd)O 2±x solid solutions in the temperature range 1000-1500 ? C, Journal of Nuclear Materials, vol.118, issue.2, pp.189-194, 1983.

V. Ghetta, Materials issues for generation IV systems: status, open questions and challenges. NATO science for peace and security series Series B: Physics and biophysics, p.254052563, 2008.

C. Guéneau, A. Chartier, and L. Van-brutzel, Thermodynamic and Thermophysical Properties of the Actinide Oxides, Comprehensive Nuclear Materials, pp.21-59, 2012.

C. Sari, U. Benedict, and H. Blank, A study of the ternary system UO 2 -PuO 2 -Pu 2 O 3, Journal of Nuclear Materials, vol.35, issue.3, pp.267-277, 1970.

T. L. Markin and R. S. Street, The uranium-plutonium-oxygen ternary phase diagram, Journal of Inorganic and Nuclear Chemistry, vol.29, issue.9, pp.2265-2280, 1967.

M. Kato, Solidus and liquidus temperatures in the UO 2 -PuO 2 system, Journal of Nuclear Materials, vol.373, issue.1, pp.237-245, 2008.

T. Truphémus, Phase Equilibria in the Uranium-Plutonium-Oxygen Ternary Phase Diagram at (U 0.55 ,Pu 0.45 )O 2?x and (U 0.45 ,Pu 0.55 )O 2?x ". In: Procedia Chemistry, ATALANTE 2012 International Conference on Nuclear Chemistry for Sustainable Fuel Cycles, vol.7, pp.521-527, 2012.

R. Vauchy, High temperature X-ray diffraction study of the kinetics of phase separation in hypostoichiometric uranium-plutonium mixed oxides, Journal of the European Ceramic Society, vol.34, issue.10, pp.2543-2551, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01138849

R. Vauchy, Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides, Journal of Nuclear Materials, vol.469, pp.125-132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01383549

Y. Sagayama, GLOBAL 2005: Proceedings of the international conference on nuclear energy systems for future generation and global sustainability, 2005.

P. A. Bingham, The Use of Surrogates in Waste Immobilization Studies: A Case Study of Plutonium, MRS Online Proceedings Library Archive, p.1107, 2008.

T. L. Markin, R. S. Street, and E. C. Crouch, The uranium-cerium-oxygen ternary phase diagram, Journal of Inorganic and Nuclear Chemistry, vol.32, issue.1, pp.59-75, 1970.

A. D. Murray, C. R. Catlow, and B. E. Fender, A neutron powder diffraction study of U 1-y Ce y O 2-x, Journal of the Chemical Society, vol.2, pp.1113-1120, 1987.

R. Venkata-krishnan and K. Nagarajan, Heat capacity measurements on uranium-cerium mixed oxides by differential scanning calorimetry, Thermochimica Acta, vol.440, pp.141-145, 2006.

A. T. Nelson, An Evaluation of the Thermophysical Properties of Stoichiometric CeO 2 in Comparison to UO 2 and PuO 2, Journal of the American Ceramic Society, vol.97, pp.3652-3659, 2014.

K. Suzuki, Thermal and mechanical properties of CeO 2, Journal of the American Ceramic Society, vol.102, pp.1994-2008, 2019.

H. S. Kim, Applicability of CeO 2 as a surrogate for PuO 2 in a MOX fuel development, Journal of Nuclear Materials, vol.378, issue.1, pp.98-104, 2008.

D. Simeone, Phase Separation in Fluorite-Related U 1-y Ce y O 2-x : A Re-Examination by X-ray and Neutron Diffraction, Inorganic Chemistry, vol.58, pp.11599-11605, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02415377

M. Hoch and F. J. Furman, Proceedings of the Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transport in Solids, vol.II, 1966.

P. Herrero, P. Garcia-chain, and R. M. Rojas, Microstructural characterization of the fluorite phase in the U-La-O system. I. Rhombohedral microdomain formation in (U 1?y La y )O 2+x , 0.56 y 0.67, Journal of Solid State Chemistry, vol.87, issue.2, pp.331-343, 1990.

P. Garcia-chain, Microstructural Characterization of the Fluorite Phase in the U-La-O System: II. Hexagonal Microdomain Formation in (U 1?y La y )O 2?x , 0.70 y 0.80, Journal of Solid State Chemistry, vol.108, issue.2, pp.236-242, 1994.

H. G. Diehl and C. Keller, Das system UO 2 -UO 3 -LaO 1.5, Journal of Solid State Chemistry, vol.3, issue.4, pp.621-636, 1971.

T. Cardinaels, Dopant solubility and lattice contraction in gadolinia and gadolinia-chromia doped UO 2 fuels, Journal of Nuclear Materials, vol.424, pp.289-300, 2012.

M. Durazzo, Phase studies in the UO 2 -Gd 2 O 3 system, Journal of Nuclear Materials, vol.400, issue.3, pp.183-188, 2010.

, Characteristics and use of urania-gadolinia fuels, p.190, 1995.

R. Venkata-krishnan, Heat Capacity and Thermal Expansion of Uranium-Gadolinium Mixed Oxides, Journal of Nuclear and Radiochemical Sciences, vol.10, issue.1, pp.19-20, 2009.

H. Inaba, K. Naito, and M. Oguma, Heat capacity measurement of U 1?y Gd y O 2 (0.00 y 0.142) from 310 to 1500 K, Journal of Nuclear Materials, vol.149, issue.3, pp.341-348, 1987.

K. Teske, Investigation of nuclear mixed oxide fuel-gas interaction by a solid electrolyte based coulometric technique, p.6, 1992.

S. M. Lee, Lattice Parameter Behavior with Different Nd and O Concentrations in (U 1?y Nd y )O 2±x Solid Solution, Nuclear Technology, vol.193, issue.2, pp.287-296, 2016.

, Advanced Fuel Pellet Materials and Designs for Water Cooled Reactors, p.329, 2003.

M. Marcet, Etude de la fracturation mécanique de la structureà haut taux de combustion des combustibles irradiés (RIM) en traitement thermique". thesis. Aix-Marseille 2, 2010.

A. L. Bail, H. Duroy, and J. L. Fourquet, Ab-initio structure determination of LiSbWO 6 by X-ray powder diffraction, Materials Research Bulletin, vol.23, issue.3, pp.447-452, 1988.

K. Persson, SG:191) by Materials Project. type: dataset, vol.2, 2014.

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, vol.2, issue.2, pp.65-71, 1969.

S. Huang, Investigation of chemical composition and crystal structure in sintered Ce 15 Nd 15 Fe bal B 1 magnet, AIP Advances, vol.4, p.107127, 2014.

G. Adachi and N. Imanaka, The Binary Rare Earth Oxides, Chemical Reviews, vol.98, issue.4, pp.1479-1514, 1998.

N. Hingant, Preparation, sintering and leaching of optimized uranium thorium dioxides, Journal of Nuclear Materials. Nuclear Materials III, vol.385, issue.2, pp.400-406, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00380026

M. S. Subramanian, R. N. Singh, and H. D. Sharma, Reaction kinetics of some actinide oxalates by differential thermal analysis, Journal of Inorganic and Nuclear Chemistry, vol.31, pp.3789-3795, 1969.

D. Horlait, Synthesis and characterization of Th 1?x Ln x O 2?x/2 mixedoxides, Materials Research Bulletin, vol.47, pp.4017-4025, 2012.

T. Ohmichi, On the relation between lattice parameter and O/M ratio for uranium dioxide-trivalent rare earth oxide solid solution, Journal of Nuclear Materials, vol.102, issue.1, pp.40-46, 1981.

R. Bès, New insight in the uranium valence state determination in U y Nd 1?y O 2±x, Journal of Nuclear Materials, vol.507, pp.145-150, 2018.

O. Proux, High-Energy Resolution Fluorescence Detected X-Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences, Journal of Environmental Quality. Synchrotron radiation-based methods for environmental biogeochemistry, vol.46, pp.1146-1157, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01520692

R. Bès, Charge compensation mechanisms in U 1-x Gd x O 2 and Th 1-x Gd x O 2-x/2 studied by X-ray Absorption Spectroscopy, Journal of Nuclear Materials, vol.489, pp.9-21, 2017.

H. Cao, Differential interplay between Ce and U on local structures of U 1-x Ce x O 2 solid solutions probed by X-ray absorption spectroscopy, Journal of Nuclear Materials, vol.515, pp.238-244, 2019.

K. Popa, Further insights into the chemistry of the Bi-U-O system, Dalton Transactions, vol.45, pp.7847-7855, 2016.

D. G. Martin, The thermal expansion of solid UO 2 and (U, Pu) mixed oxides -a review and recommendations, Journal of Nuclear Materials, vol.152, pp.94-101, 1988.

P. Murray and R. W. Thackray, Differential thermal analysis of the uranium oxides, Gt. Brit. Atomic Energy Research Establishment, 1951.

K. Ando and Y. Oishi, Diffusion Characteristics of Actinide Oxides, Journal of Nuclear Science and Technology, vol.20, pp.973-982, 1983.

A. B. Auskern and J. Belle, Self-Diffusion of Oxygen in Uranium Dioxide, The Journal of Chemical Physics, vol.28, issue.1, pp.171-172, 1958.

J. Belle, Oxygen and uranium diffusion in uranium dioxide (a review), Journal of Nuclear Materials, vol.30, issue.1, pp.3-15, 1969.

J. F. Marin and P. Contamin, Uranium and oxygen self-diffusion in UO 2, Journal of Nuclear Materials, vol.30, issue.2, pp.16-25, 1969.

A. S. Bayoglu and R. Lorenzelli, Etude de la diffusion chimique de l'oxygène dans PuO 2?x par dilatométrie et thermogravimétrie, Journal of Nuclear Materials, vol.82, issue.2, pp.403-410, 1979.

J. M. Floyd, Interpretation of transport phenomena in non-stoichiometric ceria, In: Indian J Technol, vol.11, pp.589-594, 1973.

K. C. Kim and D. R. Olander, Oxygen diffusion in UO 2?x, Journal of Nuclear Materials, vol.102, issue.1, pp.192-199, 1981.

D. I. Norris and P. Kay, Oxygen potential and lattice parameter measurements in (U, Ce)O2 -zx, Journal of Nuclear Materials, vol.116, issue.2, pp.184-194, 1983.

P. J. Spencer, A brief history of CALPHAD, vol.32, pp.1-8, 2008.

A. Kroupa, Modelling of phase diagrams and thermodynamic properties using Calphad method -Development of thermodynamic databases, Computational Materials Science, pp.3-13, 2013.

M. Hillert, Partial Gibbs energies from Redlich-Kister polynomials, Thermochimica Acta, vol.129, pp.71-75, 1988.

E. A. Aitken, S. F. Bartram, and E. F. Juenke, Crystal chemistry of the rhombohedral MO 3 .3R 2 O 3 Compounds, Inorganic Chemistry, vol.3, pp.949-954, 1964.

, NEA Nuclear Science Committee -Thermodynamics of Advanced Fuels -International Database (TAF-ID)

S. Grandjean, Method for co-precipitation of actinides in different oxidation states and method for preparation of mixed actinide compounds, 2017.

S. M. Manna, S. B. Roy, and J. B. Joshi, Study of crystallization and morphology of ammonium diuranate and uranium oxide -Elsevier Enhanced Reader, 2013.

B. and N. Murty, Influence of temperature of precipitation on agglomeration and other powder characteristics of ammonium diuranate, Powder Technology, vol.115, pp.167-183, 2001.

S. Manna, Study of calcinations of ammonium diuranate at different temperatures, Journal of Nuclear Materials, vol.426, issue.1, pp.229-232, 2012.

G. Heisbourg, The kinetics of dissolution of Th 1?x U x O 2 solid solutions in nitric media, Journal of Nuclear Materials, vol.321, issue.2, pp.141-151, 2003.

. Pompe-jaugeà-oxygène-gen&apos;air and . Setnag,

M. Dusek, V. Petricek, and L. Palatinus, Introduction to JANA2006, Acta Crystallographica Section A Foundations of Crystallography, vol.62, pp.46-46, 2006.

B. Ravel and M. Newville, List of Figures 1.12 Evolution of the temperature-dependent polymorphic transition of lanthanide sesquioxides. The symbols represent the values reported in literature [96], In: Journal of Synchrotron Radiation, vol.12, pp.537-541, 2005.

, Enthalpy increment in Nd 2 O 3 presented by Konings et al, p.27

, Solubility of rare-earths in uranium for temperatures of, pp.1273-1523

]. .. , (a) and (b) show on the extremes of the phase diagram to appreciate the low solubility of both metals [91]

]. .. , 29 1.17 Description of the U-Nd-O system made by Lambertson through the pseudo-binary diagram T vs UO 2 -Nd 2 O 3 [115]

, U-Nd-O phase diagram proposed by Wadier in [52] at 1123 K (850 ? C), p.31

, 32 1.21 XRD patterns for samples with different Nd concentration and hypostoichiometric O/M ratios [117]. All samples display a single solution except the sample U 15 Nd 85 O 1.61 , which shows a coexistence between the FCC structure and the Nd 2 O 3 hexagonal phase, and the hypo-stoichiometric U 1?y Nd y O 2?x phase, and (b) extract of the phase diagram of the (U,Nd,O) system at room temperature reported by Desgranges, p.33

, The picture on the left shows the reversible behavior of samples sintered at 1973 K and the picture on the right shows the non-reversible evolution of samples sintered at 1673 K, Isodensity maps of the HT-XRD measures reported by Dottavio et al. in [91] for samples doped with 28% Nd

, (a) Calculated U-Nd-O phase diagram from the model developed in [91] at room temperature showing the formation of two phases joined by the tie lines, and (b) pseudo-binary diagram in temperature, The yellow region stands for the miscibility gap and the blue line represents the tie line that the defines both FCC A and FCC B phase at the thermodynamic equilibrium, vol.35

, Calculated U-Nd-O ternary isotherm at 800 K from the model developed in [51]

, 37 1.27 Oxygen chemical potential for the U-Nd-O system for samples doped with 14% and 15.5% Nd (a), and 27% and 29.5% Nd at various temperatures [51]

. .. , ) black and grey circles represent the FCC structure formed by both U and Pu cations [125], and dashed circles represent the anionic sublattice in form of a cube on U-Pu-O mixed oxides. (b) evolution of the lattice parameter for different concentrations of Pu on the U-Pu-O system published by Truphémus et al. in [56], p.40

, The dashed central region represents the transition region where the hypo-stoichiometric FCC structure becomes a BCC structure, Isotherm of the ternary diagram of the U-Pu-O system schematized in [Gunéneau, 2012.

, Grey symbols were acquired by Sari et al. and red symbols by Truphémus et al. [56, 126], vol.30

, Phase diagram of the system U-Ce-O described by Markin et al. in [43] showing the full extension of the miscibility gap at room temperature, vol.46

, Extract of the U-La-O ternary diagram at 1523 K on the sections UO 2 -U 3 O 8 -La 2 O 3 reported in [144]

, 50 1.35 Phase diagram of the U-Gd-O system at 1773 K reported by Lindemer and Sutton in [49], Phase diagram of the pseudobinary system UO 2+x -La, vol.2

]. .. , 56 2.2 SEM imaging and X-ray mapping for the samples doped with 4%Nd ((a) and (b)), 27%Nd ((c) and (d)) and 33%Nd ((e) and (f))

. .. , 60 2.6 (a) illustrates the XRD patterns of two samples doped with 17%Nd through dry route and (b) presents a magnification of the framed region in red or blue to highlight the presence of the second crystallographic phase, FCC in sample 3 and hexagonal Nd 2 O 3 in sample 4 (black stars). 61 2.7 (a) presents the full XRD pattern of the sample doped with 27% Nd and (b) magnification of the pattern to highlight the presence of the cubic bixbyite C-Nd 2 O 3 (*), Figures (a) and (c) show the SAED corresponding to the green and orange circles and (b) TEM imaging of the sample doped with 33%. . 59 2.5 XRD patterns for the samples 1 and 2 doped with 4%Nd produced by dry route showing in both cases the presence of the FCC structure and a monophasic system

. .. Nd, 73 2.18 Oxygen chemical potentials for the samples doped with 17 and 25% Nd at 470 K and 670 K, respectively, p.73

K. .. , Evolution of the P O 2 in the furnace when the entering conditions of the gas vector are fixed at 10 ?27 atm and 923, Log(P O 2 ) vs O/M for the samples with 17% Nd (a) and 25%Nd (b) at, vol.74

. .. , 76 2.22 (a) shows the evolution of the lattice parameter for all samples before and after thermal treatment, and (b) schematizes the shifting of the (1 1 1) peak for the sample doped with 25% to lower angles after the thermal treatment, vol.82

, Figure (a) and figure (b) schematize the Fourier transform of the asproduced samples (T0) and the samples treated thermally (TT), p.83

. .. , 85 List of Figures 2.28 Distances of the first shell for all samples in comparison with the lattice parameter as a function of the concentration of Nd

, Calculation of the chemical potential as a function of the temperature for the sample doped with 25%Nd

. .. , Selected XRD patterns of the sample doped with 25% at different times after the thermal treatment at high temperature, p.96

. .. , 97 3.6 SEM imaging and Nd X-ray mapping of the sample after the high temperature thermal annealing. The sample remains single-phase and presents a uniform distribution of Nd

. .. Nd, , vol.100

]. .. , 107 3.14 HT-XRD patterns of the peak (3 1 1) for the sample doped with 20%Ce. The system remains monophasic as there is no evidence of a second crystallographic phase, The system follows Vegard's law, vol.106

, 110 3.17 HT-XRD patterns of the peak (2 0 2) for the sample doped with 45%Ce. Below T=473 K the system presents a second phase, p.111

. .. , Extraction of the XRD pattern of the peak (2 0 2) along with the Rietveld refinement, showing a biphasic system at room temperature (a), and a monophasic system at 773 K (b) and at 1173 K (c), p.112

, 19 (a) evolution of the lattice parameter for each temperature on the sample doped with 45%Ce. (b), phase fraction of FCC 1 (red) and FCC 2 (black). The FCC 2 fraction decreases with decreasing temperatures, vol.113

, The orange section highlights the peaks (3 1 1) and (2 2 2), which will be discussed later in figure 3.21, Complete XRD patterns of the sample doped with 45%Ce

K. .. , 116 3.23 Representation of the miscibility gap in temperature on the system U-Ce-O for a sample doped with 45%. The green line stands for the evolution of the sample during the HT-XRD and the blue line for the thermal annealing at 1773 K, Evolution of the lattice parameter as a function of time of the sample doped with 45%Ce after the thermal annealing at 1773

. .. , 126 4.2 Calculated oxygen chemical potentials for different temperatures and comparison with experimental data from [51] for a concentration of Nd of 5.5%Nd, Schematization of the regions where the interaction parameters are most relevant for the ternary phase diagram, vol.5, p.128

]. .. , Calculated oxygen chemical potentials at different temperatures for concentrations of Nd of 27, 29.5 and 30%, and comparison with experimental data from, p.129

, 6 (a) calculated isotherm at 300 K. (b) section of the isotherm at 300 K and comparison with experimental data from, vol.117, p.130

. .. , isotherm at 1123 K. (b) section of the isotherm at 1123 K and comparison with experimental data from [52], p.130

. .. , 8 (a) calculated isotherm at 1523 K. (b) section of the isotherm at 1523 K and comparison with experimental data from [116], p.131

. .. , Site fractions of the sample doped with 4%Nd, p.132

. .. , Site fractions of the sample doped with 17%Nd, p.133

. .. , Site fractions of the sample doped with 25%Nd, p.133

. .. -edge, 167 1.1 Formation enthalpies, entropies and Gibbs free energies for the different uranium oxides at room temperature [37, 68], XAS spectra collected on this work at the U L 3, p.20

, types of transition and transition enthalpy and entropy for the different neodymium oxides, vol.36

. .. , Coefficients of the polynomial expression of the heat capacity measured on temperature range of 298 K-1800 K [116], p.37

, Manufacturing processes and concentration ranges of the different authors that described the U-Pu-O phase diagram, vol.126, pp.128-131

, Manufacturing processes and concentration ranges of different authors that described the U-Ce-O phase diagram, p.45

, Manufacturing processes and concentration ranges of different authors that described the U-La-O phase diagram, vol.41, p.48

, Manufacturing processes and concentration ranges of different authors that described the U-Gd-O phase diagram, p.51

.. .. , 59 2.2 Results obtained by the Rietveld refinements for the three sintered samples

, 75 2.4 Calculated parameters obtained through the Rietveld refinement for all samples before and after the thermal treatment, p.77

, Position of the E 0 and the white line for each sample at the U M 4 -edge HERFD-XAS spectra

, Calculated concentration of U +4 , U +5 and U +6 for each sample after the linear combination fitting of the HERFD-XAS data, p.81

. .. , 86 2.8 Results of the Nd L 3 -edge EXAFS refinements of samples with 17 and 25 %Nd, EXAFS refinements of all samples

. .. , Theoretical and experimental concentration of U +4 , U +5 and U +6 when O/M=2, for the different ternary systems, p.89

. .. Each-sample,

, Oxygen self-diffusion parameters for stoichiometric UO 2, p.102

, Thermodynamic parameters used for the two models to describe the FCC phase [51, 91]

, The symbol "*" means all species, in this case it would include O ?2 and oxygen vacancies

, Parameters obtained after the assessment of the rhombohedral phase, vol.127

D. , Optimized thermodynamic parameter used on the different models to define the FCC phase [51, 91]

, Optimized thermodynamic parameter used on the different models to define the rhombohedral phase [183]