Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries - Archive ouverte HAL Access content directly
Journal Articles Small Year : 2018

Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries

(1) , (2) , (3) , (3) , (3) , (3) , (3) , (3) , (4) , (5) , (6) , (7) , (8) , (9) , (9) , (9) , (9) , (9) , (10) , (11) , (3) , (1) , (8) , (1) , (1)
1
2
3
4
5
6
7
8
9
10
11
Pascale Auban-Senzier
  • Function : Author
  • PersonId : 828745
Claude R. Pasquier
  • Function : Author
  • PersonId : 828746
Nathalie Brun
  • Function : Author
  • PersonId : 943095
François Jomard
  • Function : Author
  • PersonId : 933565

Abstract

Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li$_x$CoO$_2$ layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
Not file

Dates and versions

hal-01799107 , version 1 (24-05-2018)

Identifiers

Cite

van Son Nguyen, van Huy Mai, Pascale Auban-Senzier, Claude R. Pasquier, Kang Wang, et al.. Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries. Small, 2018, 14 (24), pp.1801038. ⟨10.1002/smll.201801038⟩. ⟨hal-01799107⟩
294 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More