Un Cadre Probabiliste pour l'Optimisation des Systèmes de Dialogue
Abstract
Dans cet article, un cadre théorique pour la simulation et l'optimisation automatique de systèmes de dialogues vocaux entre homme et machine par le biais d'un apprentissage non-supervisé de stratégies est proposé. Ce cadre s'appuie sur une description probabiliste de la communication parlée entre homme et machine. Il permet de s'inscrire dans le cadre des processus décisionnels de Markov et de faire usage de l'apprentissage par renforcement pour rechercher une stratégie optimale de manière indépendante de la tâche. Deux applications concrètes du cadre proposé aux cas du remplissage de formulaire et de l'interrogation de bases de données sont données afin d'en démontrer les utilisations possibles.
Origin : Publisher files allowed on an open archive
Loading...