Experimental characterization of plasma-assisted flame stabilization mechanisms for aircraft engines and gas turbines - CentraleSupélec Access content directly
Other Publications Year : 2021

Experimental characterization of plasma-assisted flame stabilization mechanisms for aircraft engines and gas turbines

Caractérisation expérimentale par diagnostics optiques des mécanismes de stabilisation de flamme par plasma pour les moteurs d'avion et les turbines à gaz

Abstract

The reduction of pollutant emissions in aircraft engines and gas turbines has become a major issue for industry because of increased environmental regulations. An efficient solution to reduce NOx formation is to maintain a relatively low flame temperature, which can be achieved by using lean premixed combustion systems. However, too low a flame temperature may affect the combustion efficiency and cause an increase in CO and unburned hydrocarbon (CHx) emissions. In addition, flame instabilities or even extinction may occur when the operating regime becomes near the lean flammability limit. Combining flame stability, combustion efficiency and pollutant reduction issues is then very challenging when designing these emerging new combustion technologies. Previous work at the EM2C laboratory has shown that lean premixed flames can be effectively stabilized by a local addition of energy with Nanosecond Repetitively Pulsed (NRP) discharges (Pilla et al. 2006). These plasma discharges produce a local increase in active species concentrations and heat (Pilla et al. 2006, Rusterholtz et al., 2013). Figure 1 shows the spontaneous emission of OH radicals in a lean premixed propane/air flame. Without plasma (Figure1 left), the reaction zone is very small, confined to the recirculation zone above the bluff-body, and the flame exhibits instabilities. By applying NRP discharges in the recirculation zone, the chemical activity the flame is enhanced (Figure1 right). Although the flame temperature is relatively low, the combustion efficiency is improved and therefore less production of CO and CHx is expected. Plasma-assisted stabilization of lean flames was also recently obtained in larger scale burners, allowing reductions by a factor of up to 4 of the lean extinction limit of a 75 kW premixed propane-air flame at atmospheric pressure (Barbosa et al. 2015), and of a 200 kW kerosene-air turbojet aerodynamic injector operating at 3 bar (Heid et al. 2009). In all cases, plasma-assisted stabilization of lean flames was obtained with plasma powers of less than 1% of the power released by the flame. The high efficiency of plasma-stabilization is due to the fact that the energy of the electric discharge is spent on ionization, excitation and dissociation of molecules rather than just increasing the gas temperature. The relaxation of discharge-excited nitrogen molecules by collisional quenching reactions with oxygen molecules results in an ultrafast (time scales of nanoseconds) increase of radicals and gas temperature inside the discharge channel. In typical conditions, near-full dissociation of molecular oxygen can be obtained in the inter-electrode region (Rusterholtz et al. 2013, Lo et al. 2014,). This high concentration of radicals and increase of heat have a positive effect on the flame stabilization (Pilla et al. 2006, Castela et al. 2016), but it is not clear which is the dominant effect. Thesis objectives The objective of the thesis is to better understand the mechanisms of flame stabilization by nanosecond plasma discharges, and in particular to understand the relative importance of the thermal and chemical effects induced by the plasma. This will be achieved by performing advanced diagnostics (laser diagnostics and spectroscopy) on two burner configurations, and by comparing the measurements with the results of numerical simulations developed in parallel by another Ph.D. student at EM2C, in collaboration with CERFACS and TURBOMECA, for the following laboratory burners: • The MINI-PAC burner (15 kW), which promotes a low-turbulence, propane/air flame: experiments performed by Pilla et al. (2006) have shown an efficient stabilization of the flame when a plasma discharge is produced in the flow recirculation zone, partially composed of burnt gases, located above the flame-stabilizing bluff-body. • The BIMER combustor (50 kW), which is a confined highly turbulent swirled combustor representative of aeronautical engines, fed either with propane (Barbosa et al. 2009) or with liquid dodecane to mimic kerosene (Renaud et al. 2015). Previous experiments demonstrated that the plasma improves the propane/air flame stability, with a decrease of the lean blow-off limit by more than a factor of 4 (Barbosa et al. 2015). These burners are representative of real turbulent combustion systems and their understanding will open the way to applications of plasma discharges on large scale industrial burners. The work will benefit from our collaboration with numerical simulation groups (EM2C, CERFACS and TURBOMECA) who will simulate the two burner configurations in parallel of this thesis, building on previous numerical work at EM2C (Castela et al. 2016). Comparing the results of the measurements and the simulations will provide useful insights into the mechanisms of plasma-flame interactions. An important part of the Ph.D. thesis will be to implement and develop optical diagnostics to characterize the plasma-stabilized flames in terms of species concentrations (radical species, combustion products, unburned gases, pollutants,…), temperatures, and velocity fields. This task will require advanced optical diagnostics such as absolute emission and absorption spectroscopy, laser-induced fluorescence (one and two photons), diode or quantum-cascade laser measurements, Planar Imaging Velocimetry, or Schlieren, for which our laboratory has developed a strong expertise.
La réduction des émissions polluantes dans les moteurs d’avion et les turbines à gaz est un enjeu majeur pour l’industrie en raison de normes environnementales contraignantes. Une solution efficace pour réduire la formation des Nox est de maintenir une température de flamme relativement basse, ce qui peut être obtenu en utilisant des prémélanges pauvres en carburant. Cependant, une température de flamme trop basse peut réduire l’efficacité de combustion et augmenter les émissions de CO et d’hydrocarbures imbrûlés (CHx). De plus, des instabilités de flamme, voire son extinction, peuvent se produire lorsque le régime de fonctionnement est proche de la limite d’extinction pauvre. Obtenir à la fois des flammes stables, une bonne efficacité de combustion et une réduction des émissions polluantes est un enjeu important pour les nouvelles technologies de combustion. Des travaux antérieurs au laboratoire EM2C ont permis de démontrer que des flammes prémélangées pauvres peuvent être stabilisées efficacement par un dépôt d’énergie au moyen de décharges Nanosecondes Répétitives Pulsées (NRP) (Pilla et al. 2006). Ces décharges plasma produisent une augmentation localisée de la densité d’espèces actives et de la température (Pilla et al. 2006, Rusterholtz et al., 2013). La figure 1 montre l’émission spontanée de radicaux OH produits dans une flamme prémélangée propane-air pauvre. Sans plasma (Figure1 gauche),la zone de réaction est limitée spatialement et se trouve confinée à la zone de recirculation située au voisinage de l’accroche-flamme. De plus, la flamme est instable. En appliquant une décharge NRP dans la zone de recirculation, l’activité chimique de la flamme est intensifiée (Figure 1, droite). La température de flamme reste basse, néanmoins l’efficacité de combustion est améliorée et la production de CO et de CHx est fortement diminuée. Une stabilisation de flammes pauvres par plasma a aussi été obtenue récemment sur les brûleurs à plus grande échelle, permettant de réduire de près d’un facteur 4 la limite d’extinction pauvre d’une flamme propane-air prémélangée de 75 kW à la pression atmosphérique (Barbosa et al. 2015), ainsi que d’une flamme produite par un injecteur aérodynamique de 200 kW avec un mélange kérosène air à 3 bar (Heid et al. 2009). Dans tous ces exemples, il est important de noter que la stabilisation a été obtenue avec une décharge plasma d’une puissance inférieure à 1% de la puissance développée par la flamme. La haute efficacité de la stabilisation par plasma est due au fait que l’énergie de la décharge électrique sert principalement à créer des particules actives (ions, espèces excitées, radicaux), plutôt qu’à juste chauffer le gaz. Par exemple, la décharge excite des molécules d’azote vers des états électroniques avec suffisamment d’énergie pour dissocier l’oxygène moléculaire, produisant ainsi en quelques nanosecondes une densité importante de radicaux d’oxygène atomique dans le canal de la décharge. Pour des conditions typiques, une dissociation quasi complète de l’oxygène est obtenue (Rusterholtz et al. 2013, Lo et al. 2014,). Cette forte concentration de radicaux a un effet bénéfique sur la stabilisation de la flamme (Pilla et al. 2006, Castela et al. 2016). Cependant, l’importance relative des effets thermiques et chimiques du plasma n’est pas encore établie. Objectifs de la thèse L’objectif de cette thèse est de mieux comprendre les mécanismes de stabilisation par les décharges nanosecondes, and plus particulièrement de comprendre l’importance relative des effets thermiques et chimiques induits par le plasma. Pour cela, des mesures 2D de la concentration de radicaux et du champ de température seront réalisées au moyen de diagnostics avancés (diagnostics lasers et spectroscopie) sur deux configurations expérimentales de laboratoire : • Le banc MINI-PAC (15 kW), qui crée des flammes propane-air légèrement turbulentes : les expériences menées par Pilla et al. (2006) ont démontré que ces flammes peuvent être efficacement stabililisées lorsqu’une décharge NRP est produite dans la zone de recirculation, partiellement composée de gaz brulés, située juste au-dessus de l’accroche flamme. • Le banc BIMER (50 kW), un foyer confiné à injection swirlée, fortement turbulent, et représentatif des foyers aéronautiques. Le banc BIMER peut être alimenté en propane (Barbosa et al. 2009) ou en dodecane liquide, un combustible représentatif du kérosène (Renaud et al. 2015). Des expériences passées ont démontré que le plasma améliore la stabilité des flammes propane-air, avec un abaissement de la limite d’extinction pauvre de plus d’un facteur 4. (Barbosa et al. 2015). Ces deux brûleurs de laboratoire sont représentatifs des systèmes de combustion turbulente industriels. La compréhension de leur fonctionnement ouvrira la voie à l’application des décharges plasmas sur des foyers industriels à grande échelle. Les mesures seront ensuite comparées aux résultats obtenus par les simulations numériques réalisées en parallèle par un autre doctorant du laboratoire EM2C, sur la base d’un modèle développé précédemment au laboratoire EM2C (Castela et al., 2016). Nous bénéficierons également d’une collaboration avec d’autres groupes de simulation numérique (CERFACS and TURBOMECA). La comparaison des mesures aux simulations permettra de mieux comprendre les mécanismes d’interaction plasma-flamme. Une partie importante de la thèse sera consacrée à l’implémentation et à la réalisation de diagnostics optiques non-intrusifs pour caractériser le mécanisme de stabilisation par plasma en déterminant la distribution spatiale des espèces produites (radicaux, produits de combustions, imbrûlés, polluants, …), du champ de température et de vitesses dans les brûleurs. Pour ceci, des diagnostics optiques avancés seront utilisés, comme la spectroscopie d’émission quantitative, la fluorescence induite par laser à un ou deux photons, l’absorption infrarouge par diode laser ou laser à cascade quantique, la vélocimétrie laser, ou encore la strioscopie (Schlieren). Mots-clefs : combustion, plasma, expérimentale, stabilisation, moteurs d'avion, turbines à gaz Titre, résumé et mots clés du sujet du projet doctoral en anglais : Titre : Experimental characterization of plasma-assisted flame stabilization mechanisms for aircraft engines and gas turbines Résumé : Experimental characterization by optical diagnostics of plasma-assisted flame stabilization mechanisms for aircraft engines and gas turbines Context The reduction of pollutant emissions in aircraft engines and gas turbines has become a major issue for industry because of increased environmental regulations. An efficient solution to reduce NOx formation is to maintain a relatively low flame temperature, which can be achieved by using lean premixed combustion systems. However, too low a flame temperature may affect the combustion efficiency and cause an increase in CO and unburned hydrocarbon (CHx) emissions. In addition, flame instabilities or even extinction may occur when the operating regime becomes near the lean flammability limit. Combining flame stability, combustion efficiency and pollutant reduction issues is then very challenging when designing these emerging new combustion technologies. Previous work at the EM2C laboratory has shown that lean premixed flames can be effectively stabilized by a local addition of energy with Nanosecond Repetitively Pulsed (NRP) discharges (Pilla et al. 2006). These plasma discharges produce a local increase in active species concentrations and heat (Pilla et al. 2006, Rusterholtz et al., 2013). Figure 1 shows the spontaneous emission of OH radicals in a lean premixed propane/air flame. Without plasma (Figure1 left), the reaction zone is very small, confined to the recirculation zone above the bluff-body, and the flame exhibits instabilities. By applying NRP discharges in the recirculation zone, the chemical activity the flame is enhanced (Figure1 right). Although the flame temperature is relatively low, the combustion efficiency is improved and therefore less production of CO and CHx is expected. Plasma-assisted stabilization of lean flames was also recently obtained in larger scale burners, allowing reductions by a factor of up to 4 of the lean extinction limit of a 75 kW premixed propane-air flame at atmospheric pressure (Barbosa et al. 2015), and of a 200 kW kerosene-air turbojet aerodynamic injector operating at 3 bar (Heid et al. 2009). In all cases, plasma-assisted stabilization of lean flames was obtained with plasma powers of less than 1% of the power released by the flame. The high efficiency of plasma-stabilization is due to the fact that the energy of the electric discharge is spent on ionization, excitation and dissociation of molecules rather than just increasing the gas temperature. The relaxation of discharge-excited nitrogen molecules by collisional quenching reactions with oxygen molecules results in an ultrafast (time scales of nanoseconds) increase of radicals and gas temperature inside the discharge channel. In typical conditions, near-full dissociation of molecular oxygen can be obtained in the inter-electrode region (Rusterholtz et al. 2013, Lo et al. 2014,). This high concentration of radicals and increase of heat have a positive effect on the flame stabilization (Pilla et al. 2006, Castela et al. 2016), but it is not clear which is the dominant effect. Thesis objectives The objective of the thesis is to better understand the mechanisms of flame stabilization by nanosecond plasma discharges, and in particular to understand the relative importance of the thermal and chemical effects induced by the plasma. This will be achieved by performing advanced diagnostics (laser diagnostics and spectroscopy) on two burner configurations, and by comparing the measurements with the results of numerical simulations developed in parallel by another Ph.D. student at EM2C, in collaboration with CERFACS and TURBOMECA, for the following laboratory burners: • The MINI-PAC burner (15 kW), which promotes a low-turbulence, propane/air flame: experiments performed by Pilla et al. (2006) have shown an efficient stabilization of the flame when a plasma discharge is produced in the flow recirculation zone, partially composed of burnt gases, located above the flame-stabilizing bluff-body. • The BIMER combustor (50 kW), which is a confined highly turbulent swirled combustor representative of aeronautical engines, fed either with propane (Barbosa et al. 2009) or with liquid dodecane to mimic kerosene (Renaud et al. 2015). Previous experiments demonstrated that the plasma improves the propane/air flame stability, with a decrease of the lean blow-off limit by more than a factor of 4 (Barbosa et al. 2015). These burners are representative of real turbulent combustion systems and their understanding will open the way to applications of plasma discharges on large scale industrial burners. The work will benefit from our collaboration with numerical simulation groups (EM2C, CERFACS and TURBOMECA) who will simulate the two burner configurations in parallel of this thesis, building on previous numerical work at EM2C (Castela et al. 2016). Comparing the results of the measurements and the simulations will provide useful insights into the mechanisms of plasma-flame interactions. An important part of the Ph.D. thesis will be to implement and develop optical diagnostics to characterize the plasma-stabilized flames in terms of species concentrations (radical species, combustion products, unburned gases, pollutants,…), temperatures, and velocity fields. This task will require advanced optical diagnostics such as absolute emission and absorption spectroscopy, laser-induced fluorescence (one and two photons), diode or quantum-cascade laser measurements, Planar Imaging Velocimetry, or Schlieren, for which our laboratory has developed a strong expertise.
Not file

Dates and versions

hal-02024814 , version 1 (19-02-2019)

Identifiers

  • HAL Id : hal-02024814 , version 1

Cite

Victorien Blanchard. Experimental characterization of plasma-assisted flame stabilization mechanisms for aircraft engines and gas turbines. 2021. ⟨hal-02024814⟩
603 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More