Skip to Main content Skip to Navigation
Journal articles

Optimal Transport Theory for Cell Association in UAV-Enabled Cellular Networks

Abstract : In this letter, a novel framework for delay-optimal cell association in unmanned aerial vehicle (UAV)-enabled wireless cellular networks is proposed. In particular, to minimize the average network delay under any arbitrary spatial distribution of the ground users, the optimal cell partitions of the UAVs and terrestrial base stations are determined. To this end, using the powerful mathematical tools of optimal transport theory, the existence of the solution to the optimal cell association problem is proved and the solution space is completely characterized. The analytical and simulation results show that the proposed approach yields substantial improvements in terms of the average network delay.
Document type :
Journal articles
Complete list of metadatas

https://hal-centralesupelec.archives-ouvertes.fr/hal-01778658
Contributor : Irched Chafaa <>
Submitted on : Wednesday, April 25, 2018 - 8:48:03 PM
Last modification on : Wednesday, July 1, 2020 - 2:30:03 PM

Links full text

Identifiers

Citation

Mohammad Mozaffari, Walid Saad, Mehdi Bennis, Merouane Debbah. Optimal Transport Theory for Cell Association in UAV-Enabled Cellular Networks. IEEE Communications Letters, Institute of Electrical and Electronics Engineers, 2017, 21 (9), pp.2053 - 2056. ⟨10.1109/LCOMM.2017.2710306⟩. ⟨hal-01778658⟩

Share

Metrics

Record views

179