Skip to Main content Skip to Navigation
Poster communications

A study of the impact of climate on the optimal geometry of a LCPV system

Abstract : The inter-row spacing of classical photovoltaic (PV) plants is generally chosen to avoid shading during periods of significant solar radiation. The installation results in widely-spaced rows, and the inter-row space is illuminated during periods of high solar resource. The addition of inter-row reflectors augments the direct and diffuse flux reaching the PV cells while resulting in a lower inter-row spacing, which is advantageous for both large-scale and rooftop installations. The project aims to explore the benefits of equipping the inter-row space with highly reflective surfaces, and develop clear rules for optimal settings of the PV+Reflector system in a specified location and climate. An integrated model of the system was developed and validated with a demonstrator installed on the SIRTA meteorology platform (Palaiseau, France, 48.71°N, 2.21°E). The model was applied on three cities with similar latitudes but different climates: St. Johns, Palaiseau and Bratislava. The locations were compared based on achievable gains and optimal settings.
Complete list of metadata
Contributor : Anne Migan Connect in order to contact the contributor
Submitted on : Monday, December 7, 2015 - 11:05:43 PM
Last modification on : Saturday, June 25, 2022 - 10:18:29 PM


  • HAL Id : hal-01239562, version 1


Marko Pavlov, Anne Migan-Dubois, Vincent Bourdin, Michel Pons, Jordi Badosa, et al.. A study of the impact of climate on the optimal geometry of a LCPV system. European Photovoltaic Solar Energy Conference (Eu-PVSEC 2015), Sep 2015, Hamburg, Germany. 2015. ⟨hal-01239562⟩



Record views