Generalized Bernoulli numbers and a formula of Lucas - CentraleSupélec Access content directly
Journal Articles The Fibonacci Quarterly Year : 2015

Generalized Bernoulli numbers and a formula of Lucas

Abstract

An overlooked formula of E. Lucas for the generalized Bernoulli numbers is proved using generating functions. This is then used to provide a new proof and a new form of a sum involving classical Bernoulli numbers studied by K. Dilcher. The value of this sum is then given in terms of the Meixner-Pollaczek polynomials.
Fichier principal
Vignette du fichier
vignat_generalized_bernoulli.pdf (134.85 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01322848 , version 1 (10-04-2020)

Identifiers

Cite

Victor H. Moll, Christophe Vignat. Generalized Bernoulli numbers and a formula of Lucas. The Fibonacci Quarterly, 2015, 53 (4), pp.349. ⟨hal-01322848⟩
92 View
124 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More