Cube-Split: A Structured Grassmannian Constellation for Non-Coherent SIMO Communications
Abstract
In this paper, we propose a practical structured constellation for non-coherent communication with a single transmit antenna over Rayleigh flat and block fading channel without instantaneous channel state information. The constellation symbols belong to the Grassmannian of lines and are defined up to a complex scaling. The constellation is generated by partitioning the Grassmannian of lines into a collection of bent hypercubes and defining a mapping onto each of these bent hypercubes such that the resulting symbols are approximately uniformly distributed on the Grassmannian. With a reasonable choice of parameters, this so-called cube-split constellation has higher packing efficiency, represented by the minimum distance, than the existing structured constellations. Furthermore, exploiting the constellation structure, we propose low-complexity greedy symbol decoder and log-likelihood ratio computation, as well as an efficient way to associate it to a multilevel code with multistage decoding. Numerical results show that the performance of the cube-split constellation is close to that of a numerically optimized constellation and better than other structured constellations. It also outperforms a coherent pilot-based scheme in terms of error probability and achievable data rate in the regime of short coherence time and large constellation size.
Origin : Files produced by the author(s)