A bayesian lower bound for parameter estimation of Poisson data including multiple changes - Archive ouverte HAL Access content directly
Conference Papers Year :

A bayesian lower bound for parameter estimation of Poisson data including multiple changes

(1) , (2) , (1) , (3, 4)
1
2
3
4

Abstract

This paper derives lower bounds for the mean square errors of parameter estimators in the case of Poisson distributed data subjected to multiple abrupt changes. Since both change locations (discrete parameters) and parameters of the Poisson distribution (continuous parameters) are unknown, it is appropriate to consider a mixed Cramér-Rao/Weiss-Weinstein bound for which we derive closed-form expressions and illustrate its tightness by numerical simulations.
Fichier principal
Vignette du fichier
[C46].pdf (278.67 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01525499 , version 1 (21-05-2017)

Identifiers

Cite

Lucien Bacharach, Mohammed Nabil El Korso, Alexandre Renaux, Jean-Yves Tourneret. A bayesian lower bound for parameter estimation of Poisson data including multiple changes. The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017), Mar 2017, New Orleans, United States. ⟨10.1109/icassp.2017.7953005⟩. ⟨hal-01525499⟩
99 View
225 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More