Computer algebra methods for testing the structural stability of multidimensional systems

Abstract : In this paper, we present new computer algebra based methods for testing the structural stability of n-D discrete linear systems (with n ≥ 2). More precisely, starting from the usual stability conditions which resumes to deciding if an hypersurface has points in the unit polydisk, we show that the problem is equivalent to deciding if an algebraic set has real points and use state-of-the-art algorithms for this purpose. Our strategy has been implemented in Maple and its relevance demonstrated through numerous experimentations.
Type de document :
Communication dans un congrès
IEEE 9th International Workshop on Multidimensional (nD) Systems (IEEE nDS 2015), Sep 2015, Vila Real, Portugal. 2015, Proceedings of the IEEE 9th International Workshop on Multidimensional (nD) Systems (IEEE nDS 2015). 〈10.1109/nds.2015.7332633 〉
Liste complète des métadonnées

https://hal-centralesupelec.archives-ouvertes.fr/hal-01259968
Contributeur : Myriam Baverel <>
Soumis le : jeudi 21 janvier 2016 - 12:51:49
Dernière modification le : mardi 17 avril 2018 - 11:32:20

Identifiants

Citation

Y. Bouzidi, Alban Quadrat, Fabrice Rouillier. Computer algebra methods for testing the structural stability of multidimensional systems. IEEE 9th International Workshop on Multidimensional (nD) Systems (IEEE nDS 2015), Sep 2015, Vila Real, Portugal. 2015, Proceedings of the IEEE 9th International Workshop on Multidimensional (nD) Systems (IEEE nDS 2015). 〈10.1109/nds.2015.7332633 〉. 〈hal-01259968〉

Partager

Métriques

Consultations de la notice

349