An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Matrix Analysis and Applications Year : 2017

An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem

(1) , (2, 3, 4) , (3, 2)
1
2
3
4

Abstract

We contribute to the perturbation theory of nonlinear eigenvalue problems in three ways. First, we extend the formula for the sensitivity of a simple eigenvalue with respect to a variation of a parameter to the case of multiple nonsemisimple eigenvalues, thereby providing an explicit expression for the leading coefficients of the Puiseux series of the emanating branches of eigenvalues. Second, for a broad class of delay eigenvalue problems, the connection between the finite- dimensional nonlinear eigenvalue problem and an associated infinite-dimensional linear eigenvalue problem is emphasized in the developed perturbation theory. Finally, in contrast to existing work on analyzing multiple eigenvalues of delay systems, we develop all theory in a matrix framework, i.e., without reduction of a problem to the analysis of a scalar characteristic quasi-polynomial.
Fichier principal
Vignette du fichier
MBN-SIAM-2017.pdf (458.83 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01558169 , version 1 (10-01-2018)

Identifiers

Cite

Wim Michiels, Islam Boussaada, Silviu-Iulian Niculescu. An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 2017, 38 (2), pp.599-620. ⟨10.1137/16M107774X⟩. ⟨hal-01558169⟩
226 View
1199 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More