Ignition of Quiescent Lean Propane–Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges - Archive ouverte HAL Access content directly
Journal Articles Plasma Chemistry and Plasma Processing Year : 2015

Ignition of Quiescent Lean Propane–Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges

Abstract

We present an experimental study of lean mixture ignition by nanosecond repetitively pulsed (NRP) discharges. The plasma is created in a lean propane/air mixture at pressure up to 10 bar and equivalence ratio 0.7, premixed in a constant volume vessel. We characterize the initial spark radius, the ignition kernel development and the flame propagation as a function of pressure (up to 10 bar) and the pulse energy (1–6 mJ per pulse). Comparisons with a conventional igniter show that better results are obtained with NRP discharges in terms of flame propagation speed, in particular at high pressure, due to the increased wrinkling of the flame front that is induced by NRP discharges.
Not file

Dates and versions

hal-01244696 , version 1 (16-12-2015)

Identifiers

Cite

D. A. Xu, D. A. Lacoste, C. O. Laux. Ignition of Quiescent Lean Propane–Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges. Plasma Chemistry and Plasma Processing, 2015, 36 (1), pp.309-327. ⟨10.1007/s11090-015-9680-3⟩. ⟨hal-01244696⟩
178 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More