, The International Energy Agency (IEA), 2019.

, Climate Change 2014 : Mitigation to climate change. Contribution of working group III to fifth assesment report to the intergouvernmental panel on climate change, 2014.

, IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, IPCC, 2018.

, Evaluation du gisement solaire local, GUIDEnR PHOTOVOLTAIQUE L'information photovoltaique, 2010.

C. E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, Am. J. Sci, vol.26, pp.465-472, 1883.

S. Russell and . Ohl, Light-sensitive electric device, Patent 2402662, 1946.

, Photovoltaic Report, 2019.

E. Berman, The down-to-earth story of photovoltaics, SCIENCE, vol.287, p.233, 2000.

, Global Photovoltaic Market, 2018.

. Irena, Renewable Capacity Statistics, 2019.

W. Shockley and W. Read, Statistics of the recombination of holes and electrons, Physical Review, vol.87, pp.835-842, 1952.

R. Hall, Electron-Hole recombination in Germanium, Physical Review, vol.87, p.387, 1952.

, Research Cell Efficiency Record, 2019.

W. Shockley and H. Queisser, Detailed balance limit of efficiency of P-N junction solar cells, Journal of Applied Physics, vol.32, pp.510-519, 1961.

D. Carlson and C. Wronski, Amorphous silicon solar-cell, Applied Physics Letters, vol.28, pp.671-673, 1976.

M. Zeman, J. A. Willemen, S. Solntsev, and J. W. Metselaar, Extraction of amorphous silicon solar cell parameters by inverse modelling, Solar Energy Materials and Solar Cells, vol.34, pp.557-563, 1994.

J. Deng, J. M. Pearce, R. J. Koval, V. Vlahos, R. W. Collins et al., Absence of carrier recombination associated with the defect pool model in intrinsic amorphous silicon layers: Evidence from current-voltage characteristics on p -i -n and n -i -p solar cells, Appl. Phys. Lett, vol.82, pp.3023-3025, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02120546

R. J. Koval, A. S. Ferlauto, J. M. Pearce, R. W. Collins, and C. R. Wronski, Mobility gap profiles in Si:H intrinsic layers prepared by H2-dilution of SiH4: effects on the performance of pi-n solar cells, Journal of Non-Crystalline Solids, pp.1136-1141, 2002.

A. Kolodziej, Staebler-Wronski effect in amorphous silicon and its alloys, pp.21-32, 2004.

A. Gregg, R. Blieden, A. Chang, H. Ng, ;. St et al., Performance analysis of large scale, amorphous silicon, photovoltaic power systems, Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference -2005, pp.1615-1618, 2005.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc, vol.131, pp.6050-6051, 2009.

G. Grancini, C. Roldán-carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering, Nat Commun, vol.8, p.15684, 2017.

A. Devos, Detailed balance limit of the efficiency of tandem solar-cells, Journal of Phyics D-Applied Physics, vol.13, pp.839-846, 1980.

M. A. Green, E. D. Dunlop, J. Hohl-ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 56), PROGRESS IN PHOTOVOLTAICS, vol.28, pp.629-638, 2020.

J. Geisz, 50% or Bust: Status of Six-Junction Concentrator Solar Cells, 2019.

S. H. Demtsu and J. R. , Sites, 2005-S.H Demtsu-Quantification of losses in thin-film CdS CdTe solar cells.pdf, pp.347-350, 2005.

K. W. Chee, Z. Tang, H. Lü, and F. Huang, Anti-reflective structures for photovoltaics: Numerical and experimental design, Energy Reports, vol.4, pp.266-273, 2018.

S. A. Chevtchenko, M. A. Reshchikov, Q. Fan, X. Ni, Y. T. Moon et al., Study of SiNx and SiO2 passivation of GaN surfaces, JOURNAL OF APPLIED PHYSICS, vol.101, 2007.

M. Kerr and A. Cuevas, Very low bulk and surface recombination in oxidized silicon wafers, Semicond. Sci. Technol, vol.17, pp.35-38, 2002.

A. G. Aberle, T. Lauinger, J. Schmidt, and R. Hezel, Injection-level dependent surface recombination velocities at the silicon-plasma silicon nitride interface, Appl. Phys. Lett, vol.66, pp.2828-2830, 1995.

J. Benick, B. Hoex, M. C. Van-de-sanden, W. M. Kessels, O. Schultz et al., High efficiency n-type Si solar cells on Al2O3-passivated boron emitters, Appl. Phys. Lett, vol.92, p.253504, 2008.

T. Dullweber and J. Schmidt, Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept-A Review, IEEE J. Photovoltaics, vol.6, pp.1366-1381, 2016.

J. Mandelkorn and J. H. Lamneck, Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells, 1972.

K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka et al., Proceedings, 9th international conference on concentrating photovoltaics systems, 2013.

, Surfaces and Interfaces of Electronic Materials, pp.37-65, 2012.

I. P. Batra, Metallization and Metal-semiconductor Interfaces, 1989.

Y. Martin, C. Williams, and H. Wickramasinghe, Atomic force microscope force mapping and profiling on a sub 100-A scale, Journal of Applied Physics, vol.61, pp.4723-4729, 1987.

T. Albrecht, P. Grutter, D. Horne, and D. Rugar, Frequency-modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, vol.69, pp.668-673, 1991.

F. , Atomic-resolution of the silicon (111)-(7X7) surface by atomic-force microscopy, Science, vol.267, pp.68-71, 1995.

S. Morita, T. Ishizaka, Y. Sugawara, T. Okada, S. Mishima et al., Surface conductance of metal-surfaces in air studied with a force microscope, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol.28, pp.1634-1636, 1989.

M. Salmeron, G. Neubauer, A. Folch, M. Tomitori, D. F. Ogletree et al., Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films, Langmuir, pp.3600-3611, 1993.

O. Schneegans, P. Chretien, and F. Houze, Apparatus for measuring the local resistance of a surface, 2013.

W. Vandervorst, Method for mesurements on a semiconductor element with controlled probe pressure

P. Eyben, P. Bisiaux, A. Schulze, A. Nazir, and W. Vandervorst, Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques, Nanotechnology, p.26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01310822

,

J. Alvarez, I. Ngo, M. Gueunier-farret, J. Kleider, L. Yu et al., Conductive-probe atomic force microscopy characterization of silicon nanowire, Nanoscale Res Lett, vol.6, 2011.

G. Wexler, The size effect and the non-local Boltzmann transport equation in orifice and disk geometry, Proc. Phys. Soc, vol.89, pp.927-941, 1966.

K. L. Johnson, One Hundred Years of Hertz Contact, Proceedings of the Institution of Mechanical Engineers, vol.196, pp.363-378, 1982.

Y. V. Sharvin, A Possible Method For Studying Fermi Surfaces, JETP Letters, vol.48, pp.984-985, 1965.

J. C. Maxwell, A Treatise on Electricity and Magnetism, 1873.

D. Mikulik, M. Ricci, G. Tutuncuoglu, F. Matteini, J. Vukajlovic et al., Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells, Nano Energy, vol.41, pp.566-572, 2017.

J. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, Understanding scanned probe oxidation of silicon, Applied Physics Letters, vol.73, pp.271-273, 1998.

J. P. Kleider, C. Longeaud, R. Brüggemann, and F. Houzé, Electronic and topographic properties of amorphous and microcrystalline silicon thin films, Thin Solid Films, vol.383, pp.57-60, 2001.

L. K. and V. , Contact electricity of metals, The London, Edinburgh, and Dublin Philosophical Magazine and, Journal of Science, vol.46, pp.82-120, 1898.

W. A. Zisman, A new method of measuring contact potential differences in metals, Review of Scientific Instruments, vol.3, pp.367-370, 1932.

L. Polak and R. J. Wijngaarden, Two competing interpretations of Kelvin probe force microscopy on semiconductors put to test, Phys. Rev. B, vol.93, 2016.

V. Donchev, T. Ivanov, K. Germanova, and ?. ???????, Surface photovoltage spectroscopyan advanced method for characterization of semiconductor nanostructures, Trends in Applied Spectroscopy, vol.8, pp.27-66, 2010.

D. Fuster, J. Martinez-pastor, L. Gonzalez, and Y. González, Different regimes of electronic coupling and their influence on exciton recombination in vertically stacked InAs/InP quantum wires, Journal of Physics D-Applied Physics, vol.39, pp.4940-4947, 2006.

C. Dimas, C. Tan, H. Djie, A. Mcaulay, and B. Ooi, A Temporal Coherence Study of Quantum-Dot/Dash Broadband Lasers and Superluminescent Diodes, Photonics Technology Letters, IEEE, vol.21, pp.694-696, 2009.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures, 1999.

M. Nonnenmacher, M. P. O'boyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Applied Physics Letters, vol.58, pp.2921-2923, 1991.

W. Melitz, J. Shen, A. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surface Science Reports, vol.66, pp.1-27, 2011.

J. Xu, Y. Wu, W. Li, and J. Xu, Surface potential modeling and reconstruction in Kelvin probe force microscopy, Nanotechnology, p.28, 2017.

S. Shascha, Kelvin Probe Force Microscopy : Measuring and Compensating Electrostatic Forces, pp.7-24, 2012.

E. M. Tennyson, J. L. Garrett, J. A. Frantz, J. D. Myers, R. Y. Bekele et al., Nanoimaging of Open-Circuit Voltage in Photovoltaic Devices, Advanced Energy Materials, vol.5, 2015.

J. L. Garrett, E. M. Tennyson, M. Hu, J. Huang, J. N. Munday et al., Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells, Nano Letters, vol.17, pp.2554-2560, 2017.

A. Doukkali, S. Ledain, C. Guasch, and J. Bonnet, Surface potential mapping of biased pn junction with kelvin probe force microscopy: application to cross-section devices, Applied Surface Science, vol.235, pp.507-512, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00323450

L. Ivanova, S. Borisova, H. Eisele, M. Dähne, A. Laubsch et al., Surface states and origin of the Fermi level pinning on nonpolar GaN(11¯ 00) surfaces, Appl. Phys. Lett, vol.93, p.4, 2008.

D. Aspnes and P. Handler, Surface States on Cleaved (111) Silicon Surfaces, Surface Science, vol.4, p.353, 1966.

R. O. Jones, Intrinsic Surface States in Semiconductors, Phys. Rev. Lett, vol.20, pp.992-994, 1968.

P. Wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel et al., Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, Journal of Vacuum Science & Technology B, vol.18, pp.361-368, 2000.

N. Duhayon, P. Eyber, M. Fouchier, T. Clarysee, W. Vandervorst et al., Assessing the performance of two-dimensional dopant profiling techniques, Journal of Vacuum Science & Technology B, vol.22, pp.385-393, 2004.

P. Wolf, E. Brazel, and A. Erickson, Electrical characterization of semiconductor materials and devices using scanning probe microscopy, Materials Science in Semiconductor Processing, vol.4, pp.71-76, 2001.

P. Eyben, P. Bisiaux, A. Schulze, A. Nazir, and W. Vandervorst, Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques, Nanotechnology, p.26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01310822

,

P. Tomaszewski, Czochralski and his method, Oficyna Wydawnicza ATUT, 2003.

S. Lerouge, 16 -Sterilization and cleaning of metallic biomaterials, Second Edition, Woodhead Publishing, pp.405-428, 2019.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, Growth of native oxide on a silicon surface, Journal of Applied Physics, vol.68, pp.1272-1281, 1990.

B. Stegemann, P. Balamou, T. Lussky, K. Gad, D. Vossing et al., Passivation of Crystalline Silicon Wafers by Ultrathin Oxide Layers: Comparison of Wet-chemical, Plasma and Thermal Oxidation Techniques, pp.2779-2782, 2018.

A. Abbadie, J. Hartmann, P. Holliger, M. Semeria, P. Besson et al., Low thermal budget surface preparation of Si and SiGe, Applied Surface Science, vol.225, pp.256-266, 2004.

B. N. Reddy, P. N. Kumar, M. Deepa, and . Poly, 4-ethylenedioxypyrrole)-Au@WO 3 -Based Electrochromic Pseudocapacitor, ChemPhysChem, vol.3, pp.377-389, 2015.

H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri, Potential shielding by the surface water layer in Kelvin probe force microscopy, Applied Physics Letters, vol.80, pp.1459-1461, 2002.

L. Kronik and Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surface Science Reports, vol.37, issue.99, pp.2-3, 1999.

L. Polak and R. J. Wijngaarden, Two competing interpretations of Kelvin probe force microscopy on semiconductors put to test, Phys. Rev. B, vol.93, 2016.

N. E. Grant and J. D. Murphy, Temporary Surface Passivation for Characterisation of Bulk Defects in Silicon: A Review, Phys. Status Solidi RRL, vol.11, p.1700243, 2017.

L. Polak and R. J. Wijngaarden, Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy, Ultramicroscopy, vol.171, pp.158-165, 2016.

O. Aphek, L. Kronik, M. Leibovitch, and Y. Shapira, Quantitative assessment of the photosaturation technique, Surface Science, vol.409, pp.485-500, 1998.

S. Inc, ATLAS user's manual, 2012.

Y. Huang, S. Aharon, A. Rolland, L. Pedesseau, O. Durand et al., Influence of Schottky contact on the C-V and J-V characteristics of HTM-free perovskite solar cells, EPJ Photovoltaics, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01495026

D. Macdonald and A. Cuevas, Recombination in compensated crystalline silicon for solar cells, Journal of Applied Physics, vol.109, pp.43704-043704, 2011.

B. B. Paudyal, K. R. Mcintosh, and D. H. Macdonald, Temperature dependent carrier lifetime studies on Ti-doped multicrystalline silicon, Journal of Applied Physics, vol.105, p.124510, 2009.

Y. Huang, A. Gheno, A. Rolland, L. Pedesseau, S. Vedraine et al., A new approach to modelling Kelvin probe force microscopy of hetero-structures in the dark and under illumination, Optical and Quantum Electronics, vol.50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01675806

H. Dember, Uber eine photoelektromotorische Kraft in Kuperoxydulkristallen, pp.554-556, 1931.

S. M. Sze, Physics of semiconductor devices, 1981.

A. Saunders and G. Wright, Interface States in Silicon/Silicon-Oxide System Observed by Thermally Stimulated Charge Release, Electronics Letters, vol.6, p.207, 1970.

R. C. Newman, Defects in silicon, Rep. Prog. Phys, vol.45, pp.1163-1210, 1982.

S. Misra, L. Yu, M. Foldyna, and P. Roca-i-cabarrocas, High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires, Solar Energy Materials and Solar Cells, vol.118, pp.90-95, 2013.

B. Kayes, H. Atwater, and N. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, Journal of Applied Physics, vol.97, pp.114302-114311, 2005.

S. Misra, L. Yu, M. Foldyna, and P. Roca-i-cabarrocas, New Approaches to Improve the Performance of Thin-Film Radial Junction Solar Cells Built Over Silicon Nanowire Arrays, IEEE Journal of Photovoltaics, vol.5, pp.40-45, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230111

Q. Zhao, A. Hazarika, X. Chen, S. P. Harvey, B. W. Larson et al., High efficiency perovskite quantum dot solar cells with charge separating heterostructure, Nat Commun, vol.10, p.2842, 2019.

Z. Yang, J. Z. Fan, A. H. Proppe, F. P. De-arquer, D. Rossouw et al., Mixed-quantum-dot solar cells, Nat Commun, vol.8, p.1325, 2017.

P. Guyot-sionnest, M. Shim, C. Matranga, and M. Hines, Intraband relaxation in CdSe quantum dots, Phys. Rev. B, vol.60, pp.2181-2184, 1999.

A. Kechiantz and A. Afanasev, Intermediate band embedded outside of the depletion region, in: Intermediate Band Embedded Outside of the Depletion Region, 27th European Photovoltaics Solar Energy Conference and Exhibition, pp.412-417, 2018.

W. Shockley and H. Queisser, Detailed balance limit of efficiency of P-N junction solar cells, Journal of Applied Physics, vol.32, pp.510-519, 1961.

E. C. Garnett and P. Yang, Silicon Nanowire Radial p?n Junction Solar Cells, J. Am. Chem. Soc, vol.130, pp.9224-9225, 2008.

E. Garnett and P. Yang, Light Trapping in Silicon Nanowire Solar Cells, Nano Lett, vol.10, pp.1082-1087, 2010.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-evans, M. C. Putnam et al., Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nature Mater, vol.9, pp.239-244, 2010.

R. A. Street, P. Qi, R. Lujan, and W. S. Wong, Reflectivity of disordered silicon nanowires, Appl. Phys. Lett, vol.93, p.163109, 2008.

S. Misra, L. Yu, W. Chen, M. Foldyna, and P. Roca-i-cabarrocas, A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells, Journal of Physics D-Applied Physics, vol.47, p.393001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083484

S. Qian, S. Misra, J. Lu, Z. Yu, L. Yu et al., Roca i Cabarrocas, Full potential of radial junction Si thin film solar cells with advanced junction materials and design, Appl. Phys. Lett, vol.107, p.43902, 2015.

X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, Realization of high performance silicon nanowire based solar cells with large size, Nanotechnology, vol.24, p.235402, 2013.

G. Otnes, E. Barrigón, C. Sundvall, K. E. Svensson, M. Heurlin et al., Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements, Nano Lett, vol.18, pp.3038-3046, 2018.

R. De-lépinau, A. Scaccabarozzi, G. Patriarche, L. Travers, S. Collin et al., Evidence and control of unintentional As-rich shells in GaAs 1-x P x nanowires, Nanotechnology, vol.30, p.294003, 2019.

A. A. Talin, F. Léonard, A. M. Katzenmeyer, B. S. Swartzentruber, S. T. Picraux et al., Transport characterization in nanowires using an electrical nanoprobe, Semicond. Sci. Technol, vol.25, p.24015, 2010.

A. Darbandi and S. P. Watkins, Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique, Journal of Applied Physics, vol.120, p.14301, 2016.

O. Salehzadeh, X. Zhang, B. D. Gates, K. L. Kavanagh, and S. P. Watkins, p-type doping of GaAs nanowires using carbon, vol.112, p.94323, 2012.

D. Mikulik, M. Ricci, G. Tutuncuoglu, F. Matteini, J. Vukajlovic et al., Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells, Nano Energy, vol.41, pp.566-572, 2017.

E. Koren, Y. Rosenwaks, J. E. Allen, E. R. Hemesath, and L. J. Lauhon, Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy, Appl. Phys. Lett, vol.95, p.92105, 2009.

I. Amit, D. Englander, D. Horvitz, Y. Sasson, and Y. Rosenwaks, Density and Energy Distribution of Interface States in the Grain Boundaries of Polysilicon Nanowire, Nano Lett, vol.14, pp.6190-6194, 2014.

X. Sun, X. Wang, P. Wang, B. Sheng, M. Li et al., Identifying a doping type of semiconductor nanowires by photoassisted kelvin probe force microscopy as exemplified for GaN nanowires, Opt. Mater. Express, vol.7, p.904, 2017.

J. Tang, J. Maurice, W. Chen, S. Misra, M. Foldyna et al., Plasma-Assisted Growth of Silicon Nanowires by Sn Catalyst: Step-by-Step Observation, Nanoscale Research Letters, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401083

L. Yu, B. O'donnell, M. Foldyna, and P. Roca-i-cabarrocas, Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires, NANOTECHNOLOGY, p.23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757361

,

D. J. Szostak and B. Goldstein, Photovoltage profiling of hydrogenated amorphous Si solar cells, Journal of Applied Physics, vol.56, pp.522-530, 1984.

R. Kind, R. A. Van-swaaij, F. A. Rubinelli, S. Solntsev, and M. Zeman, Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells, Journal of Applied Physics, vol.110, 2011.

L. Kronik and Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surface Science Reports, vol.37, issue.99, pp.2-3, 1999.

, Mesure comparative c-AFM/KPFM sur poly-Si (i)

, Aucun lien avec les pinholes n'a pu être confirmé, ce qui démontre que la technique c-AFM est inadaptée pour certains échantillons notamment lorsque les couches étudiées possèdent une très bonne conduction latérale. Les résultats de la partie 5.5 ont confirmé que, sur ces mêmes échantillons, les mesures de KPFM permettent de mettre en évidence des inhomogénéités visibles uniquement lorsqu'un oxyde de passivation est présent dans la structure, ce qui rend très probable leur lien avec les pinholes. La raison pourrait être une augmentation locale de la concentration de dopants apparue en conséquence de la formation des pinholes et de la présence d'effets d'accumulation au interfaces poly-Si/c-Si de ces derniers, Les résultats de la partie 5.4 de ce chapitre ont montré que les mesures de c-AFM étaient principalement sensibles à des inhomogénéités en surface de la couche de poly-Si

, intrinsèque, l'idée étant de minimiser la conduction latérale qui était fortement présente pour les échantillons précédents. La technique c-AFM a donc de nouveau été choisie et couplée aux mesures de KPFM dans le but d'y mener des mesures corrélatives pour les mêmes zones cartographiées. L'échantillon étudié est celui de la série 3624

, en a) et la cartographie de courant en b) obtenues par mesure de c-AFM à l'aide du Résiscope sous une polarisation de 0,1 V en inverse. Au premier abord, la plus faible conductivité de la couche de poly-Si ne semble pas avoir modifié la densité des chemins de conduction et des pics de courant. Ceci nous amène donc à cartographier la même zone avec l'approche KPFM. La principale problématique rencontrée afin de comparer deux cartographies obtenues par différentes techniques est de pouvoir s'assurer de mesurer la même zone. Figure 69 : Cartographies : a) de hauteur, et b) de courant réalisées par c-AFM à l'aide du Résiscope sur l'échantillon de contact passivant avec une couche de poly-Si intrinsèque recuit à 800°C. Les cartographies ont été réalisées après désoxydation de la surface par HF, Les mesures de c-AFM sont présentées dans la Figure 69 qui montre la topographie

M. Soliman, Y. Ding, and L. Tetard, Nanoscale subsurface imaging, J. Phys.: Condens. Matter, vol.29, p.173001, 2017.

A. Morisset, R. Cabal, B. Grange, C. Marchat, J. Alvarez et al., Highly passivating and blister-free hole selective poly-silicon based contact for large area crystalline silicon solar cells, Solar Energy Materials and Solar Cells, vol.200, p.109912, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02308383

D. Tetzlaff, &. , J. Kruegener, Y. Larionova, S. Reiter et al., A simple method for pinhole detection in carrier selective POLO-junctions for high efficiency silicon solar cells, Solar Energy Materials and Solar Cells, vol.173, pp.106-110, 2017.

F. Feldmann, G. Nogay, P. Loper, D. L. Young, B. G. Lee et al., Charge carrier transport mechanisms of passivating contacts studied by temperature-dependent J-V measurements, Solar Energy Materials and Solar Cells, vol.178, pp.15-19, 2018.

A. S. Kale, W. Nemeth, H. Guthrey, E. Kennedy, A. G. Norman et al., Understanding the charge transport mechanisms through ultrathin SiOx layers in passivated contacts for high-efficiency silicon solar cells, Applied Physics Letters, vol.114, p.83902, 2019.

N. Folchert, M. Rienaecker, A. A. Yeo, B. Min, R. Peibst et al., Temperature-dependent contact resistance of carrier selective Poly-Si on oxide junctions, Solar Energy Materials and Solar Cells, vol.185, pp.425-430, 2018.

H. Steinkemper, F. Feldmann, M. Bivour, and M. Hermle, Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides, IEEE Journal of Photovoltaics, vol.5, pp.1348-1356, 2015.

R. Peibst, U. Roemer, K. R. Hofmann, B. Lim, T. F. Wietler et al., A Simple Model Describing the Symmetric I-V Characteristics of p Polycrystalline Si/n Monocrystalline Si, and n Polycrystalline Si/p Monocrystalline Si Junctions, IEEE Journal of Photovoltaics, vol.4, pp.841-850, 2014.

R. Peibst, U. Roemer, Y. Larionova, M. Rienaecker, A. Merkle et al., Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story?, Solar Energy Materials and Solar Cells, vol.158, pp.60-67, 2016.

T. F. Wietler, D. Tetzlaff, J. Kruegener, M. Rienaecker, F. Haase et al., Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide, Applied Physics Letters, vol.110, 2017.

A. S. Kale, W. Nemeth, S. P. Harvey, M. Page, D. L. Young et al., Effect of silicon oxide thickness on polysilicon based passivated contacts for high-efficiency crystalline silicon solar cells, Solar Energy Materials and Solar Cells, vol.185, pp.270-276, 2018.

R. Brendel and R. Peibst, Contact Selectivity and Efficiency in Crystalline Silicon Photovoltaics, IEEE J. Photovoltaics, vol.6, pp.1413-1420, 2016.

F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle et al., Efficient carrierselective p-and n-contacts for Si solar cells, Solar Energy Materials and Solar Cells, vol.131, pp.100-104, 2014.

A. S. Kale, W. Nemeth, S. U. Nanayakkara, H. Guthrey, M. Page et al., Tunneling or Pinholes: Understanding the Transport Mechanisms in SiOx Based Passivated Contacts for High-Efficiency Silicon Solar Cells, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pp.3473-3476, 2018.

A. Morisset, Integration of poly-Si/SiOx contacts in silicon solar cells : Optimization and understanding of conduction and passivation properties, 2019.

D. Monk, D. Soane, and R. Howe, Determination of the etching kinetics for the hydrofluoric-acid silicon dioxide system, Journal of the Electrochemical Society, vol.140, pp.2339-2346, 1993.

A. Abbadie, J. Hartmann, P. Holliger, M. Semeria, P. Besson et al., Low thermal budget surface preparation of Si and SiGe, Applied Surface Science, vol.225, pp.256-266, 2004.

K. Lancaster, S. Großer, F. Feldmann, V. Naumann, and C. Hagendorf, Study of Pinhole Conductivity at Passivated Carrier-selected Contacts of Silicon Solar Cells, Energy Procedia, vol.92, pp.116-121, 2016.

Z. Zhang, Y. Zeng, C. Jiang, Y. Huang, M. Liao et al., Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells, Solar Energy Materials and Solar Cells, vol.187, pp.113-122, 2018.

F. Chien, Y. Chou, T. Chen, W. Hsieh, T. Chao et al., Nano-oxidation of silicon nitride films with an atomic force microscope: Chemical mapping, kinetics, and applications, Journal of Applied Physics, vol.89, pp.2465-2472, 2001.

J. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, Understanding scanned probe oxidation of silicon, Applied Physics Letters, vol.73, pp.271-273, 1998.

F. Marchi, Growth of silicon oxide on hydrogenated silicon during lithography with an atomic force microscope, J. Vac. Sci. Technol. B, vol.16, p.2952, 1998.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, Growth of native oxide on a silicon surface, Journal of Applied Physics, vol.68, pp.1272-1281, 1990.

T. Tuan-yaakub, J. Yunas, R. Latif, A. Hamzah, M. Wee et al., Surface Modification of Electroosmotic Silicon Microchannel Using Thermal Dry Oxidation, Micromachines, vol.9, p.222, 2018.

H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri, Potential shielding by the surface water layer in Kelvin probe force microscopy, Applied Physics Letters, vol.80, pp.1459-1461, 2002.

E. H. Nicollian, MOS/metal oxide semiconductor/physics and technology, J.R. Brews, vol.920, 1982.

A. Licciardello, O. Puglisi, and S. Pignataro, Effect of organic contaminants on the oxidation kinetics of silicon at room temperature, Applied Phys, vol.48, pp.41-43, 1986.

, Kelvin Probe Force Microscopy, 2012.

S. Inc, ATLAS user's manual, 2012.

S. Li, Y. Zhou, Y. Zi, G. Zhang, and Z. L. Wang, Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy, ACS Nano, vol.10, pp.2528-2535, 2016.

, Bibliographie de la conclusion générale

S. Morita, T. Ishizaka, Y. Sugawara, T. Okada, S. Mishima et al., Surface conductance of metal-surfaces in air studied with a force microscope, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol.28, pp.1634-1636, 1989.

M. Salmeron, G. Neubauer, A. Folch, M. Tomitori, D. F. Ogletree et al., Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films, Langmuir, pp.3600-3611, 1993.

D. Mikulik, M. Ricci, G. Tutuncuoglu, F. Matteini, J. Vukajlovic et al., Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells, Nano Energy, vol.41, pp.566-572, 2017.

M. Nonnenmacher, M. P. O'boyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Applied Physics Letters, vol.58, pp.2921-2923, 1991.

A. Doukkali, S. Ledain, C. Guasch, and J. Bonnet, Surface potential mapping of biased pn junction with kelvin probe force microscopy: application to cross-section devices, Applied Surface Science, vol.235, pp.507-512, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00323450

E. M. Tennyson, J. L. Garrett, J. A. Frantz, J. D. Myers, R. Y. Bekele et al., Nanoimaging of Open-Circuit Voltage in Photovoltaic Devices, Advanced Energy Materials, vol.5, 2015.

K. Lancaster, S. Großer, F. Feldmann, V. Naumann, and C. Hagendorf, Study of Pinhole Conductivity at Passivated Carrier-selected Contacts of Silicon Solar Cells, Energy Procedia, vol.92, pp.116-121, 2016.

T. F. Wietler, D. Tetzlaff, J. Kruegener, M. Rienaecker, F. Haase et al., Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide, Applied Physics Letters, vol.110, 2017.

S. Inc, Annexe 1 : modélisation I. Simulation de diffusion pendant le recuit de structures, 2012.

, Pour ces simulations, une structure 2D, similaire à la Figure 51.a et représentant la structure finale des échantillons, a été utilisée pour observer la diffusion en présence d'une ouverture dans l'oxyde. Les dimensions et caractéristiques des couches de cette structure sont celles de la série GeePs 52 avec, pour rappel, une couche de poly-Si d'épaisseur 15 nm et de dopage type p (B) de 10 20 cm -3 , une couche d'oxyde de passivation d'épaisseur 1,4 nm et un substrat en silicium de dopage de type n de 10 15 cm -3 . Le pinhole est représenté par un trou dans la couche d'oxyde ayant un diamètre de 10 nm. Concernant les conditions du processus de diffusion, la simulation a reproduit le recuit subi par les échantillons avec une durée de 30 minutes et une température de 800°C, Afin de vérifier le gradient de dopage auquel on peut s'attendre suite au recuit à haute température subi par les échantillons de contact passivant

, Cette observation amène un questionnement sur le dopage réel du poly-Si à température ambiante dans les échantillons expérimentaux. Dans le cas des simulations, il apparaît une autre question de l'effet de cette limite de solubilité sur le gradient de dopage observé dans la couche de poly-Si près du pinhole et s'il peut être considéré comme représentatif de l'effet de la diffusion. Si l'on observe les profondeurs de diffusion du tracé d, on a : à 700°C, une diffusion de 4x10 16 cm -3 de dopants à une profondeur de 10 nm de l'interface poly-Si/c-Si; à 800°C, une diffusion de 5x10 17 cm -3 à une profondeur de 26 nm de l'interface poly-Si/c-Si; à 900°C, une diffusion de 10 15 cm -3 à une profondeur de 128 nm, montrant la distribution des dopants suite à la diffusion qui a eu lieu pendant des recuits à 700°C, 800°C et 900°C, respectivement. Les graphes d et e de la Figure A.72 sont des tracés de profil de dopage en bore en profondeur au niveau d'un pinhole et à travers l'oxyde luimême respectivement

A. Figure, Simulations de diffusion dans le cas d'une structure similaire au contact passivant avec une couche en poly-Si dopé p (10 19 cm -3 ) et la présence d, vol.74

, Le paramètre de temps de diffusion simulé est de 30 minutes comme pour le recuit des échantillons. Les valeurs de température utilisées sont, elles aussi, celles des recuits des échantillons: a) 700°C, b) 800°C, c) 900°C. La figure d) montre le profil de dopage en bore à la surface de la couche de poly-Si autour d'un trou dans l'oxyde après diffusion pour les trois températures de recuit

, Simulation de diffusion pendant le recuit de structures

, En raison de cette contamination possible, nous avons considéré un dopage résiduel de type n d'un niveau de 10 13 cm -3 . Dans ce cas, après une diffusion de 30 minutes à 800°C, on peut voir sur la Figure A.75 l'apparition d'un dopage n plus important au-dessus du trou dans l'oxyde, qui forme un gradient s'étendant sur une largeur d'environ 100 nm. Ce dopage local plus important mène à la présence d'une résistivité locale plus faible pouvant potentiellement expliquer les pics de courant observés expérimentalement dans la partie 5.6. La présence de ce, Les simulations ont aussi été effectuées dans le cas d'une structure possédant une couche de poly-Si de faible dopage, ceci afin de représenter l'échantillon expérimental avec une couche de poly-Si intrinsèque

E. Du-poly-si, Ce gradient de travail de sortie ne peut cependant pas expliquer les puits de CPD car étant en sens opposé. Concernant l'autre cas où la couche poly-Si intrinsèque est considérée comme ayant un léger dopage (10 13 cm -3 ) de type p, les résultats de simulation sont similaires (augmentation local du dopage total et sens de variation du CPD) avec comme seule différence notable

A. Figure, Simulations de diffusion dans le cas d'une structure similaire au contact passivant avec une couche en poly-Si dopé n à 10 13 cm -3 , simulant un dépôt intrinsèque avec une faible contamination, et la présence d'un trou de 10 nm dans la couche d'oxyde. Le paramètre de temps de diffusion simulé est de 30 minutes comme pour le recuit des échantillons. La valeur de température de diffusion utilisée est de 800°C. A gauche, concentration en dopant phosphore dans la structure après diffusion, à droite, tracé suivant la flèche noire en surface du poly-Si de la valeur |E F -E C | (courbe verte, vol.75

, Bibliographie de l'annexe 1

P. Ashburn and B. Soerowirdjo, Arsenic profiles in bipolar transistors with polysilicon emitters, Solid-State Electronics, vol.24, issue.81, pp.90047-90049, 1981.

B. Garben, Investigation of Boron Diffusion from Polycrystalline Silicon, Annexe 2 : publications scientifiques Articles de revues (PRJ) et proceedings, vol.133, 1986.

A. Morisset, R. Cabal, B. Grange, C. Marchat, J. Alvarez et al., Conductivity and Surface Passivation Properties of Boron-Doped Poly-Silicon Passivated Contacts for c-Si Solar Cells, Physica Status Solidi A, p.1800603, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02392467

. Prj2)-a, R. Morisset, B. Cabal, C. Grange, J. Marchat et al., Highly passivating and blister-free hole selective poly-silicon based contact for large area crystalline silicon solar cells, Solar Energy Materials and Solar Cells, vol.200, p.109912, 2019.

. Prj3)-c, J. P. Marchat, J. Connolly, J. Kleider, L. J. Alvarez et al., KPFM surface photovoltage measurement and numerical simulation, EPJ Photovoltaics, vol.10, 2019.

. Prp4)-a, R. Morisset, B. Cabal, C. Grange, J. Marchat et al., Improvement of the conductivity and surface passivation properties of boron-doped poly-silicon on oxide, Proceeding of SiliconPV2018, pp.40017-40040, 1999.

A. Prp5)-c.-marchat, J. Morisset, R. Alvarez, M. E. Cabal, J. P. Gueunier-farret et al.,

C. Kleider and K. , Si Passivated Contact Structure, Proceeding of the 36 th European Photovoltaic Solar Energy Conference (EU PVSEC 2019), Sep. 9 th -12 th, pp.22-24, 2019.

,

L. Prj6)-c.-marchat, J. Dai, S. L. Alvarez, J. Gall, S. Kleider et al., Local V OC Measurements by Kelvin Probe Force Microscopy Applied on P-I-N Radial Junction Si Nanowires, Nanoscale Res. Lett, vol.14, p.398, 2019.

C. Prp7)-j.-alvarez, A. Marchat, L. Morisset, J. Dai, R. Kleider et al., Electrical Scanning Probe Microscopy Approaches to Investigate Solar Cell Junctions and Devices, In Quantum Sensing and Nano Electronics and Photonics XVII, International Society for Optics and Photonics, vol.11288, 2020.

, Conférences internationales (I)

A. Morisset, R. Cabal, B. Grange, C. Marchat, J. Alvarez et al., Improvement of the conductivity and surface passivation properties of boron-doped poly-silicon on oxide, 8th International Conference on Crystalline Silicon Photovoltaics, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01943223

C. Marchat, L. Dai, S. Misra, A. Jaffre, J. Alvarez et al., Pere Roca i Cabarrocas, Local Open-Circuit Voltage Characterization of Thin-Film Radial Junction PIN Solar Cells by Kelvin Probe Force Microscopy, MRS 2018 Spring Meeting, Symposium CM01-Exploring Nanoscale Physical Properties of Materials via Local Probes, 2018.

A. Morisset, B. Grange, R. Cabal, C. Marchat, J. Alvarez et al., Conductivity and surface passivation of boron-doped poly-silicon passivated contacts for crystalline silicon solar cells, E-MRS 2018 Spring Meeting, Symposium I-Materials research for group IV semiconductors: growth, characterization and technological developments, 2018.

C. Marchat, A. Morisset, J. Alvarez, R. Cabal, M. E. Gueunier-farret et al., Passivated Selective Contact Structure Characterizationby C-AFM and KPFM of the Conduction by Pinholes, ICANS 28 : Amorphous and nanocrystalline semiconductors, 2019.

A. Bojar, C. Marchat, J. Alvarez, P. Schulz, and J. P. Kleider, Halide Perovskite Thin Films Characterisation by Force Microscopy Techniques, ICANS 28 : Amorphous and nanocrystalline semiconductors, 2019.

C. Marchat, A. Morisset, J. Alvarez, R. Cabal, M. E. Gueunier-farret et al., Si/SiOx/c-Si Passivated Contact Structure, EU PVSEC 2019, 36th European Photovoltaic Solar Energy Conference, Sep. 9 th -12 th, 2019.

T. Desrue, A. Morisset, E. Bruhat, A. Veau, M. Hayes et al.,

C. Gueunier-farret, D. Marchat, P. Blanc-pelissier, C. Schutz, M. Chevalier et al., Functionalized Oxides for Bifacial Solar Cells with Passivated Contacts: First Results of the OXYGEN Project, EU PVSEC 2019, 36th European Photovoltaic Solar Energy Conference, 2019.

J. Alvarez, C. Marchat, A. Morisset, L. Dai, J. Kleider et al., Electrical Scanning Probe Microscopy Approaches to Investigate Solar Cell Junctions and Devices, SPIE OPTO PHOTONIC WEST, Quantum Sensing and Nano Electronics and Photonics XVII, 2020.

C. Marchat, A. Morisset, J. Alvarez, R. Cabal, S. Dubois et al., Cartographie du photo-courant sur des jonctions à contact passivant en silicium poly-cristallin sur oxide, Journées Nationales, 2017.

J. Kleider, C. Marchat, D. Mencaraglia, Y. Huang, and A. Roland, Numerical analysis of kelvin probe force microscopy, JNPV 2017, Journées Nationales du photovoltaique 2017, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633187

C. Marchat, L. Dai, S. Misra, A. Jaffré, J. Alverez et al., Caractérisation du potentiel de circuit-ouvert d'une cellule solaire Si à jonction radiale PIN en couche mince par la technique de Kelvin Probe Force Microscopy, Journées Nationales, 2018.

J. Kleider, J. Connolly, J. Alvarez, M. Gueunier-farret, C. Marchat et al., Parametric analysis of KPFM by numerical simulation, Journées Nationales, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01943490