Skip to Main content Skip to Navigation
Journal articles

Ignition of Quiescent Lean Propane–Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges

Abstract : We present an experimental study of lean mixture ignition by nanosecond repetitively pulsed (NRP) discharges. The plasma is created in a lean propane/air mixture at pressure up to 10 bar and equivalence ratio 0.7, premixed in a constant volume vessel. We characterize the initial spark radius, the ignition kernel development and the flame propagation as a function of pressure (up to 10 bar) and the pulse energy (1–6 mJ per pulse). Comparisons with a conventional igniter show that better results are obtained with NRP discharges in terms of flame propagation speed, in particular at high pressure, due to the increased wrinkling of the flame front that is induced by NRP discharges.
Document type :
Journal articles
Complete list of metadatas

https://hal-centralesupelec.archives-ouvertes.fr/hal-01244696
Contributor : Christophe Laux <>
Submitted on : Wednesday, December 16, 2015 - 10:30:07 AM
Last modification on : Saturday, September 26, 2020 - 11:44:08 PM

Identifiers

Citation

D. A. Xu, D. A. Lacoste, C. O. Laux. Ignition of Quiescent Lean Propane–Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges. Plasma Chemistry and Plasma Processing, Springer Verlag, 2015, 36 (1), pp.309-327. ⟨10.1007/s11090-015-9680-3⟩. ⟨hal-01244696⟩

Share

Metrics

Record views

312