HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries

Abstract : Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li$_x$CoO$_2$ layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
Complete list of metadata

Contributor : Olivier Schneegans Connect in order to contact the contributor
Submitted on : Thursday, May 24, 2018 - 1:14:34 PM
Last modification on : Wednesday, April 6, 2022 - 3:06:03 PM



van Son Nguyen, van Huy Mai, Pascale Auban-Senzier, Claude Pasquier, Kang Wang, et al.. Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries. Small, Wiley-VCH Verlag, 2018, 14 (24), pp.1801038. ⟨10.1002/smll.201801038⟩. ⟨hal-01799107⟩



Record views