Convergence Analysis of an online Approach to Parameter Estimation Problems Based on Binary Observations - Archive ouverte HAL Access content directly
Journal Articles Automatica Year : 2012

Convergence Analysis of an online Approach to Parameter Estimation Problems Based on Binary Observations

Abstract

In this paper, we present an online identification method to the problem of parameter estimation from binary observations. A recursive identification algorithm with low-storage requirements and computational complexity is derived. We prove the convergence of this method provided that the input signal satisfies a strong mixing property. Some simulation results are then given in order to illustrate the properties of this method under various scenarios. This method is appealing in the context of micro-electronic devices since it only requires a 1-bit analog-to-digital converter, with low power consumption and minimal silicon area.
Fichier principal
Vignette du fichier
paper_Revision2_last_JUILLARD.pdf (269.33 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00747809 , version 1 (02-11-2012)

Identifiers

Cite

Kian Jafaridinani, Jérome Juillard, Morgan Roger. Convergence Analysis of an online Approach to Parameter Estimation Problems Based on Binary Observations. Automatica, 2012, 48 (11), pp.2837-2842. ⟨10.1016/j.automatica.2012.05.050⟩. ⟨hal-00747809⟩
80 View
360 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More